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Acidobacteria occur in a large variety of ecosystems worldwide and are particularly
abundant and highly diverse in soils. In spite of their diversity, only few species have been
characterized to date which makes Acidobacteria one of the most poorly understood
phyla among the domain Bacteria. We used a culture-independent niche modeling
approach to elucidate ecological adaptations and their evolution for 4,154 operational
taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively
characterized grassland soils in Germany. Using the relative abundances of their
16S rRNA gene transcripts, the responses of active OTUs along gradients of 41
environmental variables were modeled using hierarchical logistic regression (HOF),
which allowed to determine values for optimum activity for each variable (niche
optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene
sequences, we could trace the evolution of the different ecological adaptations during
the diversification of Acidobacteria. This approach revealed a pronounced ecological
diversification even among acidobacterial sister clades. Although the evolution of
habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of
convergent evolution that resulted in frequent habitat switching within individual clades.
Our findings indicate that the high diversity of soil acidobacterial communities is largely
sustained by differential habitat adaptation even at the level of closely related species.
A comparison of niche optima of individual OTUs with the phenotypic properties of
their cultivated representatives showed that our niche modeling approach (1) correctly
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predicts those physiological properties that have been determined for cultivated species
of Acidobacteria but (2) also provides ample information on ecological adaptations
that cannot be inferred from standard taxonomic descriptions of bacterial isolates.
These novel information on specific adaptations of not-yet-cultivated Acidobacteria can
therefore guide future cultivation trials and likely will increase their cultivation success.

Keywords: evolution, ecological diversity, adaptation, Acidobacteria, optimum niche modeling, 16S rRNA gene
transcripts, physiological traits

INTRODUCTION

Acidobacteria occur globally in a wide variety of ecosystems.
The phylum encompasses a phylogenetically broad diversity of
bacteria that were initially assigned to 26 subdivisions (SDs; Barns
et al., 2007) and more recently into 15 classes (Dedysh and
Yilmaz, 2018). Currently 12,670 different 16S rRNA sequence
types are available in nucleotide databases. Acidobacteria are
particularly abundant and diverse in soils where they can
constitute up to 60% of all bacteria (Fierer, 2017; Delgado-
Baquerizo et al., 2018; Eichorst et al., 2018). Of the acidobacterial
16S rRNA gene sequences that have associated meta-data, 54.9%
originate from soils and 20.3% from (semi-)aquatic sediments. In
contrast to their high abundance and diversity, only 61 validly
named species from 27 genera (in addition to two Candidatus
genera with one species each) could be described to date. The
majority of isolates are from the single class “Acidobacteriia”
(Parte et al., 2020). The low number of available isolates is
related to considerable difficulties in cultivation (Davis et al.,
2011; Eichorst et al., 2011), making Acidobacteria one of the
poorly understood phyla among the domain Bacteria (Overmann
et al., 2017) and severely limits our understanding of their
ecological functions.

Based on the distribution of acidobacterial 16S rRNA genes,
different Acidobacteria classes are known to differ in their
preferences for specific values of pH, organic matter content,
aboveground plant diversity, or specific habitats like the plant
rhizosphere (Jones et al., 2009) and may mediate central soil
functions. Culture-independent molecular analyses suggest that
members of SD 1 (class “Acidobacteriia”) degrade plant-derived
and other biogenic polymers (Ivanova et al., 2020), in particular
chitin, cellulose, hemicelluloses, and xylan (Banerjee et al., 2016;
Belova et al., 2018; Hausmann et al., 2018; de Chaves et al.,
2019), use hydrogen at atmospheric concentrations (Giguere
et al., 2021), or participate in the sulfur cycle through the
dissimilatory reduction of sulfite and sulfate (Hausmann et al.,
2018). Physiological analysis of the few cultivated members of
the Acidobacteriacae within SD1 has yielded supporting evidence
for the presence of the corresponding extracellular enzymes
(Belova et al., 2018) and high-affinity hydrogenases (Giguere
et al., 2021) and some Acidobacteriaceae were observed to
promote plant-growth in vitro (Kielak et al., 2016b). However,
discrepancies between genomic predictions and physiological
activities have also frequently been observed (Kielak et al., 2016a;
Rodrigues et al., 2020). Aside from these few known functions,
the ecologically relevant traits of the majority of Acidobacteria
species have remained mostly unknown.

We assessed the active fraction of Acidobacteria by high
throughput sequencing of cDNA generated from the extracted
16S rRNA transcripts, since (1) the cellular ribosome content is
proportional to the growth rate in most bacteria, (2) the active
fraction is controlled by other environmental variables rather
than total community composition as sequences of dormant
cells and extracellular DNA are not included in the analysis,
(3) the composition in rRNA transcripts changes in response
to soil management and correlates with changes in important
ecosystem functions, (4) highly active and biogeochemically
relevant microbial taxa may be rare or even absent from DNA-
based sequence inventories of microbial communities, and (5)
rRNA transcripts allow a better differentiation of the effects of
environmental drivers in at least some soil environments (Vieira
et al., 2020). For consistent phylogenetic analyses, the 16S rRNA
amplicon transcript sequences were linked to the phylogeny
of full 16S rRNA gene sequences. In order to systematically
assess potential adaptations of different species and trace the
evolution of the different ecological adaptations during the
diversification of Acidobacteria, we determined the peaks of
relative 16S rRNA abundances of active acidobacterial OTUs
along gradients of 41 environmental variables (optimum niche
modeling). Samples were obtained from 150 comprehensively
characterized German grassland soils within the framework of
the German Biodiversity Exploratories (Fischer et al., 2010).
The variables cover diverse physicochemical soil properties,
microbial biomass, and a multitude of characteristics of
the accompanying plants and soil animal communities. For
a subset of these grassland soils, a previous study had
provided evidence for an adaptation of individual acidobacterial
species to specific environmental factors (Naether et al., 2012;
Foesel et al., 2014).

MATERIALS AND METHODS

Study Sites and Soil Sampling
A total of 150 grassland plots within the German Biodiversity
Exploratories (Fischer et al., 2010)1 were studied. The main
research objective of the Biodiversity Exploratories is to examine
land use affects on biodiversity and ecosystem processes in
typical central European terrestrial environments. Accordingly,
the sampling sites are selected to cover a broad range of different
types and intensities of land use. The German Biodiversity
Exploratories cover three different study regions: the biosphere

1http://www.biodiversity-exploratories.de
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reserve Schorfheide-Chorin (Brandenburg, north-eastern
Germany), the national park Hainich-Dün and its surroundings
in Thuringia (central Germany), and the biosphere reserve
Schwäbische Alb in Baden-Wuerttemberg (south-western
Germany). In each region, 50 grassland plots with different land-
use intensities, soil characteristics and vegetation composition
were sampled during a joint sampling campaign over a period
of 14 consecutive days in May 2011. On each plot, fourteen
individual soil cores were obtained along two perpendicular
transects at distances of 3 m employing a split core sampler
(4.8 cm diameter) from the upper 10 cm over an area of 20 × 20
m. Parallels were mixed in the field and a 10 g aliquot was
transferred immediately to liquid nitrogen and stored until
extraction of RNA. For all other analyses, plant debris, coarse
roots and pebbles were removed and the soil was passed through
a 2 mm mesh sieve.

We compared our results to the results from a previous
study termed SCALEMIC (Richter-Heitmann et al., 2020)
performed on one of the 150 plots. SCALEMIC aimed to
study the spatiotemporal variation of biodiversity at a local
plot scale. A plot of 10 × 10 meter in the Swabian Alb,
Germany, was divided into 60 subplots. At each of six dates
from April to November 2011 all 60 subplots were sampled
to analyze soil variables and microbial and plant diversity
(Regan et al., 2014; Klaus et al., 2016; Stempfhuber et al., 2016;
Richter-Heitmann et al., 2020).

