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The Cyclophyllidea comprises the most species-rich order of tapeworms
(Platyhelminthes, Cestoda) and includes species with some of the most severe
health impact on wildlife, livestock, and humans. We collected seven Cyclophyllidea
specimens from rodents in Qinghai-Tibet Plateau (QTP) and its surrounding mountain
systems, of which four specimens in QTP were unsequenced, representing “putative
new species.” Their complete mitochondrial (mt) genomes were sequenced and
annotated. Phylogenetic reconstruction of partial 28S rDNA, cox1 and nad1 datasets
provided high bootstrap frequency support for the categorization of three “putative new
species,” assigning each, respectively, to the genera Mesocestoides, Paranoplocephala,
and Mosgovoyia, and revealing that some species and families in these three datasets,
which contain 291 species from nine families, may require taxonomic revision. The
partial 18S rDNA phylogeny of 29 species from Taeniidae provided high bootstrap
frequency support for the categorization of the “putative new species” in the genus
Hydatigera. Combined with the current investigation, the other three known Taeniidae
species found in this study were Taenia caixuepengi, T. crassiceps, and Versteria
mustelae and may be widely distributed in western China. Estimates of divergence time
based on cox1 + nad1 fragment and mt protein-coding genes (PCGs) showed that
the differentiation rate of Cyclophyllidea species was strongly associated with the rate
of change in the biogeographic scenarios, likely caused by the uplift of the QTP; i.e.,
species differentiation of Cyclophyllidea might be driven by host-parasite co-evolution
caused by the uplift of QTP. We propose an “out of QTP” hypothesis for the radiation of
these cyclophyllidean tapeworms.
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INTRODUCTION

Cestoda is a class of parasitic worms in the flatworm phylum
Platyhelminthes that parasitize the intestines of all major groups
of vertebrates, including fish (Kuchta et al., 2020), reptiles
(Yudhana et al., 2019), birds (Okulewicz, 2014), and mammals
(Carlson et al., 2020), and cause severe, mild or no symptoms
of infection. Their larvae usually achieve development in one
or two intermediate hosts (Kuchta et al., 2020) and can cause
severe symptoms and even death in animals and humans;
species of Taenia and Echinococcus cause the highest health and
economic impact.

To date, there are approximately 4,800 described species in
the class Cestoda, belonging to 833 genera and 19 orders, of
which the Cyclophyllidea is the most species-rich order in the
class, with more than 3,100 valid species, distributed among 16
families (Sharma et al., 2016; Caira and Jensen, 2017; Kuchta
et al., 2020). Each free-living metazoan species is considered
to harbor at least one protozoan or metazoan parasite species
(Poulin and Morand, 2004) with which they interact and usually
co-evolve (Ebert and Fields, 2020). Parasites are probably one
of the largest groups of undescribed organisms, as most are
cryptic whether in their parasitic or free-living forms (Dobson
et al., 2008; Larsen et al., 2017; Okamura et al., 2018; Carlson
et al., 2020). It is estimated that there are a total of about
100,000–350,000 helminth species in vertebrates around the
world, of which 85–95% are undiscovered or recorded to science
(Carlson et al., 2020).

Many of the world’s biodiversity hotspots are located in
large mountain systems, and their role in the evolutionary
diversification of organisms is manifold (Hoorn et al., 2018;
Rahbek et al., 2019a,b). The Qinghai-Tibet Plateau (QTP) and its
surrounding mountain systems of the Eurasian continent, have
yielded arguably the biggest and probably the most biologically
diverse area of montane species (Päckert et al., 2020). In the past
decade, several new Taeniidae species have been described from
wild rodents on the QTP (Xiao et al., 2005; Wu et al., 2021).
In terms of species diversity and sheer population sizes, rodents
are perhaps the most important intermediate and definitive hosts
of tapeworms, and are the most widely distributed and diverse
group of mammals; about 43% of all species (Singla et al., 2008;
Wu et al., 2018). Changes in climate and vegetation caused by the
uplift of the QTP may have promoted local adaptations such as
the evolution of cold- and hypoxic-tolerant rodent species, which
in turn may have led to the co-evolution and radiation of their
parasites (Wang et al., 2018; Wu et al., 2021). We hypothesize that
there may be many undiscovered tapeworm species parasitizing
the rodents in the QTP. Although the number of tapeworm
species has been underestimated in general, some practices may
lead to the erroneous proposal of new species (Carlson et al.,
2020; Kuchta et al., 2020).

