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Heavy metals released in the environment pose a huge threat to soil and water 

quality, food safety and public health. Additionally, humans and other mammals 

may also be  directly exposed to heavy metals or exposed to heavy metals 

through the food chain, which seriously threatens the health of animals and 

humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common 

heavy metal, has been shown to cause serious environmental pollution as well 

as intestinal damage. Thus, increasing research is devoted to finding drugs to 

mitigate the negative health effects of hexavalent chromium exposure. Seaweed 

polysaccharides have been demonstrated to have many pharmacological 

effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent 

chromium exposure has not been well characterized. Here, we  hypothesized 

that seaweed polysaccharides could alleviate hexavalent chromium exposure-

induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment 

group was compulsively receive K2Cr2O7. At the end of the experiment, all 

mice were euthanized, and colon contents were collected for DNA sequencing 

analysis. Results showed that seaweed polysaccharide administration can restore 

the gut microbial dysbiosis and the reduction of gut microbial diversity caused 

by hexavalent chromium exposure in mice. Hexavalent chromium exposure 

also caused significant changes in the gut microbial composition of mice, 

including an increase in some pathogenic bacteria and a decrease in beneficial 

bacteria. However, seaweed polysaccharides administration could ameliorate the 

composition of gut microbiota. In conclusion, this study showed that seaweed 

polysaccharides can restore the negative effects of hexavalent chromium 

exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also 

lays the foundation for the application of seaweed polysaccharides.
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Introduction

Industrial production releases a large amount of metal pollutants every year, such as 
lead, chromium, and copper, which are considered to be vital factors causing environmental 
contamination and animal metal poisoning (Wen et al., 2019; Zhao et al., 2019; Wang 
F. et al., 2022). Chromium is one of the most common heavy metals, which is widely used 
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in leather, fuel and steel production (Mamais et al., 2016; Kapoor 
et  al., 2022). Early surveys indicated that the global annual 
consumption of chromium is more than 200,000 tons and its 
demand is still increasing (Li A. et  al., 2021). However, large 
amounts of chromium waste may be directly discarded and reach 
the environment through multiple ways, seriously threatening the 
surrounding water and soil health (Vaiopoulou and Gikas, 2020; 
Prasad et al., 2021). Importantly, the released chromium could 
accumulate in soil, water and plants then transfer to aquatic and 
terrestrial animals via food chain, posing a serious threat to 
human health and food safety (Nguyen et al., 2017; Lee C. P. et al., 
2019). Previous studies indicated that long-term exposure to 
hexavalent chromium can cause parenchymal organ injury such 
as gastrointestinal tract, liver, and kidney. Additionally, hexavalent 
chromium has also been shown to be  associated with cancer, 
asthma and gut microbial dysbiosis (Yang Q. et al., 2020; Monteiro 
et al., 2018; Shaw et al., 2019).

Gut microbiota is a complicated and dynamic microecosystem 
that consists of approximately 100 trillion microorganisms 
involving over 2,000 diverse species (Egerton et al., 2018; Feng 
et al., 2018; Morris, 2018). The gut microbiota exhibits a symbiotic 
relationship with the host, exerting positive effects on host 
metabolism, intestinal homeostasis and immune system 
maturation (Yu et al., 2020; Zhang L. et al., 2021). Moreover, the 
other well-understood contributions of the gut microbial 
community is its key roles in the intestinal barrier maintenance 
and immune system maturation, which contribute to protecting 
the host from invasion by infectious pathogens (Sun et al., 2022; 
Wang R. et al., 2022). As essential biochemical converters, gut 
microbiota can also convert food into nutrients and metabolites 
(Zhang L. et al., 2021; Zhang X. et al., 2021; Yang J. et al., 2022). 
However, many factors associated with hosts and environment 
such as aging, oxidative stress, antibiotics and heavy metal could 
affect intestinal homeostasis and even induce gut microbial 
dysbiosis (Xia et al., 2018; Kakade et al., 2020; Ma et al., 2022). 
Numerous studies provided supporting evidence that gut 
microbial dysbiosis could impair intestinal mucosal barrier and 
gut mucosal immune system, potentially causing severe 
gastrointestinal infection, diarrhea, and colonitis (Liu et al., 2019; 
Li Y. et  al., 2021; Xu et  al., 2022). Additionally, gut microbial 
dysbiosis can also extend its negative effects beyond the 
gastrointestinal system and result in extraintestinal diseases such 
as autism, diabetes, obesity and NAFLD (Yang et al., 2021; Wan 
and Ma, 2022; Ye et al., 2022). Considering the systemic effects of 
gut microbial dysbiosis, it is also considered as a emerging 
participator in the pathophysiology of many diseases (Crusell 
et al., 2018).