Determination of Biological and
Chemical Variables
Soil water content was quantified by weighing a field fresh
sample, drying for 3 days at 105◦C, and then re-weighing. For
the determination of pH, 10 g of sieved and air-dried soil
were diluted (1:2.5 w:v) with 25 ml of 10 mM CaCl2 solution.
pH was measured two times per sample with a glass electrode
(WTW GmbH, Weilheim, Germany). Dry combustion with an
elemental analyzer was used to determine total nitrogen (Ntot),
inorganic carbon (Ci) and total carbon (Ct) (VarioMax CN
analyzer, Elementar Analysesysteme GmbH, Hanau, Germany)
after samples had been ground and homogenized in a ball mill
(RETSCH MM200, Retsch, Haan, Germany). Organic carbon
content (Corg) was calculated as Corg = Ct–Ci. Root biomass was
quantified after cleaning the roots with distilled water and drying
at 40◦C (Solly et al., 2015). Nitrate (NO3

−) and ammonium
(NH4

+) were extracted with 0.5 M K2SO4 and concentrations
in the supernatant determined with an autoanalyzer (Bran
& Luebbe, Norderstedt, Germany). The sum of NO3

− and
NH4

+ were considered as extractable mineral forms of nitrogen
(Nmmin). Soil microbial biomass carbon (Cmic) and nitrogen
(Nmic) were determined in 10 g (fresh weight) samples by the
chloroform-fumigation-extraction method (Vance et al., 1987).
After fumigation with ethanol-free chloroform, samples were
extracted with 0.5 M K2SO4 and extractable organic C (EC) and
N (EN) were measured in supernatants with a Multi N/C 2100
(Analytik Jena, Jena, Germany). Cmic and Nmic were calculated
from the differences in EC and EN-values of fumigated and
non-fumigated controls.

Microbial phosphorus (Pmic) was measured using a
combination of methods (McLaughlin et al., 1986; Kouno et al.,
1995). Three aliquots per sample of moist soil (corresponding to
2 g of dry soil) were weighed into 50 ml polyethylene tubes and
30 ml deionized water (H2Odeion) was added. A 0.5 M NaHCO3
conditioned resin strip (2 × 6 cm) was added to each samples.
Subsequently, samples were shaken horizontally for 16 h with
in either H2Odeion, H2Odeion plus 1 ml hexanol, or H2Odeion
plus an internal phosphorus standard. The latter was added to
correct for P release during fumigation. After shaking the resin
stripes were removed and rinsed with H2Odeion to remove
adhering soil. After addition of 30 ml NaCl/HCl, samples were
shaken again for 2 h to desorb P. Phosphorus concentrations
were measured with a continuous flow analyzer (CFA, AA3,
XY2, Seal-Analytic, Norderstedt, Germany) at λ = 712 nm
using the molybdate blue method (Murphy and Riley, 1962).
A sorption curve between non-fumigated (H2Odeion) and P
spiked samples was calculated to account for P sorption released
during fumigation, and hexanol P (termed as Pmic; Oberson and
Joner, 2005; Bünemann et al., 2008) was computed.

For the determination of soil texture, soil organic matter
was removed by oxidation with hydrogen peroxide and soil
aggregates were dispersed. Afterward sand (2–0.063 mm), silt
(0.063–0.002 mm), and clay (<0.002 mm) fractions were
determined by sieving and sedimentation (DIN-ISO 11277).

For the determination of abundances of Lumbricidae,
Diplopoda, Symphyla, and Pauropoda, one intact soil core
per was sampled and hand sorted from all 150 sites (20 cm
diameter and 10 cm deep cylindrical soil cores) between April
11 and 20, 2011.

Land-use intensity was investigated by interviewing land
owners. With the variables of mowing frequency (m, number
of cuts), grazing intensity (g, in livestock units day−1 ha−1

year−1) and fertilization level (f, in kg N ha−1 year−1) a
dimensionless land-use intensity index (LUI) was calculated for
each plot by dividing the mowing, grazing and fertilization
components by the corresponding overall means and taking
the square root of the sum of the three components (Blüthgen
et al., 2012). The determination of plant root associated variables
(biomass, chemical composition) was performed as described
previously (Solly et al., 2014). Species richness of vascular plants,
productivity and cover of vascular plants, herbs, legumes, grasses,
bryophytes, litter and bare soil were calculated as reported before
(Socher et al., 2012). For plant sampling per each of the 150
sites, we estimated the cover of all vascular plant species on 4
m × 4 m from mid-May to mid-June 2011 simultaneously in
all regions and calculated the Shannon and Evenness diversity
indices. Cover sums of the functional groups grasses, legumes
and herbs were calculated by summing up the cover of all
species in the respective groups. Furthermore, aboveground
biomass was harvested in four randomly placed quadrats of
0.25 m2 adjacent to the vegetation record. Samples were dried
and milled. After drying at 80◦C for 48 h and weighing, an
arithmetic mean of biomass per m2 for each plot was obtained
as a measure of grassland productivity. To estimate nitrogen (N),
carbon (C) phosphorus (P), potassium (K), calcium (Ca), and
magnesium (Mg) concentrations biomass samples were analyzed
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by near-infrared reflectance (NIR) spectroscopy. We recorded
the reflectance spectrum of each sample between 1,250 and
2,350 nm at 1 nm intervals. Each sample scan consisted of 24
single measurements, which were averaged to one spectrum.
Accuracy of model predictions was checked by applying an
external validation process. For further methodological details
(see Kleinebecker et al., 2011).

Extraction and Purification of RNA
RNA was extracted using the protocol of Lueders et al. (2004)
that had been further adapted (Wüst et al., 2016). Briefly,
soil samples were thawed on ice, 0.6 g were transferred into
a 2 ml screw cap tube, 0.7 g of sterilized zirconium/silica
beads (diameter, 0.1 mm), 750 µl sodium phosphate solution
and 250 µl TNS-Buffer (Tris-HCl, sodium chloride, SDS) were
added, and cells disrupted by beat-beating (6.5 m·s−1 for
45 s). After centrifugation, samples were extracted with phenol-
chloroform-isoamyl alcohol (25:24:1) and chloroform-isoamyl
alcohol (24:1) and nucleic acids pelleted by the addition of
polyethylene glycol and centrifugation. Pellets were washed with
ice cold 70% (v/v) ethanol, resuspended in 50 µl Tris-HCl buffer
(pH 8.5), and the quantity and quality of the coextracts were
checked by UV/Vis spectroscopy (NanoDrop ND-1000, Peqlab
Biotechnologie, Erlangen, Germany).

Genomic DNA was removed by enzymatic digestion with
DNase I (RNase free; Thermo Fisher Scientific, Waltham, MA,
United States) according to the instructions of the manufacturer.
RNA was precipitated with sodium acetate/isopropanol for
60 min on ice, washed with 70% ethanol and redissolved in RNase
free water. RNA was quantified with RiboGreen dye (Quant-
iTTM Ribo Green R© RNA Reagent and Kit, Life Technologies,
Carlsbad, CA, U.S., microplate reader Tecan Infinite R© 200 PRO
Tecan Group AG, Männedorf, Switzerland). Samples were stored
at –80◦C after addition of RNA RNase inhibitor (1 U·µl-1;
RiboLock, Fermentas).

Complementary DNA Synthesis and
Amplification of 16S rRNA Genes
RNA was transcribed into cDNA using the GoScriptTM Reverse
Transcription System (Promega, Madison, WI, United States).
Amplification of the variable V3 region was carried out with
20 µl cDNA mix as template using modified primers 341F
and 515R (Muyzer et al., 1993; Bartram et al., 2011). These
primers contain flow cell adapters and are complementary
to the Illumina sequencing primers. The reverse primer also
contained a 6-bp index allowing multiplexing of up to 97
samples per lane. All samples were amplified in duplicate.
The reaction mix (final volume of 50 µl) contained 2 µM
of each primer, 0.2 mM of each dNTP, 3% (v/v) DMSO and
0.02 U·ml−1 Phusion Taq polymerase (New England Biolabs R©

Inc., Ipswich, MA, United States). Amplification proceeded
by an initial denaturation step at 94◦C for 5 min, followed
by 15 cycles of 94◦C for 15 s, 59◦C for 15 s, 72◦C for
15 s, and final extension step at 72◦C for 7 min. The PCR
products were purified on a 2% MetaPhorTM Agarose gel (Lonza
group, Basel, Switzerland) and PCR products of the correct

size (300–330 bp) were recovered from excised gel bands with
the Nucleo Spin R© Gel and PCR Clean-up Kit (Macherey-Nagel,
Düren, Germany).

