
MINI REVIEW
published: 11 April 2022

doi: 10.3389/fmicb.2022.627892

Frontiers in Microbiology | www.frontiersin.org 1 April 2022 | Volume 13 | Article 627892

Edited by:

Isabel Moreno Indias,

Universidad de Málaga, Spain

Reviewed by:

Alinne Castro,

Dom Bosco Catholic University, Brazil

*Correspondence:

Baiba Vilne

baiba.vilne@rsu.lv

Specialty section:

This article was submitted to

Evolutionary and Genomic

Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 10 November 2020

Accepted: 24 February 2022

Published: 11 April 2022

Citation:
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Coronary artery disease (CAD) is the most common cardiovascular disease (CVD)

and the main leading cause of morbidity and mortality worldwide, posing a huge

socio-economic burden to the society and health systems. Therefore, timely and precise

identification of people at high risk of CAD is urgently required. Most current CAD risk

prediction approaches are based on a small number of traditional risk factors (age,

sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are

incompletely predictive across all patient groups, as CAD is a multi-factorial disease

with complex etiology, considered to be driven by both genetic, as well as numerous

environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle

and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D)

and CVD/CAD indicates that the “one-size-fits-all” approach may not be efficient, due

to significant variation in inter-individual responses. Recently, the gut microbiome has

emerged as a potential and previously under-explored contributor to these variations.

Hence, efficient integration of dietary and gut microbiome information alongside with

genetic variations and clinical data holds a great promise to improve CAD risk prediction.

Nevertheless, the highly complex nature of meals combined with the huge inter-individual

variability of the gut microbiome poses several Big Data analytics challenges in

modeling diet-gut microbiota interactions and integrating these within CAD risk prediction

approaches for the development of personalized decision support systems (DSS). In this

regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML)

is opening intriguing perspectives, as these approaches are able to capture large and

complex matrices of data, incorporating their interactions and identifying both linear

and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML

approaches and their different use cases for CAD risk prediction (2) modeling of the
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content, choice and impact of dietary factors on CAD risk; (3) classification of individuals

by their gut microbiome composition into CAD cases vs. controls and (4) modeling of

the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an

outlook for putting it all together for improved CAD risk predictions.

Keywords: machine learning, diet, gut microbiome, personalized nutrition, coronary artery disease, artificial

intelligence, risk prediction

1. INTRODUCTION

Coronary artery disease (CAD) is the most common
cardiovascular disease (CVD) and the main leading cause
of morbidity and mortality worldwide, posing a huge socio-
economic burden to the society and health systems (Lopez
et al., 2006). Currently, our health care system is facing
a paradigm shift from a “one size fits all” approach to a
more optimized model to identify prevention strategies
and treatments tailored to each individual, the so called
personalized medicine. Moreover, the vision of prevention has
also transformed toward a concept of “positive health” and
primordial prevention—the prevention of disease risk factors
before they actually occur, i.e., through targeted modifications
of person’s environment/lifestyle (Movsisyan et al., 2020).
Therefore, timely and precise identification of people at high risk
of CAD is of utmost importance for the personalized cardiology
(Alaa et al., 2019), as such persons may need more aggressive
health promotion strategies, especially the modifiable CAD risk
factors could be effectively reduced or even eliminated in this way
(Movsisyan et al., 2020).

Over the past two decades, numerous approaches for CAD
risk prediction have been developed and several have also
entered the clinical routine such as the Framingham Risk Score
(FRS) (Wilson et al., 1998) or the Systematic Coronary Risk
Evaluation (SCORE) metrics (Conroy et al., 2003), extensively
reviewed elsewhere (Damen et al., 2016; Westerlund et al.,
2021). However, these approaches are mostly based on a limited
number of predictors—the traditional CAD risk factors (age,
sex, diabetes, systolic blood pressure, LDL/HDL cholesterol,
smoking). Hence, incompletely predictive of disease onset,
progression and clinical outcome across all patient groups
(Alaa et al., 2019), overestimating the 10-year CAD/CVD risk,
especially for high-risk individuals and European populations
(Damen et al., 2016). These models typically do not take into
account the fact that the treatment options have improved and
that, by modifying the person’s environment/lifestyle, the disease
risk can be reduced over time (Westerlund et al., 2021).

CAD is a multi-factorial disease with complex etiology,
considered to be driven by both environment/lifestyle and
genetic factors (Davey Smith et al., 2005; Erdmann et al., 2018;
Vilne and Schunkert, 2018). Over the last 14 years, several large-
scale genome-wide association studies have aimed to identify the
genetic factors associated with CAD risk (Samani et al., 2007;
Erdmann et al., 2009; Tregouet et al., 2009; Schunkert et al., 2011;
Deloukas et al., 2012; Nikpay et al., 2015; Howson et al., 2017;
Nelson et al., 2017; Webb et al., 2017; van der Harst and Verweij,

2018) and their functional consequences (Brænne et al., 2015;
Kessler et al., 2015, 2016, 2017; Zhao et al., 2016; Aherrahrou
et al., 2017; Vilne et al., 2017; Lempiäinen et al., 2018; Schunkert
et al., 2018; Neiburga et al., 2021). It is currently a matter of
intense debate, whether it might be time to implement genetic
variations in the clinical routine CAD risk predictions (Inouye
et al., 2018; Khera et al., 2018; Cecile et al., 2019; Gola et al., 2020;
Lieb and Vasan, 2020).