Morphological distinctions have been used for the description
of many tapeworms, however, the homoplasy in morphology
poses quite a challenge to infer their evolutionary lineage (Scholz
et al., 2021), where morphological features may be significantly
affected by different intermediate host sources (Lymbery, 1998).
Many undescribed species may be genetically different but

morphologically indistinguishable. The inability to distinguish
such cryptic species affects accurate assessment of host range
and estimates of total diversity (Carlson et al., 2020). The 28S
and 18S nuclear ribosomal RNA genes (rDNA) are relatively
conserved within species and are often used to differentiate
different species (Wickström et al., 2005; Nakao et al., 2013;
Scholz et al., 2021). The mitochondrial (mt) genome is largely
haploid and uniparentally inherited, so their effective population
size is four times smaller than that of the nuclear genome (Toews
and Brelsford, 2012). Since the process of lineage sorting is
inversely proportional to the effective population size, this means
mitochondrial (mt) genomes will complete this process faster
than nuclear genomes (Toews and Brelsford, 2012). Thus, the
genetic nature of a mt genome makes it likely more sensitive than
any single nuclear marker to distinguish closely related species
and study their phylogenetic relationships (Lee et al., 2007).

Therefore, in this study, we sampled parasites in rodents from
the QTP and its surrounding areas. In total, seven Cyclophyllidea
specimens were collected and characterized using molecular
tools. By comparing new (mitochondrial, nuclear 28SrDNA, 18S
rDNA) with published homologs (GenBank) we found four
isolates to be markedly different in DNA sequence thus likely
representing “putative new species.” The complete mt genomes
of these unknown taxa were sequenced and annotated, and their
taxonomic status was analyzed and verified through phylogenetic
reconstruction of five datasets containing a total of 320 species
from 10 families. By combining evolutionary divergence time
analyses of mt genes of classified cyclophyllideans in NCBI
Taxonomy Database1 and the paleogeography of QTP, we thus
speculate an “out of QTP” theory for cyclophyllideans.

MATERIALS AND METHODS

Sample Collection
Rodents were live-trapped in meadows in Tibet, Qinghai,
Sichuan, Gansu and Xinjiang province or autonomous region
of China in 2013 and from 2018 to 2020. Rodents were
euthanized and dissected according to the Ethics Statement
mentioned below, cysticerci and host livers were collected from
the enterocoelia and thorax, and adults were extracted from the
intestines. Detailed sample collection data and host identities are
described in Supplementary Table 1. After detaching the lesions,
parasite specimens and host livers were kept in 75% (v/v) ethanol
for molecular identification.

DNA Isolation, Amplification, and
Sequencing
DNA samples of hosts and parasites were extracted using Blood
and Tissue Kit (Cat. No. 69504, Qiagen, Germany) as instructed
by the manufacturer, and were amplified and sequenced for
identification by conserved primers of cytb gene of small
mammals (Fan et al., 2011) and cox1 gene of tapeworm (Bowles
et al., 1992), respectively. By means of highly similar BLAST