Supplementation with antioxidants is regarded as a vital 
way to mitigate metal poisoning because metal contaminants 
can cause oxidative stress and decreased antioxidant capacity 
(He et al., 2020; Yang Y. et al., 2020; Paithankar et al., 2021). 
Currently, polysaccharides extracted from animals and plants 
have been shown to be  promising antioxidants (Chen and 
Huang, 2018, 2019). Among many types of polysaccharides, 

seaweed polysaccharide has attracted mounting attention own 
to its several health benefits to the host (Tanna and Mishra, 
2019; Bauer et  al., 2021). Numerous studies indicated that 
seaweed polysaccharide has anti-inflammatory, antiviral, 
immunomodulatory and anti-tumor effects (Lomartire and 
Goncalves, 2022). Moreover, recent research on seaweed 
polysaccharide also showed its vital roles in the gastrointestinal 
disease and improve antioxidant ability (Fu et  al., 2021). 
Although increasing evidence showed the positive role of 
seaweed polysaccharide on the host health, it remains unclear 
whether seaweed polysaccharide can alleviate gut microbial 
imbalance caused by hexavalent chromium. Thus, 
we investigated the protective effect of seaweed polysaccharide 
on hexavalent chromium induced gut microbial imbalance.

Materials and methods

Animal experiments

Sixty 28-day-old Kunming mice with similar weight and 
background were used for this research. These selected mice were 
housed in a standard environment and health assessments were 
performed on all mice to ensure that the experiments ran 
smoothly. After acclimatization for 3 days, these mice were 
randomly divided into three groups namely control group (Con), 
Cr (VI)-induced group (Cr), seaweed polysaccharide treatment 
group (SP, 200 mg/kg). The dosage of seaweed polysaccharide and 
Cr (VI) refers to the previous research with slight improvements 
(Ben et al., 2016; Fu et al., 2021). The proportion of male and 
female in each groups was 1:1. The mice in the Con, Cr and SP 
groups were provided adequate feed and water. In addition, mice 
in Cr (VI) and SP treatment group was compulsively receive 
K2Cr2O7 (75 mg/kg). Moreover, the SP treatment group was 
compulsively gavaged with 0.2 ml of SP. On the day 29 of the 
experiment, we  euthanized all the mice and collected colonic 
contents. The collected samples were snap-frozen in liquid 
nitrogen and stored at-80°C until further investigation.

DNA extraction and illumine MiSeq 
sequencing

The acquired samples of each group were separately 
homogenized and then performed DNA extraction using QIAamp 
DNA Mini Kit (QIAGEN, Hilden, Germany) following suggested 
instructions of manufacturer. After ensuring the extracted DNA 
met the requirements for subsequent analysis, we amplified the 
V3/V4 variable regions using the primers (338F: ACTCCTAC 
GGGAGGCAGCA and 806R: GGACTACHVGGGTWTCTAAT) 
synthesized from conserved regions. The conditions and volumes 
of PCR reactions were determined as per previous studies (Zhang 
et  al., 2020). Before building the libraries, some processing 
products including fragment recovery, quantitation and quality 
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appraisal were performed to obtain qualified products. The 
constructed libraries were subsequently performed quality 
evaluation. The libraries with only one peak and concentration 
greater than 2 nM were considered qualified. The qualified libraries 
were subjected to paired-end sequenced (2 × 300 bp) on MiSeq 
sequencing machine following the standard protocols. The 
original data containing short sequences, chimera and mismatched 
primers preduced from amplicon sequencing were performed 
quality evaluation and filtration to acquire effective sequence. The 
effective sequences were clustered and OTUs partitioned based on 
97% similarity. To further dissect the effects of thiram exposure on 
gut microbiota, we  calculated five alpha diversity indices and 
generated PCoA plots that reflected beta diversity. The differential 
bacteria were identified through the Metastats analysis and  
LEfSe. p-values (means ± SD) <0.05 were considered 
statistically significant.