Sequencing, Analysis, and Matching of
V3 16S rRNA Gene Amplicon Reads to
Reference Operational Taxonomic Units
From Clustered Full-Length 16S rRNA
Gene Sequences
DNA concentrations were quantified with the Qubit R© dsDNA
Assay Kit (Life Technologies, Carlsbad, CA, United States).
Quality was checked with a 2100 Bioanalyser (Agilent
Technologies, Santa Clara, CA, United States). Samples
were sequenced in paired-end mode on individual lanes, with 50
samples per lane, of a HiSeq2500 and Illumina GAII (Illumina R©,
San Diego, CA, United States), yielding reads of 100 and
150 bp, respectively. Per lane an equivalent amount of genomic
bacteriophage PhiX DNA was added to ensure sufficient cluster
diversity. Reads were assigned to individual samples using the
6-bp index. Forward and reverse reads were trimmed to 100 bp
and dimers as well as sequencing adapters were filtered out
based on detection methods implemented in FastQC.2 Reads
were joined using fastq-join (Aronesty, 2013) allowing 20%
mismatch and a minimum overlap of six nucleotides. Converted
FASTA files were checked for chimeras by Uchime (Usearch
5.2.32, Edgar et al., 2011) applying the GOLD database from
ChimeraSlayer3 as a reference. Taxonomic-dependent analysis
was performed using RDP Multiclassifier 1.1, which is essentially
based on RDP classifer (Wang et al., 2007; Cole et al., 2009).
A confidence value of 0.5 was applied for short read amplicon
data. Based on the assignments of RDP Classifier retrieved by
the –assign_outfile option, 25,616,775 of the joined reads were
assigned to the phylum Acidobacteria.

All high quality full-length acidobacterial
sequences (N = 13,087) available in SILVA
release 119 (Quast et al., 2013) were downloaded
(SILVA_119_SSURef_Nr99_tax_silva_trunc.fasta.gz) and
augmented with 1,997 new sequences that had been generated
through other in house projects. After de-replication a dataset of
12,231 unique 16S rRNA gene sequences was obtained. Sequences
were aligned with Infernal 1.1 (-notrunc -g -matchonly) against
its bacterial SSU model (Nawrocki and Eddy, 2013). The
alignment was clustered with HPC-CLUST 1.1 (-t 0.9 -al true
-dfunc nogap) (Matias Rodrigues and von Mering, 2014) which
generated 5,450 reference OTUs at an identity cutoff of 97%.
All 25,616,775 acidobacterial short read sequences obtained
in the present study were then compared to the de-replicated
reference sequences by BLAST (Altschul et al., 1997) employing
a 99% identity cutoff (i.e., the maximum error rate of the
Illumina sequencing approach). Subsequently, query sequences
were assigned to full-length sequence reference OTUs using a
fractionated approach. In case a read matched to several OTUs,
each OTU got only a read value equal to one divided by the

2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://drive5.com/otupipe/gold.tz
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amount of matching OTUs (e.g., if one read match to 4 OTUs,
each OTU got 0.25 read values).

Phylogenetic Reconstruction and
Generation of Ultrametric Trees
The dataset of full-length 16S rRNA sequences containing
a representative sequence for each of the 5,450 OTUs were
subjected to (ultrametric) phylogenetic reconstructions.
Phylogenetic trees under the maximum-likelihood (ML)
criterion were inferred with ExaML (Stamatakis and Aberer,
2013) version 3.0.7 under the GTR-CAT model by applying rapid
hill-climbing starting from a maximum parsimony tree inferred
with RAxML (Stamatakis et al., 2008) version 7.2.8. The tree was
made ultrametric using LSD (To et al., 2016) version 0.1b after
applying midpoint rooting as implemented in PAUP∗ (Swofford,
2002). Subdivision affiliation of sequences information was
retrieved from the SILVA release 119 database.

Determination of the Optimum Niche
Value for Each Operational Taxonomic
Unit for 41 Environmental Variables
An initial list of 62 environmental variables was reduced to a final
list of 41 variables in order to remove ecologically redundant and
tightly correlated variables, retain putatively relevant variables
and to minimize collinearity between variables. The mean of
the absolute values of 820 pairwise Pearson correlation values
was low (r = 0.19). Only few pairwise correlations (N = 14;
1.7%) were above a value of 0.7 but the variables were retained
as they typically represent different ecological effects, such
as soil moisture and carbon content. In any case, occasional
collinearity is not critical here as these data are not used
for regression approaches in which collinearity would result
in variance inflation. The eHOF R package (Version 1.5.4)
(Jansen and Oksanen, 2013) was then used to determine the
specific value along the gradient of an environmental variable
where the relative abundance of amplicon sequence reads
of an OTU reached its maximum (i.e., the optimum niche
value). The eHOF approach selects the best-fit out of the pre-
determined model types (seven types of hierarchical logistic
regression models, also known as Huisman–Olff–Fresco, HOF,
models) for each OTU, using Akaike information criterion
(AIC) and bootstrapping (here we used bootstrap = 50) to
stabilize the model choice. In order to ensure comparability
across environmental variable values, which are at different scales
(Table 1), all environmental variables were normalized to a
range from 1 to 100. The five tested models are of increasing
complexity. The most important and simplest model type is
number I, a flat response, that means there is no significant
trend along the gradient for a particular OTU, hence there is
no abundance optimum of the OTU throughout the ecological
gradient. It is the null hypothesis and ensures that only OTUs
with a clear response will be modeled with one of the other
model types. Shape II is monotone sigmoid with a top at one
end of the gradient, III is monotone sigmoid with a plateau
below the maximal upper abundance value. Model type IV is
the canonical form of species response, a unimodal symmetric

model, V is a unimodal skewed model. As an example, the
best fitting model for the data presented in Figure 1A is the
unimodel skewed model V. The extended bimodal models (VI
and VII) were not tested. Only OTUs were analyzed which
occurred in at least 25 out of the 150 sites (these amounted
to a total of N = 4,154 OTUs). From the best fitting model
the peak of abundance was extracted as the optimum niche
value. No optimum niche value could be determined in those
cases where the flat model (model I) was identified as the best
model. The degree of ecological divergence between OTUs was
determined as Euclidian distances based on the optimum niche
values of all 41 environmental variables by using the function
euc.dist < - function(x1, x2) sqrt(sum((x1 - x2) ˆ 2)). As the
optimum niche values of 1 and 100 represent the extremes of
an environmental gradient, the maximum ecological distance
theoretically possible across 41 environmental variables is 634
[euc.dist(rep(1, 41), rep(100, 41)].

Network Based Clustering and
Multivariate Ordinations Based on
Optimum Niche Values
Network based clustering using the multi-level modularity
optimization algorithm for finding community structure
(Blondel et al., 2008) as implemented in the R package igraph
(Csardi and Nepusz, 2006) served to identify groups (network
groups) of OTUs with similar optimum niche values (hence
similar habitat adaptation) by means of correlation analysis.
Pairwise Spearman rank correlation between all 4,154 OTUs
was performed using numerical vectors comprising all 41
optimum response values. We explored a set of different rho
values (0.4, 0.5, 0.6, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85,
0.875, 0.9, 0.925, 0.95, 0.98, 0.99, 0.8875, 0.96, 0.9375, 0.9125,
0.975) in order to identify how many network groups were
detected at a specific correlation strength and how many
OTUs were affiliated to any network group. At rho = 0.4,
four network groups were identified which included all OTUs.
Rho values of 0.9 and 0.925 yielded the largest number of
network groups (N = 358 and 383, respectively), which even
declined when rho was further increased. Moreover, such large
rho values encompass only approximately 25% of all OTUs,
with 75% of OTUs being discarded. Therefore, a rho value of
0.85 was taken as cutoff for detecting groups of ecologically
similar OTUs, as 0.85 yields a reasonably large number of
network groups (N = 264) encompassing still approx. 67% of
all OTUs (N = 2,784). Hence, a rho value of 0.85 is regarded
to be a reasonable compromise between gaining sufficient
resolution and avoiding noise. The network was visualized
using the GGally package with kamadakawai plotting mode.
Multivariate ordinations (PCA and CA) based on the matrix
of 4,154 OTUs and 41 optimum niche values were performed
using the vegan package (Oksanen et al., 2018). The plot3D
visualization of the first three PCA axes was done using the
R package (version 1.1) (Oksanen et al., 2018). The mov-file
showing a rotating 3D animation of the first three PCA axes
(“PCA_rotate.mov”) was build using the animation R package
(version 2.4) (Xie, 2013).
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TABLE 1 | List of 41 environmental variables.