At the same time, the contribution of environmental/lifestyle
factors, in particular, dietary factors have remained less
investigated (Khera et al., 2017; Dimovski et al., 2019). Diet is
one of the modifiable factors for disease prevention and dietary
recommendations have been formulated for decades to guide us
toward changing our eating habits in favor of healthy choices.
For example, the consumption of foods abundant in cholesterol
and fats, such as (processed) red meats, have been associated with
increased CAD risk and mortality (Bernstein et al., 2010; Micha
et al., 2010). First evidence suggests that even for individuals
at high genetic CAD risk and with pre-existing non-modifiable
risk factors (age, sex, positive family history) adherence to a
healthy lifestyle could be associated with an almost 50% lower
relative risk of CAD (Khera et al., 2017; Dimovski et al., 2019),
indicating that the inclusion of dietary factors can substantially
improve CAD risk prediction, as compared to standard Cox
models without these additional variables (Rigdon and Basu,
2019; Ho et al., 2020). With the advent of biosensors and
wearable health technology connected to mobile apps, large-scale
longitudinal food diaries and images of meals consumed are
increasingly becoming available and are even being integrated
within electronic health records (Verma et al., 2018; Dinh-
Le et al., 2019; Moraes Lopes et al., 2020), whereas further
advances in and rapidly decreasing costs of next generation
sequencing generate increasing data volumes describing the
human gut microbiome qualitative and quantitative composition
and function (Eetemadi et al., 2020), thus providing valuable
sources of data for integration in the context of personalized diet
recommendation systems (Eetemadi et al., 2020), which could
be further integrated into clinical decision support systems for
improved CAD risk predictions. However, the current rise in
obesity, type 2 diabetes (T2D) and CVD/CAD (Pallazola et al.,
2019), indicates that the “one-size-fits-all” approach may not be
efficient, due to significant variation in inter-individual responses
to diet (Hughes et al., 2019), and that interactions between diet
and other factors need to be considered (Qi, 2012).

Recently, the human gut microbiome has emerged as
a potential and previously under-explored contributor to
these variations (Bashiardes et al., 2018), as the composition
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and function of this complex community of trillions of
microorganisms (including bacteria, archaea, viruses, and
microbial eukaryotes) (Garud and Pollard, 2020) is modulated
by dietary components, e.g., the well-known beneficial impact
of the so called Mediterranean diet (De Filippis et al., 2016).
This impact is partly mediated through the metabolization and
transformation of different nutrients by the gut microbiome,
generating secondary metabolites, with changed retention time,
bioactivity and different impact on health outcomes: being
either protective, such as the short-chain fatty acids (SCFA) or
promoting the disease development such as hydrogen sulfite or
bile acids (Ni et al., 2015; Hughes et al., 2019; Eetemadi et al.,
2020). Changes in the qualitative and quantitative composition
of the gut microbiome have been increasingly linked to a number
of diseases, including obesity (Turnbaugh et al., 2009; Maruvada
et al., 2017; Miyamoto et al., 2019) and CVD/CAD (Koeth et al.,
2013; Miele et al., 2015; Tang et al., 2017; Ascher and Reinhardt,
2018). Hence, efficient integration of dietary factors with the
gut microbiome holds a great promise to revolutionize the
way diseases are treated, through dietary recommendations and
lifestyle changes or even the optimization of our gut microbiome,
personalized to each individual and the desired health outcomes
(Bashiardes et al., 2018; Eetemadi et al., 2020).

Taken together, the multifactorial and complex etiology
of CAD (driven by both genetic and environmental/lifestyle
factors), combined with the highly complex nature of meals
(containing multiple ingredients and spices) and with the
additional complexity and huge inter-individual variability of
the gut microbiome (Marcos-Zambrano et al., 2021; Moreno-
Indias et al., 2021), resulting in completely different responses
to identical meals (Zeevi et al., 2015), urgently calling for
more advanced problem-solving approaches. Moreover, with the
development of high-throughput omic measurement platforms
and digitalization of health records, the field is rapidly entering
the Big Data era, as the volumes of these data are increasing
exponentially (Stephens et al., 2015) and need to be transformed
into valuable knowledge. In this regard, the recent re-emergence
of advanced computational data-driven technologies such as
Artificial Intelligence (AI)/Machine Learning (ML) approaches
are opening intriguing perspectivesfor the integration of omics
data (genetic variations, gut microbiome) with additional
clinical (Reel et al., 2021) and environmental/lifestyle and the
development personalized CAD diagnostics tools (Alizadehsani
et al., 2019). AI/ML represent automated approaches that are
adaptive and able to capture large and heterogeneous matrices of
data extracting meaningful patterns and identifying both linear
and non-linear relationships between these high-dimensional
input variables and the outcomes (Alaa et al., 2019; Rigdon and
Basu, 2019; Bodnar et al., 2020; Moraes Lopes et al., 2020).
Especially, Deep Learning (DL) approaches, hold a great promise
for future progress due to its capabilities to learn from input raw
data, instead of using hand-crafted features that require domain
expertise (Ching et al., 2018; Solares et al., 2020).

In this Mini Review, we explore, whether the inclusion of
dietary factors and/or gut microbiome data in combination
with the power of AI/ML could potentially improve CAD risk
prediction. In particular, we consider: (1) the most used AI/ML

approaches for CAD risk prediction; (2) the use cases of AI/ML
approaches to model the content, choice and impact of dietary
factors and how this could be used to predict CAD risk; (3) the
use cases of AI/ML approaches to classify individuals by their gut
microbiome composition into CAD cases vs. controls and to (4)
model the diet-gut microbiome interactions and their impact on
CAD risk (as illustrated in Figure 1 and summarized in Table 1).
(5) Finally, we provide an outlook for putting it all together into
a smart clinical decision support system (DSS), considering the
traditional risk factors in combination with individual’s genetic
variations, as well as dietary factors and gut microbiome and
discuss the potential of AI/ML based methods vs. conventional
approaches for risk predictions.

2. ARTIFICIAL INTELLIGENCE / MACHINE
LEARNING APPROACHES FOR CAD RISK
PREDICTION

Artificial Intelligence (AI) / Machine Learning (ML) has recently
caught the interest of both academia and industry, and the
different approaches have been explicitly reviewed elsewhere, e.g.,
Cao et al., 2018; Goecks et al., 2020. Hence, we only give a
very brief overview, highlighting some of the most popular and
widely used approaches and common terminology in the field, to
prepare the reader for the sections to follow.