Results

Data collection and analysis

To investigate the protective effect of seaweed polysaccharide 
on Cr (VI)-induced mice, we  explored changes in the gut 
microbiota of mice during polysaccharide supplementation. 
Results indicated that a total of 735,152 (Con = 256,535, 
Cr = 222,963, SP = 255,654) raw sequences were obtained from 
three groups (Table  1). Subsequently, we  performed quality 
assessment on the raw data and obtained 502,400 (Con = 183,752, 
Cr = 138,389, SP = 180,259) valid sequences. Results of the 
rarefaction curves, which can reflect the sequencing depth, show 
that the species coverage and sequencing depth are qualified 
(Figures  1A–C). The valid sequences of three groups were 
clustered into 358 OTUs (Con = 298, Cr = 182, SP = 269), ranging 
from 76 to 193 OTUs per sample (Figures 1D,E). Furthermore, the 

Con, Cr and SP groups have 69, 9, and 35 unique OTUs, 
respectively.

Seaweed polysaccharide recovered the 
changes of gut microbial diversity 
induced by Cr (VI)

We further calculated changes in gut microbial diversity based 
on the abundance of OTUs in each sample. Results of Good’s 
coverage indicated that almost all bacterial phenotypes were found 
in this amplicon sequencing. The gut microbial diversity indices 
such as Chao1 (170.75 ± 15.79 vs. 87.00 ± 9.55, p = 0.00029), ACE 
(170.75 ± 15.79 vs. 87.00 ± 9.55, p = 0.00029), Shannon (4.64 ± 0.68 
vs. 2.64 ± 0.64, p = 0.0055), and Simpson (0.88 ± 0.060 vs. 0.63 ± 0.15, 
p  = 0.035) in the hexavalent chromium exposure group were 
significantly lower than those in the control group, indicating that 
hexavalent chromium markedly reduced the diversity and 
abundance of gut microbiota. However, seaweed polysaccharide 
administration reversed the hexavalent chromium-induced decrease 
in gut diversity indices (Figures 2A–D). PCoA plots indicated that 
all the samples were clustered together, indicating no differences in 
the major components of the gut microbiota (Figures 2E,F).

Seaweed polysaccharide altered gut 
microbial composition in Cr (VI)-induced 
mice

The gut microbial composition and abundance in different 
taxonomical levels were evaluated and observed significant 
variations. In this amplicon sequencing, a total of 10 phyla and 91 
genera were identified in 12 samples, ranging from 7 to 10 phyla 
and 37 and 69 genus per sample. Proteobacteria (13.49, 40.43%), 
Campylobacterota (23.70, 21.54%), Firmicutes (20.47, 13.58%) and 

TABLE 1 The raw sequence information generated from amplicon sequencing.

Sample Raw reads Clean reads Denoised reads Merged reads Effective reads Effective (%)

Con1 63,877 48,706 47,825 46,605 44,712 69.99

Con2 52,984 42,083 41,786 41,500 41,298 77.94

Con3 68,338 56,977 56,209 55,487 54,201 79.31

Con4 71,336 54,244 51,810 48,256 43,541 61.03

Cr1 57,184 45,048 44,317 43,248 36,645 64.08

Cr2 43,218 33,053 32,877 32,630 32,505 75.21

Cr3 64,568 50,981 50,095 48,996 40,654 62.96

Cr4 57,993 44,484 43,224 41,448 28,585 49.29

SP1 72,200 55,611 54,193 52,194 46,092 63.83

SP2 59,875 48,195 47,982 47,741 46,954 78.42

SP3 68,315 52,716 50,800 48,336 43,504 63.68

SP4 55,264 44,248 44,016 43,778 43,709 79.09
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Bacteroidota (23.43, 17.17%) were the most preponderant bacteria 
in Con and SP groups, whereas Proteobacteria (64.11%), 
Campylobacterota (8.41%), Firmicutes (19.43%), and 

Actinobacteriota (1.58%) were abundantly present in the Cr 
groups (Figure 3A). However, the abundances of Deferribacterota 
(3.18, 0.42, 1.57%), Verrucomicrobiota (2.94, 0.82, 0.22%), 

A

C D E

B

FIGURE 1

Feasibility assessment and OTU distribution. (A,B) Rarefaction curves. (C) Rank abundance curve. (D) Venn diagram. (E) OTUs distribution 
histogram.