Environmental variable Abbreviations Min. Max. Units Additional information

Biomass grassland productivity BMgrassland 3 436 g m−2

Land use index (LUI) LUI 0.6 3.4 - Type of land use in 2011

pH pH 4.6 7.5 in 0.01 M CaCl2 Measured in CaCl2
Inorganic carbon Ci 0 78.5 g kg−1 soil

Organic carbon Co 12.2 359.5 g kg−1 soil

Carbon/Nitrogen ratio C/N 9 14.6 -

Fine roots biomass BMroots_F 0.1 53.4 g cm−3 <2 mm diameter

Coarse Roots biomass BMroots_C 0 6.8 g cm−3 >2 mm diameter

Plant nitrogen PLM 1.2 3.6 % Concentration in aboveground biomass
without litter

Plant carbon PLC 42.7 46.1 % Concentration in aboveground biomass
without litter

Plant phosphorus PLP 0.1 0.4 % Concentration in aboveground biomass
without litter

Plant potassium PLK 0.6 3.8 % Concentration in aboveground biomass
without litter

Plant calcium PLCa 0.2 1.4 % Concentration in aboveground biomass
without litter

Plant magnesium PLg 0.1 0.5 % Concentration in aboveground biomass
without litter

Sand Sand 0.8 84.6 g kg−1 soil 0.063–2 mm

Silt Silt 7.2 86.8 g kg−1 soil 0.002–0.063 mm

Clay Clay 4.1 70.8 g kg−1 soil <0.002 mm

Ammonium NH4
+ 2.3 51.7 µg NH4

+-N g−1

Nitrate NO3
− 0 68.8 µg NO3-N g−1

Mineral nitrogen Nin 4.4 112.3 µg N g−1 Sum of ammonium and nitrate

Carbon/nitrogen ratio in roots RootsC/N 17.8 98.1 -

Total carbon in roots RootsC 28.8 48.5 %

Total nitrogen in roots RootsM 0.5 2.4 %

pauropod abundance Paur 0 16,270 ind m−2

Earthworm abundance Lumb 0 1,019 ind m−2

Millipede abundance Dipl 0 207 ind m−2

Soil moisture SoilH20 3.2 208.5 %

Microbial biomass carbon Cmic 116 1,521 µg C g−1 soil dw Microbial biomass carbon

Microbial phosphorus Pmic 3.5 81.9 mg kg−1 Hexanol fumigated

Ratio of microbial biomass
carbon/microbial biomass
nitrogen

Cmic/Nmic 4.8 10.4 -

Shannon diversity index Shannon 0.9 3.2 - Plant Shannon diversity index

Evenness diversity index Evenness 0.4 0.9 - Plant evenness diversity index

Cumulative cover of all legumes
(shrubs and herbs)

COVlegumes_incl_herb_and_shrubs 0 60.5 % Cumulative cover of all legumes (shrubs
and herbs)

Species number of all legumes
including legumes shrubs

NRvasc_pl 36.5 244.7 % Cumulative cover of all vascular plants

Species number of all vascular
plants

NRvasc_pl 12 64 Species number of all vascular plants

Cover of all bryophytes (view
from above)

COVbryoph 0 90 % Cover of all bryophytes (view from
above)

Cover of litter (view from above) COVlitter 0 97 % Cover of litter (view from above)

Cover of bare soil (view from
above)

COVbare_soil 0 40 % Cover of bare soil (view from above)

Determination of Phylogenetic Signal of
Optimum Niche Values
In order to determine to what extent phylogeny predicts the
ecological similarity of OTUs, we quantitatively determined

the phylogenetic strength of optimum niche values for each
environmental variable by using Blomberg’s K statistic (Blomberg
and Garland, 2002; Blomberg et al., 2003) and the area
under the phylogenetic signal-representation (PSR) curve (PSR)
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FIGURE 1 | Determination of the interdependence between soil pH and the relative abundance of 16S rRNA sequence reads for Acidobacteria OTUs in Exploratory
soils and comparison to the optima of corresponding laboratory strains. (A) Determination of the optimum pH for a single OTU using values from the 150 soil
samples. Red point indicates the optimum response (at a soil pH of 7.2, which corresponds to a rescaled pH value of 90), blue horizontal line indicates the width of
the inner ecological niche, as determined by employing the optimum response model with best fit (the thick gray line represents the best model fit; see section
“Materials and Methods”). (B) Exemplary comparison of optimum pH (red point) and inner ecological niche width (blue horizontal line) of different OTUs (labeled in
red) to the pH optimum for the growth of cultured representatives (green vertical line) belonging to the same OTU, as determined in the laboratory. (C) Histogram of
the absolute deviation values between pH optima determined in cultivated representatives and the pH optima as determined from the optimum niche modeling for
the corresponding OTU in the soils. All 49 described species for which pH optima were available were included. The results indicate that for the majority of strains
the deviation of the two values is less than 0.6 pH unit (median = 0.51).

as obtained from phylogenetic eigenvector regression (PVR)
(Diniz-Filho et al., 1998, 2012a,b). The strength of phylogenetic
signal describes the tendency (pattern) for evolutionary related
organisms to resemble each other. The Blomberg’s K statistic
estimates whether relatives resemble each other less (K < 1)
or more (K > 1) than expected under Brownian motion
evolutionary model. Overall, the larger Blomberg’s K statistic,
the higher the phylogenetic strength of a specific trait. PVR
starts by extracting eigenvectors [using a principal coordinate
analysis (PCoA)] from pairwise distance matrices that describe
the phylogenetic relationships among species and then use
some of the eigenvectors (which can be selected using
different criteria) to model trait variation with a standard
ordinary least-squares (OLS) regression. The coefficient of
determination (R2) of the multiple regression model is an
estimate of phylogenetic signal. When sequential PVR models
are computed by successively adding eigenvectors to model
trait variation, it is possible to plot R2 against the accumulated
eigenvalues associated with these eigenvectors and which
generates a plot called a PSR curve. Negative values for the
PSR curve (PSR area) indicate that a trait evolves faster than
expected under Brownian motion. For both methods ultrametric
phylogenetic trees were used as input, along with a numerical
vector of the values of the environmental variable to be
tested. Blomberg’s K statistic values were obtained using the
function phylosignal() in the picante R package (Version 1.6-
2) (Kembel et al., 2010). Phylogenetic eigenvector regression

was performed using the PVR R package (Santos et al., 2012)
(Version 0.2.1).