In general, AI/ML-based approaches can be considered as
a set of methods that can effectively use large and complex
data sets to extract meaningful patterns (i.e., “learn”) in order
to use this “knowledge” to make predictions on other data
(Vilne et al., 2019) and improve with experience (Libbrecht and
Noble, 2015). Moreover AI/ML can be performed either (1) in
a unsupervised manner by exploring and detecting what types
of labels best explain the data i.e., using unlabeled data; (2) in a
supervised manner by classifying, predicting and explaining the
data, requiring labels (Vilne et al., 2019; Eetemadi et al., 2020),
or (3) in a semi-supervised manner, taking advantage of both
unlabeled and labeled data, where only a subset of data is labeled
(Libbrecht and Noble, 2015).

In particular, supervised learning has gained much attention
recently (Reel et al., 2021), as it allows to define certain outputs
that can be used for classification of patients, and will be the main
focus of this Mini-Review. In this class, one of the most popular
is the Random Forest (RF) approach (Breiman, 2001), which
randomly selects a subset from the training data to construct
an ensemble of Decision Tree (DT) predictors to aggregate
the predictions, by this attempting to lower the variance and
deal with the issue of overfitting. Decision Tree (DT) approach
is also a commonly used classifier, splitting the input data
into branch-like segments, according to a certain parameter
(Goecks et al., 2020).

Another popular method in the field is the Support Vector
Machine (SVM) classifier, representing a pattern classification
technique, based on the idea of transforming the original
data that is not linearly separable to a higher dimensional
space and finding a hyperplane separating the data into
classes, based on a priori defined criteria, with the aim to
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FIGURE 1 | An overview of the current status and future directions to improve CAD risk prediction. The left panel (triangle separated by a dashed line) demonstrates

the current status (in gray, as not explicitly considered in this Mini-Review), demonstrates the current metrics such as FRS (Wilson et al., 1998) or SCORE (Conroy

et al., 2003) using the traditional CAD risk factors (age, sex, diabetes, systolic blood pressure, LDL/HDL cholesterol, smoking). The right panel (separated by a dashed

line) highlights the possible future directions to improve CAD risk prediction using AI/ML approaches and, alongside with clinical data and genetic variations (in gray, as

not explicitly considered in this Mini-Review) dietary factors (in green) and/or gut microbiome (in blue).

overcome overfitting (Suykens et al., 2001). However, further
improvements may be necessary when dealing with omics
data (Han and Jiang, 2014).

Gradient Boosting (GB), such as Stochastic Gradient Boosting
Regression (Friedman, 2001) is a technique that, similar to
RF, constructs multiple decision trees by drawing a random
samples from the data set (termed bagging). However, instead
of constructing many parallel deep trees, it constructs multiple
shallow trees (weak learners) and in a sequential manner (i.e.,
one after the other) so that the next tree improves upon
the classification of previous trees in an additive manner. GB
is known to perform best with fewer input variables of low
dimensionality, whereas RF performs better with many input
variables or high dimensionality (Hughes et al., 2019).

Finally, Artificial Neural Networks (ANN), and their
extension, Deep Learning (DL), are graph computing models,
which, at least to some extent, should mimic the functioning
of the human brain, hence their computing units are called
neurons and are interconnected for passing information to each
other. Moreover, networks of neurons are additionally organized
in layers. The first one is an input layer, receiving the training
data. This is followed by several hidden layers. The last one is an
output layer, which performs the actual prediction of the class
(McCulloch and Pitts, 1990). ANN have been demonstrated to

outperform other AI/ML approaches in many areas, especially
(medical) image analyses (Eetemadi et al., 2020).

Performance of an AI/ML classifier is often expressed
as the area under the curve (AUC), where a value of 0.5
indicates poor performance (equal to a random guess) while
higher values (approaching 1) indicate better classification
performance, allowing an easy comparison of the success of
various implementations of AI/ML approaches (Bradley, 1997).
However, considering that, in most cases, the users are more
interested in positive outputs (i.e., people at high CAD risk),
some other performance measures would need to be considered
as well, such as the Jaccard index (J) or the F1-score, focusing
on the fraction of true positives (Jiao and Du, 2016). Moreover,
if the input data sets are imbalanced (i.e., many more controls
than CAD patients in the training set), precision-recall (PR)
curve should be considered along the ROC curve and additional
performance measures, such as the balanced accuracy (BAcc)
and the Matthew’s Correlation Coefficient (MCC) considered
(Jiao and Du, 2016). We refer the interested reader to Jiao and
Du (2016) for more details. Moreover, if the input data is not
normally distributed, maximum likelihood estimation (MLE)
should be used to model this data and determine the model
parameters for the evaluation metrics (Maximum-likelihood
method, 2001).
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TABLE 1 | A list of the case studies related to improved CAD risk prediction considered in this Mini-Review.

Category Study purpose AI/ML approaches(s) used References

Dietary factors To create an automated mobile vision food diary (Im2Calories), which

can recognize the nutritional contents and calories of an individual’s

meal from its image.

Deep Learning (DL)/Convolutional Neural

Network (CNN), adjusted for a mobile

phone and images taken “in the wild”

Myers et al., 2015

Use public food diaries of MyFitnessPal app users to study the food

components of a successful (“below” the user defined “daily calories

goal”) or un-successful (“above”) diet.

Support Vector Machine (SVM) Weber and

Achananuparp,

2016

Use the data from the ThinkSlim app, to assess and predict individual’s

eating behavior in relation to their individual states (location, activity,

emotions).

Decision Tree (DT), tailored to longitudinal

real-time data

Spanakis et al.,

2017

Evaluate, how healthy Brazilian children and teens respond

inter-individually to nutritional intervention of multivitamins and minerals,

to develop recommendations for optimizing the levels of these

supplements.

Elastic Net (EN) penalized regression

model

Mathias et al., 2018

Investigate whether the consideration of additional variables (in total

473 available variables, including dietary and nutritional information)

could increase the accuracy of CVD risk prediction in 423,604 UK

Biobank participants.

AutoPrognosis Alaa et al., 2019

Investigate whether the consideration of dietary information can

improve CVD risk prediction.

Gradient Boosted Machines (GBMs) and

Random Forests (RF), tailored to the

analyses of survival data

Rigdon and Basu,

2019

Gut microbiome Assess the potential of the (mainly gut) microbiome species-level

abundances to be used for the classification of healthy vs. unhealthy

(including obese and T2D patients) individuals.