A B C

D E F

FIGURE 2

Seaweed polysaccharide administration restored the changes in gut microbial diversity induced by hexavalent chromium exposure. (A) Chao1. 
(B) ACE. (C) Shannon. (D) Simpson. (E,F) PCoA plots based on the weighted and unweighted UniFrac distance.
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Patescibacteria (0.97, 0.021, 0.31%), and Cyanobacteria (0.033, 
0.00, 0.00%) are lower in Con, Cr and SP groups. Escherichia_
Shigella (10.71, 33.45%) and Helicobacter (23.70, 21.54%) were the 
most dominant genus in the Con and SP groups, whereas 
Escherichia_Shigella (57.75%) and Ligilactobacillus (14.24%) were 
abundantly present in the Cr group (Figure 3B). However, the 
proportions of Enterorhabdus (4.94, 1.41, 2.71%), Desulfovibrio 
(6.07, 0.89, 1.43%), unclassified_Enterobacteriaceae (0.43, 4.05, 
3.52%), and Bacillus (2.63, 1.57, 2.06%) were lower in gut 
microbiota of Con, Cr, and SP groups. The specific bacterial 
species and abundance are also shown in the heatmap (Figure 3C).

At the phylum level, the abundances of Proteobacteria was 
observably more preponderant in Cr group than in the Con group, 
whereas the abundances of Bacteroidota, Patescibacteria,  
and Actinobacteriota were lower. At the genus level, the 
abundances of Escherichia_Shigella and Enterococcus in Cr group 
was observably predominant than Con group, whereas  
the unclassified_Lachnospiraceae, Prevotellaceae_UCG_001, 
unclassified_Desulfovibrionaceae, Bilophila, Stenotrophomonas, 
Lachnoclostridium, Rikenellaceae_RC9_gut_group, Rhodococcus, 
Microbacterium, Candidatus_Saccharimonas, Enterorhabdus, 
unclassified_Erysipelotrichaceae, Sphingobacterium, unclassified_
Anaerovoracaceae, Anaerotruncus, unclassified_Ruminococcaceae, 
and Acinetobacter were lower (Figure  4). However, seaweed 
polysaccharide administration could reverse these bacterial 
changes. A comparison of the Cr and SP showed a distinct 
decrease in the abundances of Bacteroides, Alloprevotella, 
unclassified_Desulfovibrionaceae, unclassified_Ruminococcaceae, 
Odoribacter, GCA_900066575, unclassified_Lachnospiraceae, 
Anaerotruncus, and Alistipes. LEfSe analysis further revealed 
bacteria that differed between groups (Figure 5).

Correlation network analysis

Alistipes was positively related to unclassified_Muribaculaceae 
(0.79). Prevotellaceae_UCG_001 was positively related to 
Alloprevotella (0.83), unclassified_Erysipelotrichaceae (0.77) and 
unclassified_Lachnospiraceae (0.66). Rikenellaceae_RC9_gut_
group was positively related to unclassified_Erysipelotrichaceae 
(0.72) and unclassified_Clostridia_UCG_014 (0.67) (Figure 6).

Discussion

The environmental contamination caused by heavy metal 
discharge and the negative impact on public health have attracted 
increasing attention (Drzezdzon et al., 2018; Yuan et al., 2020). In 
addition, the accumulation of heavy metals in animals and plants 
also seriously affects animal production and human health (Quina 
et al., 2019; Bao et al., 2021). Studies have shown that chromium 
could be absorbed by the host in many ways such as the digestive 
system, epidermis and respiratory system (Zhang et  al., 2020). 
Moreover, chromium ingested by the digestive tract can enter other 

organs such as liver, kidney, and intestine through blood circulation, 
which further threatens the health of the host (Cardenas-Gonzalez 
et al., 2016; Andleeb et al., 2020). Early investigations showed that 
long-term chromium exposure can cause a significant decrease in 
growth performance and perturb gut microbial homeostasis in 
broilers (Li Y. et al., 2021). In addition, chromium exposure has also 
been shown to cause significant gastrointestinal symptoms (Zhang 
et al., 2022). It is widely known that the intestine plays an important 
role in nutrient absorption and host health, which in turn depends 
on normal gut microbiota structure (Brussow, 2015; Coelho et al., 
2019). Although gut microbiota inhabits the intestine, it can cause 
systemic effects. Therefore, the maintenance of gut microbial 
homeostasis is critical for host health (Greenhill, 2018; Ma et al., 
2020). Chromium intake through the digestive tract inevitably 
affects the gut microbiota and causes kidney damage, but whether 
seaweed polysaccharides with various biological properties can 
restore the gut microbiota is still unknown. Therefore, 
we  systematically explored the protective effects of seaweed 
polysaccharides on hexavalent chromium-induced gut microbiota 
in mice.