Multivariate Ordination of Operational
Taxonomic Units Corresponding to
Cultivated Acidobacteria Species Based
on Five Different Trait Matrices
The OTUs corresponding to cultivated Acidobacteria species
(N = 63, including two Candidatus species “Candidatus
Koribacter versatilis” and “Candidatus Solibacter usitatus”)
were identified by > 99% similarity of the amplicon sequence
to the reference full-length 16S rRNA gene sequence, yielding
for 53 cultivated species a corresponding grassland OTU.
At 99% similarity we did not find corresponding OTUs
for nine species: Acidicapsa acidisoli, Acidipila dinghuensis,
Edaphobacter acidisoli, Edaphobacter bradus, Edaphobacter
flagellates, Geothrix fermentans, Granulicella cerasi, Granulicella
sibirica, and Holophaga foetida. Six further species (Bryobacter
aggregatus, Telmatobacter bradus, Terriglobus aquaticus,
Brevitalea deliciosa, Brevitalea cellulosilytica, Bryocella elongata)
were removed because optimum niche values could not be
determined for 4–34 environmental variables. For 17 species
optimum niche values were not available for one to two of the
environmental variables (flat response model). In order to not
to lose these species in a multivariate ordination we imputed
the missing information by using the mean optimum niche
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value of the respective environmental variable (Legendre and
Legendre, 2012), which we regard as a tolerable procedure as
it affects less than 5% of the environmental variables. For 30
species a full set of 41 optimum niche values were available.
Thereby, corresponding grassland OTUs were identified for
47 acidobacterial species with a reasonably complete set of
41 environmental optimum niche values. For the type strains
of 45 species (the Candidatus species were omitted due to
lack of data), physiological traits were retrieved from the
taxonomic literature and the curated data BacDive database
(Reimer et al., 2019) on ApiZym tests. Growth tests of carbon
sources were grouped into (a) sugar and sugar derivatives,
(b) amino acids, (c) metabolic intermediates, e.g., from the
citric acid cycle, (d) proteins, (e) aromatic compounds and (f)
polysaccharides. As by the nature of taxonomic descriptions
this matrix in parts is highly uncomplete, we optimized in an
interactive process the matrix to reach a good compromise
by minimizing sparsity of the matrix while keeping as many
traits and species as possible. This retained the datasets (a)
and (c). For further numerical processing, the matrix was
coded as 1 = negative, 2 = weak, and 3 = positive utilization.
Additionally we compiled from the original species descriptions
a numerical matrix on complex physiological growth traits:
optimum pH for growth, optimum temperature for growth,
maximum NaCl tolerance of growth, and relationship to oxygen
(aerobic = 3, microaerophilic = 2, anaerobic = 1). The mean
value was taken for those cases where a range of optimum
pH and temperature values were provided. All downstream
analyses were performed using the vegan R package. For each
of the matrices we calculated Bray-Curtis dissimilarity values for
each pair of strains while individually omitting those traits for
which data availability was incomplete. The resulting distance
matrices were subjected to an NMDS ordination analysis with
6 dimensions. The resulting score matrix was used for (a)
producing the ordination plots and (b) performing a pairwise
similarity analysis of the ordinations using a Procrustes analyses
(function protest in vegan with 999 permutations). For each
pairwise comparison the protest analysis was repeated 100 times
in order to ensure stability of the significance value (mean of
100 repetitions).

Other Statistical Methods
The R package ggplot2 (Wickham, 2016) was used for graphics.
Multiple comparisons of means of groups by Null hypothesis
significance testing (two-sided) were performed using the
multcomp R package (Hothorn et al., 2008) as described
previously (Herberich et al., 2010). The tested linear models were
without interaction: lm(ecological divergence ∼ 16S rRNA gene
dissimilarity + subdivision) and with interaction: lm(ecological
divergence ∼ 16S rRNA gene dissimilarity ∗ subdivision). The
simple model without statistical interaction between 16S rRNA
gene sequence divergence and subdivision does not allow for
different rates of changes in ecological divergence with change
in 16S rRNA gene sequence divergence across subdivisions,
whereas the more complex model with interaction allows for
different rates of changes across subdivisions. Both models were
compared via ANOVA and the AIC and in case both models

yield similar results in ANOVA and AIC, the more simple model
should be further investigated. Model validation was performed
as following: The residual plots against both 16S rRNA gene
dissimilarity and subdivisions indicated homogeneity. A Q-Q
plot indicated a good fit between standardized residuals and the
theoretical quantiles.

The currently known counts of different
Acidobacteria full-length 16S rRNA gene sequences
was determined by analyzing the SILVA 138.1
(SILVA_138.1_SSURef_NR99_tax_silva_trunc.fasta.gz), assessed
on 31st of March 2021, supplemented with the 1,997 in-house
sequences. The “isolation source” metadata tags in SILVA 138
was analyzed to determine the proportion of counts affiliated to
either soil or (semi-) aquatic sediments.

RESULTS AND DISCUSSION

Optimum Niche Values of Soil
Acidobacteria Across Multidimensional
Environmental Gradients
A total of 225 million bacterial reads were obtained across the
150 soil samples, with an average of 1.5 million per sample,
from which 25,616,775 acidobacterial reads were retrieved. Their
fraction constituted between 6.9 and 19.4% and on average 12.6%
across the 150 soil samples. Alpha-rarefaction curves indicated a
saturating sampling depth across the three exploratory regions
(data not shown). The acidobacterial reads were assigned to
a backbone phylogenetic tree of full-length 16S rRNA genes
sequences constructed for 5,450 reference OTUs (see section
“Materials and Methods”) using a 99% identity cutoff, which
made it possible to compute the relative abundances of 16S
RNA gene transcripts for the different Acidobacteria OTUs
in the different soil samples. The advantage of 16S rRNA
gene sequences over metagenomic sequence data is to trace
distinct OTUs across multiple samples. 4,154 of the reference
OTUs were sufficiently covered by 16S rRNA transcripts (i.e.,
detected in > 25 of the plots) to allow determination of the
optimal niche via Huisman–Olff–Fresco (HOF) models, for
each OTU and for each of the 41 environmental variables
measured. The latter comprised diverse physicochemical soil
properties, microbial biomass variables, and a multitude of
variables for plants and soil animals, all of which may affect
microbial activity (Wardle et al., 2004). The 150 Biodiversity
Exploratory soils chosen covered broad gradient ranges of these
environmental variables (Table 1). So far, the HOF modeling
approach (Jansen and Oksanen, 2013), which uses hierarchical
logistic regressions to find niche optima along environmental
gradients, has primarily been applied to eukaryotes. Only
recently this approach has successfully also been applied to soil
bacteria (Tripathi et al., 2018; Jones et al., 2021), although soil
heterogeneity at the microscale level (micrometer) cannot be
taken into account. To test our approach, we compared the
optimum niche value predicted for pH for individual OTUs
with the corresponding pH growth optimum determined in
laboratory cultures of isolates from the same OTU. Notably,
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the pH optima of cultivated representatives were largely
commensurate with those determined for their respective OTU
in the Exploratory soils (Figure 1), which confirms the validity of
our culture-independent approach toward the analysis of habitat
adaptation of Acidobacteria.

High Ecological Diversity and Its
Evolution in Different Acidobacteria
Subdivisions
In order to identify ecologically similar OTUs, a correlation
matrix based on pairwise correlations of optimum niche values
between the different OTUs was analyzed using network based
clustering. A substantial fraction of 1,616 (38.8%) OTUs formed
13 major network groups (Figure 2A and Supplementary
Figure 1) with each group consisting of ecologically highly
similar OTUs. These clusters were further supported by a
Principal Component Analysis (Figure 2B and Supplementary
File “PCA_rotate.mov”) and also Correspondence Analysis
(not shown). The remaining OTUs (61.2%) did not exhibit
sufficiently similar ecological patterns and therefore did not
form additional network groups of any considerable size. In
their entirety, the OTUs that were detected in the active
fraction of Acidobacteria cover a wide range of possible
combinations of ecological preferences (i.e., the gray points
cover most of the three-dimensional space in Figure 2B),
whereas one third of the OTUs occupy only a limited number
of discrete ecological niches (colored points in Figures 2A,B)
that are characterized by distinct combinations of the different
environmental variables (Figure 2C).