Random Forests (RF), Support Vector

Machine (SVM)

Pasolli et al., 2016

Predict different traits, including cholesterol levels and BMI using the

gut microbiome data in healthy participants.

Regularization of Learning Networks

(RLN), Deep Neural Networks (DNNs),

Gradient Boosting Trees (GBTs), Linear

Models (LM)

Ira Shavitt, 2018

Compare the composition of the gut microbiome in CAD patients vs.

healthy controls.

Random Forests (RF) Zhu et al., 2018

Test, whether gut microbiome could be potentially used for diagnostic

screening of CVD.

Random Forests (RF), Support Vector

Machine (SVM), Decision Trees (DT),

Elastic-Net (EN) and Neural Networks (NN)

Aryal et al., 2020

Dietary factors

and gut

microbiome

Identify associations between the gut microbiome composition and the

concentration of butyrate, in response to dietary supplementation with

resistant starch.

Random Forests (RF) Venkataraman et al.,

2016

Investigate, the post-meal glucose levels in response to 46,898

standardized and real-life meals, in conjunction with the gut

microbiome composition.

Stochastic Gradient Boosting Regression

(SGBR)

Zeevi et al., 2015

To validate the predictions by Zeevi et al. (2015) in an independent 327

cohort of individuals.

Stochastic Gradient Boosting Regression

(SGBR)

Mendes-Soares

et al., 2019

Develop standardized protocols for the analyses of the diet-induced

gut microbiome changes.

Spector et al., 2019

Compare the post-meal glucose levels in response to the traditionally

made sourdough-leavened whole-grain bread vs. industrially made

white bread, in conjunction with the gut microbiome composition.

Stochastic Gradient Boosting Regression

(SGBR)

Korem et al., 2017

Use the gut microbiome data to predict changes of TMAO in healthy

individuals after choline intake or screening population at high risks of

CVD.

Random Forests (RF) Lu et al., 2017

Considering that only a few studies so far have used dietary factors (Alaa et al., 2019; Rigdon and Basu, 2019) or gut microbiome (Zhu et al., 2018; Aryal et al., 2020), and no studies

using both (the closest being Zeevi et al., 2015 related to blood glucose levels), in combination with AI/ML for CAD risk prediction, we also consider closely related research on dietary

factors (in green), gut microbiome (in blue) and combinations of both (in turquoise) in other disease settings vs. healthy individuals.

The added value of AI/ML models in CAD diagnostics
has been thoroughly reviewed before, examining 149 relevant
studies between 1992 and 2019 (Alizadehsani et al., 2019).
Most of this research focused on the usage of clinical
data (symptom, examination and echo features), laboratory
measurements and medical images (e.g., coronary computed

tomography angiography, myocardial perfusion imaging or
intravascular ultrasound) (Alizadehsani et al., 2019). The Authors
observed that there were three approaches applied to almost all
the datasets—ANN/DL, DT, and SVM—most probably due to
their ease of use, low computational burden and encouraging
performance (Alizadehsani et al., 2019). In particular, studies
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with best performances (i.e., with a reported accuracy of >98%)
used ANN and SVM as their classifiers, which may be due
to the use of non-linear kernel functions (Alizadehsani et al.,
2019). However, it was concluded that further investigation are
needed to determine which approaches are most appropriate for
a particular feature category (e.g., ejection fraction, regional wall
motion abnormality, and valvular heart disease extracted from
echo). Of note, however, neither of the data types highlighted
above provide any information on the molecular bases of a
disease, which could possibly yield a more timely and precise
diagnosis, or even risk prediction, allowing for individually
tailored treatments (Westerlund et al., 2021) or even prevention
strategies, toward the goal of “positive health”, resulting in a
significantly improved life-span and quality (Movsisyan et al.,
2020).

Genomic data have been used in combination with AI/ML for
CAD risk prediction. In particular, (penalized) logistic regression,
Naïve Bayes (NB), RF, SVM, andGBwere compared vs. polygenic
risk scores (PRS) on a data set of 7,736 CAD cases vs. 6,774
controls, testing the final models on an independent data set (527
CAD cases vs. 473 controls) (Gola et al., 2020). Interestingly, they
found that PRS actually outperformed AI/ML-based approaches
in predicting CAD status (AUC∼0.92 vs.∼0.81 for NB and SVM
and AUC∼0.75 for RF and GB). The Authors conclude that
“there is no need to use a sledge-hammer to crack the nut”, i.e.,
the assumption of linear additive effects influencing the risk of
CAD seems sufficient. On the other hand, PRS may not be a
suitable option, if the goal would be to predict the changes in
CAD risk over time or the particular molecular basis driving the
development and progression CAD (Westerlund et al., 2021).

This is were additional data layers such dietary factors and
gut microbiome, as an integrator of this information (Bashiardes
et al., 2018; Eetemadi et al., 2020), come in. However, only a few
studies so far have used dietary factors (Alaa et al., 2019; Rigdon
and Basu, 2019) or gut microbiome (Zhu et al., 2018; Aryal et al.,
2020), and no studies using both (the closest being Zeevi et al.,
2015 related to blood glucose levels), in combination with AI/ML
for CAD risk prediction. We further discuss these few studies
and also consider closely related research on dietary factors, gut
microbiome and combinations of both in other disease settings
vs. healthy individuals.

3. PERFORMING DIET-BASED CAD RISK
PREDICTION USING AI/ML

Dietary information is mainly collected via questionnaires, either
through self-reporting or by a trained interviewer. For self-
reporting, a food frequency questionnaire and dietary recall can
be used, where participants report their meal intake either every
24 h or over a longer period through a checklist of food items
(Eetemadi et al., 2020). At the same time, fitness apps are gaining
increased popularity, as food logging can be performed during its
consumption or even by capturing an image of the meal, thus the
bias related to individual’s memory can be reduced (Weber and
Achananuparp, 2016; Verma et al., 2018; Eetemadi et al., 2020).
Clearly, such food tracking would be of utmost importance for
a more efficient management of patients with obesity, T2D and

CVD/CAD (Bernstein et al., 2010; Pallazola et al., 2019), when
successfully coupled with an effective coaching to modulate it
toward healthy food choices (Spanakis et al., 2017). The AI/ML
approaches can be leveraged for such purposes (Verma et al.,
2018).