As the main channel for various substances to enter the body, 
the intestinal own health and the gut microbiota inhabiting the 
intestine are also more susceptible to external factors (Sadeq 
et al., 2021; Zheng et al., 2021). Generally, the gut microbiota is 
in a dynamic balance under the action of various factors, but 
intestinal function does not change significantly (Michaudel and 
Sokol, 2020). In addition, the stability of the gut microbiota is 
also necessary to maintain the host health and the intestinal 
function (Li et al., 2016). However, environmental pollutants 
such as heavy metals, microplastics and pesticides can damage 
the intestine and various parenchymal organs, causing gut 
microbial imbalance and systemic effects (Lu et al., 2019; Qiao 
et al., 2019). Additionally, dysbiosis in the gut microbiota also 
affects the digestion and absorption of nutrients and growth 
performance (Chi et al., 2021). Previous study showed that long-
term hexavalent chromium exposure leads to dysbiosis of the gut 
microbiota, accompanied by a significant reduction in microbial 
diversity (Li A. et al., 2022). Additionally, Yao et al. (2019) also 
found similar conclusions, demonstrating the negative impact of 
hexavalent chromium on gut microbes. In this study, we observed 
significant decrease in gut microbial diversity of mice during 
hexavalent chromium exposure. However, seaweed 
polysaccharide administration could restore the gut microbial 
dysbiosis caused by chromium exposure. Studies have shown that 
gut microbial dysbiosis and reduced diversity are considered 
important drivers of various diseases such as diarrhea, obesity 
and diabetes (Stephens et al., 2018; Lee P. et al., 2019). Moreover, 
decreased gut microbial diversity also affects intestinal barrier 
function and immune system maturation, which may reduce host 
immunity and increase permeability (Burcelin, 2016; Van 
Averbeke et al., 2022). In this case, the host is more sensitive to 
external pathogenic factors and more prone to other diseases. 
Increased intestinal permeability may also cause the passage of 
harmful intestinal metabolites or pathogenic bacteria across the 
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intestinal barrier, leading to damage to other organs such as liver 
and kidney (Adolph and Tilg, 2018; Wahlstrom, 2019). More 
importantly, some opportunistic pathogens may also become 
pathogenic during this period (Nishida et al., 2018). Therefore, 
maintaining the balance of gut microbiota is also considered to 
be an important condition to ensure the health of the host. In 
addition, we also performed beta diversity analysis to explore the 
differences in the main components of the gut microbiota. 
Results showed that all the samples were clustered together, 

indicating that there were no differences in the main components 
of the gut microbiota.

As the most complex micro-ecosystem, the gut microbiota is 
composed of a large number of microorganisms, of which bacteria 
account for approximately 98% (Qin et al., 2022; Yakabe et al., 
2022). Intestinal bacteria play key roles in intestinal function and 
homeostasis by interacting with the host or producing some 
beneficial metabolites (Haase et  al., 2020; Zhou et  al., 2022). 
Consistent with previous studies, we  observed that hexavalent 

A

C

B

FIGURE 3

Seaweed polysaccharide administration restored gut microbial composition in hexavalent chromium-induced mice. (A,B) The preponderant 
bacteria at the phylum and genus levels. (C) Heat map of bacterial distribution.
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chromium exposure could cause significant changes in gut 
microbial composition, indicating the disruption of gut microbial 
homeostasis. Specifically, hexavalent chromium exposure led to a 
significant increase in gut pathogenic bacteria (Enterococcus and 
Escherichia_Shigella) and a significant decrease in beneficial 
bacteria (Alistipes, Lachnospiraceae, Prevotellaceae_UCG_001, 
Alloprevotella, Bacteroides and Rikenellaceae_RC9_gut_group). 
However, seaweed polysaccharide administration significantly 
improved the composition of the gut microbiota in mice. Studies 
have shown that Alistipes and Lachnospiraceae could produce 
short-chain fatty acids (SCFAs; Wu et al., 2020). Many investigations 
indicate that SCFAs played vital roles in relieving intestinal 
inflammation, oxidative stress, opportunistic infections as well as 
maintaining gut microbial homeostasis, intestinal permeability and 