Among the 4,154 OTUs analyzed in the grassland soils,
members of Acidobacteria subdivisions 1, 3, 4, and 6 dominated
(Figure 2D left panel). To date, habitat preferences of different
Acidobacteria subdivisions have been studied for very few
environmental factors, in particular pH, indicating that members
of SD4 and SD6 thrive in soils with moderate pH, whereas
members of SD1 and SD3 seem to prefer acidic soils (Jones
et al., 2009). However, our multidimensional analysis across
gradients of 41 environmental variables revealed that the 13
complex ecological niches that could be determined were neither
congruent with, nor exclusive to, specific phylogenetic groups:
SD6 and SD4 Acidobacteria predominantly fell into ecological
groups A/M or J/K/M, respectively (Figure 2D, right panel)
that show preferences for slightly acidic to neutral pH, but
still have different pH optima (Figure 2C) and also prefer
different combinations of the other 40 environmental variables.
Conversely, the ecological groups B/C/E/G/H are dominant
among SD1 Acidobacteria and prefer low pH values but some
representatives of SD4 and SD6 also belong to these ecological
groups (Figures 2C,D, right panel). Evidently, different OTUs of
the same Acidobacteria subdivision occupy different ecological
niches and as a result, individual subdivisions demonstrate a
previously unknown broad ecological variability.

Because of the high ecological diversity detected within
single Acidobacteria subdivisions, we analyzed the extent to
which ecological divergence is coupled to phylogenetic sequence
divergence of 16S rRNA genes during speciation events in each

subdivision. For each subdivision, pairs of OTUs that formed
a terminal clade in the phylogenetic tree and showed ≤ 5%
dissimilarity of their full length 16S sequences were chosen
and the pairwise Euclidian distance across the optimum
niche values of the 41 environmental variables between both
OTUs was calculated. This OTU selection enabled the most
sensitive analysis of ecological differentiation by focusing on
the most recent evolutionary divergence events during the
speciation within single acidobacterial genera. Overall, the four
subdivisions showed a similar distribution of 16S rRNA gene
sequences dissimilarity values, although dissimilarity values
between OTUs of SD1 were somewhat smaller than those
of SD6 (Figure 3A). By comparison, the distributions of
pairwise ecological similarities in the different subdivisions
differed significantly (Figure 3B), suggesting that the ecological
divergence during speciation events was systematically higher
in SD6 than in SDs 3 and 4, and that ecological divergence
was lowest in SD1.

Such systematic differences in the intragenus ecological
distances of different SDs could be due to constantly differing
rates of ecological divergence during the speciation events
or by short bursts of rapid niche separation in only some
of the SDs. In order to evaluate both possibilities, we fitted
linear models with ecological divergence as response variable
and 16S rRNA gene dissimilarity and subdivision affiliation as
explanatory variables, without and with statistical interaction
between 16S rRNA gene dissimilarity and subdivision affiliation,
respectively. The ANOVA comparison of both models (F-test,
DF = 3, F = 0.35, p = 0.78) did not show a significant
difference between both models, suggesting the simpler model
(without interaction) could be used. In support of this, the
AIC value favors the model without interaction (AIC = 6,010)
in comparison to the model with interaction (AIC = 6,015;
models with lower AIC are to be preferred, models with
difference in AIC of ≤ 2 are regarded as equally good).
The model without interaction was statistically significant (F-
statistic: 35.81 on 4 and 477 DF, p-value: < 2.2e-16) and
identified a statistically significant (p < 0.0001) increase in
ecological divergence of 22.6 per percent change in 16S rRNA
gene sequence dissimilarity. The intercepts (value of ecological
divergence when 16S rRNA gene dissimilarity is zero) are 76
for SD1, 150 and 149 for SD3 and SD4, respectively (both
significantly larger than the value for SD1, p < 0.0001),
and 236 for SD6 (significantly larger than SD1 and SD3/SD4
at p < 0.0001). Notably, the intragenus values of Euclidian
ecological distance reached 524 (Figure 3B), which is close to
the maximum Euclidian ecological distance of 634 that can be
reached with 41 environmental variables (see section “Materials
and Methods). This indicates that even Acidobacteria of the
same genus can be ecologically highly diverse. Given these
results, the initial niche separation at the onset of speciation is
burstlike and is most pronounced in SD6 and lowest in SD1.
This implies that the potential for initial ecological divergence
and adaptation is the smallest in SD1 but the largest in SD6.
Interestingly, this conclusion is commensurate with the genome
sizes of the different SDs, which increase from 5.4 ± 1.3 (Mb,
mean ± S.D.) in SD1 (45 genomes) to 7.8 ± 2.9 in SD3 (3
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FIGURE 2 | Groups of OTUs (A–K, colored) with similar ecological adaptations (niches) inferred from network based clustering (A) and Principal Component Analysis
(B). Small gray dots in (B) denote the position of OTUs which are not included in any of the major ecological groups (see also the full network in Supplementary
Figure 1). (C) Clustered heatmap on mean optimum response values from OTUs belonging to the 13 major ecological groups. Values at the top of the heatmap give
the counts of OTUs per ecological group. The bluish color gradient on top indicates the optimum niche values on a scaled gradient (1–100) of the environmental
variables (Table 1). (D) Left panel: Counts of OTUs per subdivision (SD). Values in the panel represent proportional contribution (%). Middle panel: Proportions of
OTUs per subdivision which are affiliated to the 13 ecological groups. Right panel: Proportions of OTUs across the 13 ecological groups. Sizes of the bubbles reflect
the percentages as indicated on the far right.

genomes) up to 9.4 ± 1.9 in SD6 (mean ± deviation from
mean, 2 genomes; this includes author’s unpublished results).
The only available genomes from SD4 belong to thermophilic
strains from continental hydrothermal springs and are therefore
excluded from this comparison. Recently, the evolutionary
response of aquatic bacteria during the adaptation to new
environments was found to depend on genome size among other

factors (Scheuerl et al., 2020). Our findings indicate that the
evolutionary changes in soil Acidobacteria are most pronounced
at the onset of speciation and highest for members of SD6
in accordance with their larger genomes. Larger acidobacterial
genomes have been shown to encompass larger numbers of
paralogous genes that can originate from gene duplication,
producing genes with novel functions or genes with similar
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FIGURE 3 | Comparison of the pairwise dissimilarity of full length 16S rRNA gene sequences with the corresponding ecological divergence for the major
subdivisions of soil Acidobacteria. Each dot represents a pair of OTUs (SD1, N = 102; SD3, N = 132; SD4, N = 96; SD6, N = 152) which forms a unique terminal
clade (i.e., a genus) at the tip of the phylogenetic tree of the 4,154 OTUs. (A) Distribution of 16S rRNA dissimilarity values, (B) Distribution of ecological dissimilarity
values. The significance code for multiplicity adjusted p-values (multcomp test) is 0 “∗∗∗”0.001 “∗∗”0.01. (C) Scatterplot of 16S rRNA and ecological dissimilarity
values per subdivision. Dotted lines reflect the linear regression line from the data. Solid lines and the shaded areas reflect the regression line and its 95% confidence
intervals, respectively, as predicted from simulated 16S rRNA dissimilarity values (N = 50 per SD) using the best fitting linear model (without interaction of 16S rRNA
dissimilarity with subdivisions).

function that are expressed under different growth conditions
(Eichorst et al., 2018). Because of their size, larger genomes
are also subject to higher numbers of mutations. Such an
increased genetic potential of Acidobacteria with larger genomes
likely is advantageous for their colonization of soils that feature
fluctuating ecological conditions.