In this regard, Myers et al. (2015) created a Google app,
Im2Calories, to predict the nutritional contents and calories of
individual’s meal from its image, using a Convolutional Neural
Network/DL-based classifier, which was modified to run on a
mobile phone analyzing images taken by users, demonstrating
promising first results in this direction.

Weber and Achananuparp (2016) used public food diaries of
>4,000MyFitnessPal users to train a SVM classifier to distinguish
between a successful (“below” a user specified “daily calories
goal”) vs. un-successful (“above” the goal) diet and analyzed the
different dietary factors influencing these two outcomes. It was
observed that “oil”, “butter”, “mcdonalds”, “dessert” or “pork”
vs. “poultry” were related to being “above” the calories goal.
Moreover, there were less food logging on the weekend and the
users were most likely to be “above” the calories goal (Weber and
Achananuparp, 2016).

Spanakis et al. (2017) made use of data collected from the
fitness app ThinkSlim, to link the individual states (like location,
activity, emotions- cheerful, relaxed vs. sad, bored, stressed,
angry, worried) of healthy-weight vs. overweight individuals to
their dietary choices or wishes, using a Decision Tree (DT)-
based classifier, modified to use longitudinal real-time data. They
derived several groups of individuals with similar eating behavior
and used this information to warn the participants before the
individual states that may lead to unhealthy eating behavior
(Spanakis et al., 2017).

Mathias et al. (2018) conducted a six-week study to evaluate,
how 136 healthy Brazilian children and teens (9–13 years
old) responded to multivitamins and minerals, to develop
recommendations for optimizing their levels, based on several
clinical, anthropometric and food intake parameters. These data
were then used to predict each individual’s response to the
intervention, based on these measures using an Elastic Net
penalized regression model.

However, none of the above mentioned studies were directly
related to CAD risk prediction. There have been only a few
studies considering the dietary factors for CAD risk prediction, so
far. Alaa et al. (2019) analyzed 423,604 UK Biobank participants
without CVD at baseline with the aim to predict their future
disease risk. They investigated, whether AI/ML-based approaches
could possibly improve disease risk prediction, as compared to
conventional approaches (such as FRS) and whether considering
additional information (i.e., 473 variables, including dietary
information) could increase the accuracy of their predictions.
They used AutoPrognosis, which allows to automatically select
and tune the best possible AI/ML approaches, by comprising
different imputation strategies, feature selection and processing,
as well as classification and calibration approaches. They
observed and improvement in comparison to (AUC∼0.77 vs.
∼0.72 for FRS) conventional approaches (Alaa et al., 2019).

Rigdon and Basu (2019) performed a retrospective study
using AI/ML exploring whether considering randomly sampled
sparse nutrition data could possibly improve CVD mortality risk
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prediction. They made use of NHANES interview data collected
from 1999 to 2011 linked to the National Death Index (NDI)
in the US, selecting 29,390 participants as their training set and
further 12,600 participants as their test set. Similarly to Alaa et al.
(2019), they aimed at testing whether AI/ML-based approaches
vs. standard (Cox) models and considering additional predictor
variables (dietary information) could possibly improve CVD
mortality risk prediction. They applied two DT-based AI/ML
approaches the Gradient Boosted Machines (GBM) (Chen et al.,
2013) and RF (Ishwaran et al., 2008), tailored to the analyses
of survival data to demonstrated that the inclusion of dietary
information significantly improved risk prediction, as compared
to the standard models and when including only the traditional
risk factors. In particular, they found that a standard Cox model
without dietary factors overestimated the CVD mortality risk
nearly two-fold, whereas AI/ML models in combination with
these additional data substantially improved their predictions
(AUC∼0.87 vs.∼0.93).

4. PERFORMING GUT
MICROBIOME-BASED CAD RISK
PREDICTION USING AI/ML

In addition to genetic and environmental/life-style factors,
gut microbiota has emerged as a additional factor influencing
the CAD risk (Aryal et al., 2020). Clearly, researchers have
asked, whether gut microbiome profiling combined with
AI/ML approaches could be used for improved CAD/CVD
risk prediction. In the last 10 years, a number of studies
have demonstrated that there is a possible relationship
between the gut microbiome composition, such as changes
in the abundance of Bacteroidetes, Firmicutes, Lactobacillus,
Streptococcus, Bifidobacterium, Roseburia, or Escherichia spp.
and the development of several diseases, including obesity
(Turnbaugh et al., 2009; Maruvada et al., 2017; Miyamoto et al.,
2019) hypertension (Karbach et al., 2016), and CVD (Karlsson
et al., 2012; Koeth et al., 2013; Miele et al., 2015; Kelly et al., 2016;
Tang et al., 2017; Ascher and Reinhardt, 2018).

Several studies have used AI/ML approaches to classify
test subjects into groups (such as healthy vs. disease) based
on microbiome data. In most studies, relative abundances
of microbiome taxa are used as features, obtained either by
amplicon sequencing of the 16S rRNA phylogenetic marker gene
or by shotgun metagenomic sequencing (Hughes et al., 2019).
As the costs of shotgun metagenomic sequencing decrease, the
functional profiles derived from metagenome sequences can be
expected to increasingly be used as input features with AI/ML
approaches (Eetemadi et al., 2020; Sanchez-Rodriguez et al.,
2020). Pasolli et al. (2016) utilized 2,424 shotgun metagenomic
samples from eight studies to assess the potential of the (mainly
gut) microbiome species-level abundances to be used in order
to differentiate healthy vs. unhealthy (including obese and
T2D) individuals and compare the prediction accuracy of RF
vs. SVM approaches. Interestingly, for T2D and obesity, the
models demonstrated lower discrimination ability as compared,
for example, to liver cirrhosis (AUC of 0.74 and 0.65 vs. 0.94,

respectively), suggesting less significant changes in microbiome
composition related to T2D and obesity. Comparing the
accuracy of RF vs. SVM, in all cases, RF demonstrated similar
or even better results than SVM (for T2D: AUC∼0.74 vs.
∼0.66, respectively).