intestinal epithelial cells morphology (Marino et al., 2017; Schwarz 
et al., 2017; Ikeda et al., 2022). Moreover, SCFAs has also been 
shown to regulate energy intake, regulate cell apoptosis and 
decrease cholesterol (Murugesan et al., 2018; Prasad and Bondy, 
2018; Yang J. et al., 2022; Yang X. et al., 2022). Prevotellaceae in the 
intestine could digest pectin, hemicellulose and high carbohydrate 
foods, indicating its key roles in digestion and absorption (Li 
A. et al., 2022; Li C. et al., 2022). Alloprevotella could secrete acetate 
and succinate and these beneficial metabolites are critical for 
intestinal homeostasis and decreased cardiovascular disease risk 
(Yuan et al., 2021). Bacteroides could decompose polysaccharides, 
showing a key role in intestinal ecosystem (Schwalm et al., 2016; 
Schwalm and Groisman, 2017). Rikenellaceae could alleviate 
inflammation by activating T-regulatory cell differentiation  

A

B

FIGURE 4

Statistical analysis of differential bacteria. (A) Relative Abundance at genus level. (B) Relative Abundance at phylum level. All data was indicated as 
mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared with Con group, #p < 0.05 compared with Cr group.
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(Cui et  al., 2018). Numerous evidence demonstrate that 
Enterococcus could cause many diseases such as meningitis, sepsis, 
and cardioperiostitis (Su et al., 2016; Subramanya et al., 2019). 
Additionally, Enterococcus infection is difficult to cure because of 
inherent and acquired resistance (Chanderraj et al., 2020; Ekore 
et al., 2022). Escherichia_Shigella was considered as a vital factor for 
causing diarrhea (Li et al., 2018). Hexavalent chromium exposure 
may further adversely affect host health by disrupting gut microbial 
homeostasis. However, seaweed polysaccharide can maintain the 
gut microbial balance and this may be one of the modes of action 
of seaweed polysaccharides. Microorganisms inhabiting the 
intestine could interact in a synergistic, antagonistic or symbiotic 
relationship to form a stable intestinal environment (Li A. et al., 
2022; Li C. et  al., 2022). In this study, we  observed significant 
correlations among some bacteria through correlation network 

analysis. For instance, Alistipes and Prevotellaceae_UCG_001 were 
associated with unclassified_Muribaculaceae and Alloprevotella, 
respectively. Therefore, these altered bacteria may further affect the 
function of other bacteria through the interaction between bacteria.

Conclusion

In conclusion, this research explored the protective effect of 
seaweed polysaccharide administration on the gut microbiota of 
hexavalent chromium-exposed mice. Results showed that 
seaweed polysaccharide administration could alleviate 
hexavalent chromium exposure induced gut microbiota 
dysbiosis. Our study shows that seaweed polysaccharides can 
be used as an effective drug to mitigate the negative effects of 

A B

C

D

FIGURE 5

Identification of differential bacteria by LEfSe and LDA scores. (A,C) Cladogram of phylogenetic distribution of differential bacteria. (B,D) LDA 
scores >2 were considered significantly different.
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hexavalent chromium exposure on host health. Meanwhile, 
maintaining the homeostasis of gut microbiota may be  one  
of the ways that seaweed polysaccharides exert their 
pharmacological effects.

Data availability statement

The original sequence data was submitted to the Sequence 
Read Archive (SRA) (NCBI, USA) with the accession no. 
PRJNA902534.

Ethics statement

The animal study was reviewed and approved by the study was 
conducted under the guidance and approval of the Animal 
Welfare and Ethics Committee of Henan university of Animal 
Husbandry and Economy.

Author contributions

JM, ZG, and XM provided the idea. XiuW, XueW, YF, and XL 
contributed reagents, materials, and analysis tools. JM wrote the 
manuscript. XueW, YF, XL, FZ, GH, and XM revised the 

manuscript. All authors contributed to the article and approved 
the submitted version.

Funding

This work was supported by Key Discipline of Veterinary 
Medicine of Henan University of Animal Husbandry and 
Economy (XJXK202202).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

FIGURE 6

Correlation network analysis of gut microbiota. The green and red lines indicate the negative and positive correlation, respectively.
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