Phylogenetic Evolution of Ecological
Adaptations
More closely related species tend to be more similar to each
other than expected by chance alone, creating a phylogenetic
signal (Blomberg and Garland, 2002). The strength of the
phylogenetic signal describes the tendency for evolutionary
related organisms to resemble each other in their traits. For
example, for a trait with a high phylogenetic signal the
members of a specific phylogenetic clade are very similar with
respect to this trait but quite different from the members of
another clade, which themselves are again very similar among
themselves. On the opposite, for a trait with low phylogenetic

signal closely related organisms may be highly different in
this trait whereas phylogenetically distantly related organisms
may be highly similar with respect to this trait. In order to
differentiate between individual environmental variables that
had the strongest selective effects on the diversification of
Acidobacteria during different periods of their evolution, we
employed two different measures of the phylogenetic signal
of traits, Blomberg’s K (Blomberg and Garland, 2002) and
phylogenetic eigenvector regression PVR (Diniz-Filho et al.,
1998, 2012a, 2015; Figure 4A). The relationship of the phylogeny
and the traits (here: ecological adaptations as deduced from
optimum niche values) was analyzed based on the strength of
phylogenetic signal for each of the 41 variables (Figure 4A).
For each of the 41 variables, Blomberg’s K values ranged from
0.31 to 0.61 and were highly significant (p < 0.001) suggesting
phylogenetic overdispersion and convergent evolution (see
section “Materials and Methods). This is further supported by
the negative PSR area values (Figure 4A, see section “Materials
and Methods”). Therefore, the adaptations to specific values
along the gradients of the environmental variables must have
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FIGURE 4 | Comparison of ecological and phylogenetic similarity. (A) Phylogenetic strength (PS) estimated independently by Blomberg’s K and phylogenetic
eigenvector regression. For all tested environmental variables, the strength of the phylogenetic signal was significant (Blomberg’s K always < 1; p < 0.001). By
convention, the area under the phylogenetic-signal-representation curve (PSR area) is considered negative if the phylogenetic signal is smaller than expected under
Brownian motion. Black line shows the regression line. (B) Maximum Likelihood tree of 4,154 full length 16S sequences. Subdivisions are colored. The color code of
the outer ring indicates to which of the 13 ecological groups (Figure 2) the tips belong to, otherwise the tips are not colored. See “Results” section for further figure
elements such as arrows.

evolved multiple times during the evolution of Acidobacteria.
However, despite the overall trend for overdispersion for all
traits, there are distinctions in the strength between the 41
variables. For example, pH reveals the largest Blomberg’s K
and PSR area values (Figure 4A) and therefore represents the
environmental variables with the strongest phylogenetic signal.
This supports the long-standing observation of an adaptation
to different pH values and suggests that this adaptation
represents an ancient phylogenetic signal which was relevant at
the early evolutionary split of Acidobacteria into subdivisions.
Throughout subsequent evolutionary history, adaptations to
other soil physicochemical variables (texture, moisture) and to
soil nutrients (C, N content) became relevant, as suggested by
their weaker phylogenetic signal (Figure 4A). Based on our
results, plant-related variables only became more important for
the ecological adaptation of soil Acidobacteria in their recent
evolutionary history (Figure 4A).

As already indicated by the phylogenetic overdispersion,
the ecological preferences of OTUs often contrasted with their
phylogenetic position based on full-length 16S rRNA gene
trees (Figure 4B), indicating convergent evolution. Convergence
occurred at different phylogenetic levels and was retained
in clades of different phylogenetic depths. Thus, two small
and phylogenetically shallow clades, one within SD1 and one
in SD3 (brown arrows, Figure 4B) were found to belong

to ecological group B (compare Figure 2C). An illustrative
example of a phylogenetically deeper cladogenic adaptation is
apparent for SD6. Whereas the majority of soil Acidobacteria
of SD6 shows ecological preferences which are typical for
groups J/K/L/M (see Figure 2D), a larger clade emerged within
SD6 that encompasses a considerable number of OTUs that
fall into ecological group A (blue bracket, Figure 4B). The
ecological niche of group A is characterized by higher values
for pH, organic C, inorganic nitrogen, soil moisture, plant
root biomass and plant cover, litter cover, and earthworm
abundance, which together are indicative of nutrient rich, active
soils with the highest land use intensity (compare Figure 2C).
Subsequently, a small but distinct subclade emerged within this
clade, with adaptations characteristic of ecological group B and
C (red/brown arrow, Figure 4B). This secondary evolutionary
event occurred in adaptation to soils with even greater organic
C and soil moisture values, but at the same time substantially
lower pH values.

A second example of convergent evolution of a subclade
can be observed in SD4. The OTUs of SD4 show a
broad range of ecological adaptations (Figure 2D), and
mostly fall into ecological groups M and K. However,
a small but distinct clade emerged during the evolution
of SD4 with lineages that mostly belonged to ecological
group J (black arrow, Figure 4B), adapted to plots within
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the German grasslands that had sandy soils, lowest soil
moisture and lowest nutrient content (organic C, Nmin,
NO3, NH4), hence providing dry and oligotrophic conditions.
Correspondingly, this clade also encompasses four Acidobacterial
isolates (Aridibacter famidurans, Aridibacter kavangonensis,
Aridibacter nitroreducens, Blastocatella fastidiosa) which
have been isolated from rather dry and nutrient habitats
in African Sub-Saharan Kalahari soils (Foesel et al., 2013;
Huber et al., 2014, 2017).

Specific Niche Adaptation Also Explains
Seasonal Changes in the Abundance of
Active Operational Taxonomic Units
Based on the results described in the preceding sections,
the distribution of active Acidobacteria across multiple
environmental gradients in grasslands soils is consistent
with distinct ecological adaptations of the different OTUs.
Since soil environmental conditions in the temperate zone
undergo pronounced seasonal changes, the composition of
active soil bacteria may also change with time according to
the availability of their ecological niches. We therefore tested
the transferability of predictions of our niche modeling by
analyzing the results of an independent, and seasonal, study
(SCALEMIC) which had been conducted in parallel and in
the same year as our study (2011) on a grassland plot in one
of the Biodiversity Exploratories (Schwäbische Alb) (Richter-
Heitmann et al., 2020). In several subplots of this grassland plot,
bacterial community compositions were observed to change
significantly within 6 weeks between May to June. Specifically, 32
Acidobacterial OTUs, primarily from SD1 and SD2 (15, and 12
OTUs, respectively) were observed to transiently reach unusually
high relative abundances (Richter-Heitmann et al., 2020) in June.
Since the plant biomass in the same subplots also reached peak
values in June, since the changes in Acidobacterial community
composition accompanied an increase in surface cover by
the common grass Dactylis glomerata (Richter-Heitmann
et al., 2020), and since certain members of SD1 may interact
with plants (Kielak et al., 2016b), we hypothesized that the
observed changes could be explained by the specific ecological
adaptations of the OTUs that had increased in abundance.
Indeed, the 32 OTUs exhibiting a dynamic response mostly
fell into ecological groups C, D, E, F and H (4, 1, 6, 11, and
5 OTUs per group, respectively). Based on our optimum
niche modeling, these very ecological groups were adapted
to grassland soils with high root biomass and high grassland
productivity. Therefore our niche modeling is in line with the
independent seasonal observations on a selected plot in the
Biodiversity Exploratories.

How Do the Modeled Niches of Cultured
Acidobacteria Compare to Their
Metabolic Traits?
With our approach, the ecological niches of uncultured
Acidobacteria in European temperate grasslands were defined
through a quantitative analysis of niche optima values for
active OTUs with respect to different soil geochemical

parameters as well as characteristics of plants and soil
meso- and macrofauna. Although cultivated isolates are
available for only 63 Acidobacterial species, 47 of these
species (including the two Candidatus species) actually were
representatives of OTUs that were analyzed in the present
work. This provided the opportunity to compare the described
metabolic characteristics of cultivated representatives to their
niches that were inferred in the present investigation for the
same OTU.

NMDS ordination of the OTUs of these 47 species revealed
clear differences in the combinations of optimum niche values
for abiotic and biotic variables (Figure 5 and Supplementary
Figure 2). The analysis suggests that many members of
subdivision SD1 coincide with sandy, low-pH soils that have high
plant cover, particularly of legumes, a high root biomass, and high
plant productivity and land use intensity (red sector in Figure 5).
While an adaptation of SD1 Acidobacteria to low pH values has
previously been inferred from the abundance distribution of their
16S rRNA genes (Jones et al., 2009; Naether et al., 2012; Foesel
et al., 2014), future investigations must show the extent to which
these ecological preferences are driven by a direct interaction with
plants, like the plant growth promoting effect on the non-legume
Arabidopsis thaliana that was previously reported for members
of the genus Granulicella and the type strain of Acidicapsa
ligni (Kielak et al., 2016b). In contrast to most members
of SD1, close relatives of Pyrinomonas methylaliphatogenes
(SD4), Vicinamibacter silvestris (SD6), Acanthipleuribacter pedis
(SD8), and Thermoanaerobaculum aquaticum (SD23) prefer
clay-rich, carbonate-containing, more alkaline soils (blue sector
in Figure 5), whereas, moist, N-rich, silty soils select for
relatives of Luteitalea pratensis (SD6), Paludibaculum fermentans
(SD3), and Thermotomaculum hydrothermale (SD10) (gray
sector in Figure 5). Finally, our results suggest an adaptation
of certain members of SD 1 (“Candidatus Koribacter versatilis,”
Terriglobus roseus) and of SD4 (Blastocatella fastidiosa) species
to nitrogen-poor, drier soils that sustain highly diverse plant
communities (green sector in Figure 5). Notably, the two
representatives each of SDs 3 and 6 occupied very different
ecological niches based on our data analysis. The overall
lack of a clear grouping of OTUs from the same SD in
our analysis stresses again our earlier finding that ecological
divergence among more closely related Acidobacteria of the
same SD can be considerable (see also Figure 3) and hence
occur more rapidly than the ecological divergence between
some members of different SDs. We therefore caution against
an assignment of particular Acidobacteria SDs to a specific
ecological niche.