However, although the approach of using gut microbiome in
combination with AI/ML approaches for disease risk prediction
is not novel, it has not been widely applied for CAD, yet (Aryal
et al., 2020). Zhu et al. (2018) compared the composition of
the gut microbiome between 70 CAD patients vs. 98 healthy
controls and used RF to potentially differentiate these two groups
of individuals, achieving and AUC of 0.67. In addition, the
gut microbiome of CAD patients displayed decreased diversity
and richness, with decreased abundances of Faecalibacterium,
Roseburia, and Eubacterium rectale (the butyrate producers) and
increased abundances of Escherichia-Shigella and Enterococcus.
More recently, in order to test whether gut microbiome could
be potentially used for diagnostic screening of CVD, Aryal
et al. (2020) applied five different AI/ML approaches (RF, SVM,
DT, Elastic-Net and Neural Networks) to the gut microbiome
relative abundances of 478 CVD patients vs. 473 healthy controls,
collected as part of the American Gut Project [https://microsetta.
ucsd.edu/american-gut-project/] and profiled using fecal 16S
ribosomal RNA sequencing. However, when using 39 differential
bacterial taxa as features, the best AUC this study could achieve
was AUC∼0.58 (with Neural Networks), followed by Elastic-
Net (AUC∼0.57), SVM (AUC∼0.55) and DT (AUC∼0.51).
Interestingly, the performance of RF significantly improved
(AUC∼0.65) when trained with the top 500 high-variance OTU
features, instead of taxonomic features, whereas the AUC of
Neural Networks dropped (AUC∼0.48). Furthermore, highly
contributing OTU features (HCOFs) were selected based on their
variable importance (0–100, where 0: no contribution to the
model and 100: max contribution to the model) to further reduce
the dimensionality of the OTU feature space. The top 100HCOFs
with the highest scores were selected for training the RF model.
As a result, the RF models trained with the top 20 and top 25
HCOFs achieved further improved performance (AUC∼0.70).

5. CONSIDERING DIET-GUT MICROBIOME
INTERACTIONS FOR CAD RISK
PREDICTION USING AI/ML

It can be assumed that particular diets, such as those high
in fats and/or sugars might lead to variations in the gut
microbiome composition and changes in its functional capacity
that potentially might facilitate the development of diseases,
including metabolic disorders such as obesity, insulin resistance
and atherosclerosis/CVD (Sanchez-Rodriguez et al., 2020).
Despite the close link between our diet and gut microbiome, the
number of studies collecting and analyzing both types of data
is sparse and either not considering the full spectrum of dietary
factors (Lu et al., 2017) or not directly addressing the prediction
of CVD/CAD risk (Zeevi et al., 2015; Venkataraman et al., 2016;
Spector et al., 2019).
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Zeevi et al. (2015) used a the GB approach to investigate
whether individuals’ gut microbiome profiles in combination
with several other sources of information (blood parameters,
anthropometrics, self-reported lifestyle behaviors and physical
activity) could predict glucose levels in response to standardized
and real-life meals in a cohort of 800 overweight or obese
non-diabetic individuals, observing high inter-individual
variability, even in response to identical meals, suggesting that
dietary recommendations need to be personalized. Later, these
predictions were validated by Mendes-Soares et al. (2019) in
an independent cohort of 327 individuals and by Korem et al.
(2017), when focusing on the consumption of sourdough-
leavened whole-grain bread vs. industrially made white bread,
also using the GB approach. In the latter case, the relative
abundances of Coprobacter fastidiosus and Lachnospiraceae
bacterium were among the most informative features.

Venkataraman et al. (2016) used RF to predict whether
the gut microbiome composition of individuals can predict
their response to dietary supplementation with resistant starch,
as measured using fecal butyrate concentrations. This study
could identify three different response groups—enhanced, high
and low, and could attribute these differences to the increase
of starch-degrading bacteria Bifidobacterium adolescentis and
Ruminococcus bromii in the enhanced and high, but not in the
low fecal butyrate concentration group.

Spector et al. (2019), as part of the PREDICT study [http://
www.tim-spector.co.uk/predict/], is actively working toward
personalized nutrition tools by systematically analyzing the
diet-induced gut microbiome changes using AI/ML approaches
in order to stratify individual responses to dietary interventions
based on the individual’s gut microbiome and develop
standardized protocols for the purpose. Among others, this
study has demonstrated that shotgun metagenomic sequencing
may be more accurate than 16S rRNA amplicon sequencing, as
it allows also capturing individual-specific strain-level features,
thus improving the stratification.

In the context of CVD/CAD risk prediction, most studies
have focused on the circulating levels of the diet- and
gut microbiota-dependent metabolite trimethylamine-N-oxide
(TMAO) (Trøseid et al., 2020). Lu et al. (2017) used RF and the
gut microbiome data to predict changes of TMAO levels after
choline intake, as a potential approach for screening population
at high risk of CVD and identified the beta (inter-individual)
diversity of the gut microbiome as a significant predictor (AUC
of 0.86) of increased vs. decreased plasma TMAO level.

6. DISCUSSION

Timely and precise identification of people at high risk of CAD
is of utmost importance for the development of personalized
treatment strategies (Alaa et al., 2019; Westerlund et al., 2021),
as such persons may need more aggressive health promotion
strategies, especially the modifiable CAD risk factors could be
effectively reduced or even eliminated in this way (Movsisyan
et al., 2020). Although, numerous algorithms for CAD risk
prediction have been developed over the years and several have

also entered the clinical routine (FRS Wilson et al., 1998, SCORE
Conroy et al., 2003), these are typically based on a limited
number of traditional CAD risk factors (age, sex, diabetes, LDL
and HDL cholesterol, smoking, systolic blood pressure) and are
not suitable across all patient groups (Alaa et al., 2019) and do
not take into account the fact that by modifying the person’s
environment/lifestyle the disease risk could be reduced over time
(Westerlund et al., 2021).

The added value of AI/ML approaches in CAD diagnostics
has been explored before, however, so far, most of this research
has focused on the usage of clinical data and medical images
(Alizadehsani et al., 2019), thus providing no information on
the molecular bases of a disease (Westerlund et al., 2021). A
small number of studies has used genomic data have been used
in combination with AI/ML for CAD risk prediction (Gola
et al., 2020). However, AI/ML approaches underperformed in
comparison to a simple PRS, assuming linear additive effects
(Gola et al., 2020). This is were additional data layers such
dietary factors and gut microbiome, as an integrator of this
information (Bashiardes et al., 2018; Eetemadi et al., 2020), come
in. However, only a few studies so far have used dietary factors
(Alaa et al., 2019; Rigdon and Basu, 2019) or gut microbiome
(Zhu et al., 2018; Aryal et al., 2020), and no studies using both
[the closest being (Zeevi et al., 2015) related to blood glucose
levels], in combination with AI/ML for CAD risk prediction. We
further discuss these few studies and also consider closely related
research on dietary factors, gut micorbiome and combinations of
both in other disease settings vs. healthy individuals.

With the advent of wearable biosensors connected to mobile
applications, large-scale longitudinal food diaries and images of
meals consumed will become increasingly available providing
a valuable data source for such investigations (Munos et al.,
2016). The future vision for personalized nutrition has led
to great interest for advancements in the diagnostics and
decision support systems (DSS) that would allow continuous
assessment of individual’s dietary features, in conjunction with
gut microbiome composition and additional information, such
as access to the electronic health record (EHR) and lifestyle
and environment information, physical activity from the
biosensors and wearable health technology. All of it would
aid in forming tailored recommendations such as choosing an
optimal meal for lowering post-meal glucose levels (as shown
by Zeevi et al., 2015) in patients with T2D. Although, the
recent re-emergence of AI/ML approaches is opening intriguing
perspectives in this direction, it must be remembered that
these data-driven technologies and their predictions strongly
depend on the quantity and quality of the input data. In this
regard, several limitations to the current food intake and
composition databases have been observed. Apparently, these
databases currently contain only 0.5% of the known nutritional
compounds (Eetemadi et al., 2020). Another issue is the data
standardization, which is challenging as complex dietary patterns
need to be captured in an organized manner, translating
chemicals constituents of the food into the intake of energy and
nutrients (Verma et al., 2018). Currently, the most widely applied
methods of food intake monitoring include the food diaries,
which make it difficult to convert the food descriptions into the
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energy. Additional challenges arise when the food is collected
from different sources, i.e., individual and/or hospital-based
sources.The missing data problem could be partly addressed
through improved data imputation techniques, which should be
complemented by improved food intake monitoring and data
collection methods, creating integrated databases with defined
standard formats for annotation and classification, considering
the FAIR (Findability, Accessibility, Interoperability, and
Reuse) data principles [https://www.go-fair.org/fair-principles/].
Initiatives such as the EuroDISH project [https://www.eurofir.
org/our-resources/past-projects/eurodish/] are already working
in this direction.

There are a number of challenges and limitations related
to the application of AI/ML approaches for microbiome
studies, as thoroughly and systematically summarized in several
literature reviews (Marcos-Zambrano et al., 2021; Moreno-
Indias et al., 2021) by the members of the COST Action CA18131
“ML4Microbiome” (https://www.cost.eu/actions/CA18131/),
bringing together AI/ML experts and microbiome researchers.
Overall, similar to other high-throughput studies, one of the
main limitations in current research has been the usage of
inappropriate study design, including small datasets and lack
of additional data to estimate confounding effects, especially
considering the well-known huge variations in microbiome
composition across individuals and body sites and their strong
dependence on the environment/lifestyle factors such as
geographic location, diet and medications (Marcos-Zambrano
et al., 2021; Moreno-Indias et al., 2021). In order to identify
generalized responses, a much larger number of individuals
spanning a range of microbiome types and a careful adjustment
for potential confounding effects would be required (Johnson
et al., 2020). In addition, a number of data processing/statistical
and AI/ML challenges have been observed, such as the selection
of appropriate normalization methods to address the variability
in raw read counts, inappropriate distributional assumptions
considering the data sparsity, compositional nature and
complex and hierarchical dependency structures, the choice of
suitable feature selection approaches, i.e., requiring customized
analytical approaches (Eetemadi et al., 2020; Marcos-Zambrano
et al., 2021; Moreno-Indias et al., 2021). In fact, successful
examples often present a combination of different statistical
approaches, specifically tailored to the characteristics of different
data types (Marcos-Zambrano et al., 2021; Moreno-Indias
et al., 2021). On top of that the dependence on the reference
databases is a well-known major limitation of the sequence
alignment-based approaches, used to assign taxa in sequencing
studies (Chaudhary et al., 2015; Vilne et al., 2019), resulting
in large numbers of uncharacterized microbes (the “microbial
dark matter”) (Marcos-Zambrano et al., 2021). Finally, the
field of high-throughput sequencing overall needs a rigorous
assessment, benchmarking and standardization of approaches
and tools (Vilne et al., 2019), to allow cross-study comparisons
and modeling (Marcos-Zambrano et al., 2021). Currently, the
integration of microbiome data across several studies is difficult
due to the above mentioned factors, as well as the differences
in sample collection, storage and processing protocols in the
wet-lab, which may introduce biases (Eetemadi et al., 2020).
Hence, all findings should be validated, e.g., using quantitative

PCR (Jian et al., 2020). Finally, also for these data, the above
mentioned FAIR data principles should be widely incorporated
[https://www.go-fair.org/fair-principles/] to facilitate such
efforts. For more details we refer the reader to Marcos-Zambrano
et al. (2021), Moreno-Indias et al. (2021). However, we note
that these current limitations related to microbiome studies are
posing additional challenges for CAD risk prediction.