For comparison, physiological traits of the characterized
45 type strains were retrieved from their original taxonomic
descriptions in the literature as well as the curated BacDive
database (Reimer et al., 2019). However, these descriptions
of type strains provided very different amounts of data.
Therefore, strains that had information on less than 70% of
the characteristics and those characteristics that had information
for less than 50% of the strains were deleted in an iterative
process (see section “Materials and Methods). The final datasets
(Supplementary Figure 2) comprised 29 strains with sufficient
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FIGURE 5 | Correspondence of modeled niches with carbon substrate utilization. NMDS ordination plot on Bray-Curtis distance (k = 3, stress = 0.08, the non-metric
fit between ordination distance and observed dissimilarity based on stress was R2 = 0.994) based on optimum niche values of the OTUs that corresponded to
cultured isolates (type strains of validly named species and two Candidatus species). To enhance visualization, the NMDS scores from species and optimum niche
values were separated into two panels (A,B), respectively. The colored background areas in both panels reflect adaptations of the cultured species (A) to high values
of the indicated environmental variables (B) (see text). Ac.cap, Acidobacterium capsulatum; Ac.ail, Acidobacterium ailaaui; Te.ros, Terriglobus roseus; Te.alb,
Terriglobus albidus; Te.saa, Terriglobus saanensis; Te.ten, Terriglobus tenax; Gr.pal, Granulicella paludicola; Gr.pec, Granulicella pectinivorans; Gr.ros, Granulicella
rosea; Gr.agg, Granulicella aggregans; Gr.aci, Granulicella acidiphila; Gr.arc, Granulicella arctica; Gr.mal, Granulicella mallensis; Gr.tun, Granulicella tundricola;
Gr.sap Granulicella, sapmiensis; Ed.mod, Edaphobacter modestus; Ed.agg, Edaphobacter aggregans; Ed.lic, Edaphobacter lichenicola; Ed.din, Edaphobacter
dinghuensis; Ac.bor, Acidicapsa borealis; Ac.lig, Acidicapsa ligni; Ac.fer, Acidicapsa ferrireducens; Ac.acp, Acidicapsa acidiphila; Ac.ros, Acidipila rosea; Oc.rip,
Occallatibacter riparius; Oc.sav, Occallatibacter savannae; Te.gab, Terracidiphilus gabretensis; Si.boh, Silvibacterium bohemicum; Pa.fer, Paludibaculum fermentans;
Bl.fas, Blastocatella fastidiosa; Ar.fam, Aridibacter famidurans; Ar.kav, Aridibacter kavangonensis; Ar.nit, Aridibacter nitratireducens; Te.mul, Tellurimicrobium
multivorans; St.ter, Stenotrophobacter terrae; St.ros, Stenotrophobacter roseus; St.nam, Stenotrophobacter namibiensis; Ar.lut, Arenimicrobium luteum; Py.met,
Pyrinomonas methylaliphatogenes; Ch.the, Chloracidobacterium thermophilum; Vi.sil, Vicinamibacter silvestris; Lu.pra, Luteitalea pratensis; Ac.ped,
Acanthopleuribacter pedis; Th.hyd, Thermotomaculum hydrothermale; Th.aqu, Thermoanaerobaculum aquaticum; Cand. Ko.ver, “Candidatus Koribacter versatilis”;
Cand. So.usi, “Candidatus Solibacter usitatus.”

TABLE 2 | Correlation and significance of trait matrices of 29 Acidobacterial species in Procrustes comparisons.

Optimum niche Enzyme activity Growth on sugars Growth on metabolic intermediates

Enzyme activity 0.377 (0.271)

Growth on sugars 0.348 (0.199) 0.464 (0.006)

Growth on metabolic intermediates 0.323 (0.735) 0.351 (0.537) 0.424 (0.019)

Complex growth traits 0.337 (0.295) 0.466 (0.005) 0.544 (0.002) 0.283 (0.759)

Values represent correlation values in a symmetric Procrustes rotation and the statistical significance in brackets (Mean of independent 100 permutation runs; the null
hypothesis is that matrices do not differ). Significantly similar matrices are in bold.

information on (i) 19 different extracellular enzymes, (ii)
the utilization of 26 sugars and sugar derivatives, (iii) the
utilization of 17 metabolic intermediates as well as (iv) four
complex physiological traits (optimum pH, temperature, NaCl
content and oxygen demand). Finally, these four datasets for
phenotypic characteristics of the 29 strains and the optimum
niche values for the corresponding 29 OTUs were used to

calculate pairwise similarity values which were then compared
by NMDS ordination (Supplementary Figure 3). The type
strains grouped differently depending on the traits analyzed,
but the phenotypic similarity between members of SD1 and
the dissimilarity between the two representatives of SD6 was
particularly evident for the spectrum of sugar substrates utilized
and for the extracellular enzymes (Supplementary Figure 3),
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respectively. Less distinct groupings were observed for the
metabolic intermediates utilized.

Theoretically, the preferred association with plant roots, plant
biomass and productivity of SD1 Acidobacteria as indicated by
our analysis of optimum niche values (Figure 5) could be due to
a preferred utilization of metabolic intermediates that dominate
among root exudates (e.g., sugars, sugar alcohols, organic acids),
and/or on their capacity to degrade plant-derived biomass
through extracellular enzymes. For instance, the production
of extracellular enzymes involved in the degradation of plant-
derived biopolymers has been used to infer a role in organic
matter decomposition in soils (Banerjee et al., 2016; Garcia-
Fraile et al., 2016; Belova et al., 2018; Hausmann et al., 2018;
de Chaves et al., 2019; Ivanova et al., 2020). We therefore tested
the correlation between the ordination of optimum niche
values and that of the four different phenotypic datasets by
Procrustes rotation (Table 2). While the patterns of extracellular
enzymes, of the utilization of sugars/sugar derivatives and
of complex traits showed reasonably high and statistically
significant correlations (p = 0.002–0.02), these patterns were
not congruent with the distribution of the optimum niche
values based on our observations of the real environmental
distribution of Acidobacterial OTUs. Patterns of utilization of
metabolic intermediates showed weaker correlations with those
of sugar utilization, but again not with the distribution of
optimum niche values. This is in line with the recent finding
that the chemical composition of root exudates has only a
limited impact on the composition of rhizosphere bacterial
communities compared to the properties of the surrounding
soils (Vieira et al., 2020). Clearly, the standard procedures
that are applied for routine phenotypic characterization of
newly isolated bacteria yield only limited information on
their realized niche in the natural environment. For example,
the affinity and level of expression of extracellular enzymes
under natural conditions might be more important than their
mere presence or absence in a bacterium. We suggest that
future characterizations consider such additional phenotypic
traits of ecological relevance, as indicated by optimum niche
value analyses such as the one described here. Based on
our data, the determination of optimum niche values as
developed in the present work can also provide first indications
on the possible niche differentiation between more closely
related Acidobacteria and hence provide additional information
on potential drivers of bacterial speciation processes. In
addition, optimum niche values provide valuable information
for future cultivation trials of not-yet-cultivated types of
Acidobacteria.
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