Moreover, several studies have shown that the inter-individual
responses to dietary factors may differ, mostly due to the
differences in the gut microbiome composition (Zeevi et al.,
2015; Korem et al., 2017; Mendes-Soares et al., 2019). However,
especially in the context of multi-factorial diseases, such as CAD,
the differences in individual genetic predisposition (Nikpay et al.,
2015; Nelson et al., 2017) and its down-stream implications
(Brænne et al., 2015; Vilne et al., 2017; Lempiäinen et al., 2018;
Vilne and Schunkert, 2018) in addition to variations in other
(besides diet) environmental and lifestyle factors such as physical
activity, stress and sleep may play and important role in these
responses (Khera et al., 2017). Hence, emphasizing the need to
collect a wide variety of measures in large populations that would
allow for stratification of patients in sub-groups and perform
longitudinal sampling to also capture the dynamics of these
responses. Endeavors to standardize the study protocols have
already started (Spector et al., 2019).

On the other hand, benchmark investigations have
demonstrated that, whether a particular AI/ML approach would
actually improve the predictions compared to conventional
approaches, may depended on the specific dataset at hand
(Westerlund et al., 2021). For example, in microbiome studies,
DL approaches have been demonstrated to underperform
in comparison to GB, possibly due to the potentially large
variability in the relative importance of different input features.
To overcome this limitation, Ira Shavitt (2018) have proposed
an approach called Regularization of Learning Networks (RLN).
They used it to predict a number of traits related to disease
risk, such as cholesterol levels and body mass index (BMI) from
the gut microbiome data of 2,574 healthy individuals. They
evaluated four different AI/ML approaches [RLN, GB, DL, and
Linear Models (LM)] and, although, GB still outperformed the
other three, RLN performed significantly better than DL (15%
vs. ca. 2% less explained variance than GB on average).

Currently, the number of studies investigating the potential of
gut-microbiome in combination with AI/ML to predict CVD risk
is limited (Aryal et al., 2020) an so is the prediction power of these
models, with a max AUC of 0.70, when training a RF model with
the top 25 highest contributing OTU features (Aryal et al., 2020).
However, it must be noted that the authors did not normalize the
OTU data across all the samples to test the option of classifying
new samples without the need for repeated processing (Aryal
et al., 2020). In addition, this study addressed the prediction
of CVD, which, as the authors themselves recognize (Aryal
et al., 2020) includes a range of conditions (from hypertension
and atherosclerosis to CAD). Hence, these predictions may
improve when stratifying CVD patients into specific disease
sub-types. Moreover, another interesting observation from this
study is the fact that bacterial taxonomic features achieved a
lower (AUC∼0.58) AUC, in comparison to high-variance OTU
features (AUC∼0.65), and especially when further reducing the
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dimensionality of the feature space by pre-selecting the top 25
highest contributing OTU features (AUC∼0.70) (Aryal et al.,
2020). From the usage in clinical routine, focusing on a small
number of highly contributing OTUs may be indeed more
practical, analogous to the handful of traditional CAD risk
factors, however, we will need further studies to arrive replicate
these findings and arrive at these gut microbiome biomarkers.
Furthermore, their mechanistic implications in CVD need to be
further investigated (Aryal et al., 2020). Gut microbiota as the
only type of data used for diagnostic classification of non-CVD
vs. CVD may not be sufficient Especially, considering that gut
microbiome can be influenced by other features such as diet
and medications, hence these data should be always collected
in parallel.

Clearly, AI/ML (especially DL approaches due to their
capabilities to learn from input raw data, instead of using
hand-crafted features that require domain expertise, Ching
et al., 2018) in combination with timely access to numerous,
potentially relevant, data sources [e.g., gut microbiome and
genetic data, in addition to the current 7 CVD metrics smoking,
physical activity, body mass index, blood pressure, cholesterol,
glucose and dietary factors (Angell et al., 2020), combined with
longitudinal clinical data from electronic health records (Matlock
et al., 2013; Reynolds et al., 2017)] also holds a great promise
for the improvements of public health surveillance systems,
formulation of policies by forecasting the impact of a factor or
intervention on the burden of disease and the cost of care, and to
propose recommendations to stakeholders (medical institutions,
public health authorities, scientific communities) enabling public
health action and measure progress with the aim to reduce
the huge socio-economic burden of CVD/CAD and increase
healthy life expectancy in future (Angell et al., 2020; Roger et al.,
2020). The same is true for the implementation of personalized
decision support system (DSS) for CAD risk prediction and
patient management that would be a great support for clinicians
in health care.

However, despite the rapid development of several
technologies and advancements in Big Data analytics,
the implementation of such systems that would integrate
comprehensive health and related data (such as genetic
variations, dietary factors, gut microbiome) to provide either
generalized recommendations for public health surveillance
and policy makers or individual recommendations for the
routine clinical practice, still poses a number of challenges that
will need to be overcame first, in order to move toward their
implementation and usability in practice. Overall, such systems

will need to deal with heterogeneous datasets and we will require
a rigorous assessment, benchmarking and standardization of
AI/ML-based CVD/CAD risk prediction models, ensuring
model availability and extensive multiple external validations
and calibration across different disease outcomes, populations
(in men and women separately) and geographical regions via
head-to-head comparisons across different studies and model
impact and performance generalizability assessment and to
identify potential sources of heterogeneity (Damen et al., 2016;
Marcos-Zambrano et al., 2021; Westerlund et al., 2021).

Moreover, In April 2016, the European Union adopted new
rules regarding the use of personal information, the General
Data Protection Regulation, which imposes additional legal and
privacy constraints when analyzing sensitive health data, hence
model training will need to be accomplished within a differential
privacy framework without sharing the raw data (e.g., federated
learning) and considering other rules regarding the use of
personal information as input for decision-making approaches,
such as the ‘right to an explanation’, meaning that when using
AI/ML, we must be able to explain how a decision was reached,
especially if the ground-truth is unknown (Ching et al., 2018).
This calls for the AI/ML models to be human-interpretable,
reliable and explainable to aid the formulation guidelines or
personalized advice on treatment strategy, or even prevention,
plans (Ching et al., 2018; Westerlund et al., 2021).

In any case, the AI/ML tools will not be a replacement for the
human experts, who are still an integral part of the knowledge
discovery process, hence, managing huge amounts of health data
will need to become an integral part of future medical, policy
making and research activity, across sub-disciplines (Moreira
et al., 2019).
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