1https://www.ncbi.nlm.nih.gov/taxonomy
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search in the nucleotide collection (nr/nt) database,2 four of the
Cyclophyllidea specimens with less than 95% identity of the most
similar cox1 sequence were identified as putatively unknown
species (Xiao et al., 2005). The mt genomes of four of the
putatively unknown specimens were sequenced and assembled
according to the following procedure: firstly, the DNA of the four
species was amplified and sequenced using primers published
in Wu et al. (2021); missing fragments were amplified with
newly designed primers using the program Oligo 6.0 with the
method described in Wu et al. (2021), until entire circular
mtDNAs were amplified and sequenced. A list of primers for
each species can be found in Supplementary Table 2. The
18S and 28S rDNA fragments of these four species were also
amplified and sequenced with conserved primers (Littlewood
et al., 2000; Yan et al., 2013) for further species identification
and phylogenetic analyses. Primers were synthesized by Tsingke
Biotechnology (Xi’an, China). Standard 25 µl PCR protocol was
used to amplify the DNA fragments. The PCR products were
purified and sequenced according to protocols in Wu et al.
(2021). SeqMan software was used to assemble the cytb gene
sequences, 18S and 28S rDNA partial sequences and mt genomes
(see Supplementary Table 3 for GenBank accession nos.).

Mitochondrial Genome Annotation
The four new mtDNAs were annotated preliminarily by
Geseq3 with the reference of the most closely related species
(Mesocestoides corti, Anoplocephala magna, Hydatigera
krepkogorski, and Moniezia expansa) identified by the
phylogenetic analyses in Figures 1, 2, whose mt genome
annotations are available in GenBank. Putative tRNA genes were
verified using ARWEN4 using default parameters (Laslett and
Canbäck, 2008). The positions of their open reading frames
(ORF) and rRNA genes were further checked and modified using
SnapGene (v3.2.1) based on alignments with the reference of the
most closely related species mentioned above. SnapGene (v3.2.1)
was used to translate the protein-coding genes (PCGs) into their
amino acid sequence with echinoderm/flatworm mitochondrial
code (NCBI translation table 9) and to illustrate the annotated
mt genomes.

Phylogenetic Analyses and Sequence
Identity
As ingroups for phylogenetic reconstruction, we combined mt
genes and 18S or 28S rDNA sequenced in this study with those
of other classified cyclophyllideans available in GenBank. Three
species (Caryophyllaeus brachycollis, Anindobothrium anacolum,
Spirometra erinaceieuropaei) of Eucestoda belonging to different
orders were chosen as outgroups.

The 28S rDNA fragments of classified cyclophyllideans in
NCBI Taxonomy Database are available for most families in
GenBank except Taeniidae, while that of the 18S rDNA were only
available for Taeniidae, so here the evolutionary trees of 28S and
18S rDNA fragments were constructed separately. Based on the

2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://chlorobox.mpimp-golm.mpg.de/geseq.html
4http://130.235.46.10/ARWEN/

results of the 28S rDNA phylogeny, a simplified 28S evolutionary
tree was reconstructed without affecting the topological structure
of the tree by removing the species in the same genus and
clade. To complement and validate the inferred evolutionary
relationship between Cyclophyllidea species, except the species of
family Taeniidae, the phylogenies with cox1 and nad1 fragments
were reconstructed.

In summary, 5 datasets containing 320 species in 10 families
were assembled for phylogenetic analyses (see Supplementary
Tables 4–8 for GenBank accession nos. and species, genera and
families used in each dataset). Since the limited availability of data
on different genes of the same species, we performed separate
phylogenetic reconstruction for each dataset to cover more
species. Datasets were aligned using MAFFT v7.487 with auto
option (Katoh and Standley, 2013). The alignments were trimmed
by using Trimal v1.2 under the automated1 option (Capella-
Gutiérrez et al., 2009) to preserve the same sequence regions
and exclude the ambiguously aligned sites. All phylogenetic trees
were constructed with maximum likelihood (ML) inference using
IQ-TREE v2.1.4 (Nguyen et al., 2015) with ultrafast bootstrap
1,000 replicates in Ubuntu 20.04.2 LTS operating system, where
the best-fit models were automatically selected by ModelFinder
(Supplementary Table 9; Kalyaanamoorthy et al., 2017) and the
best number of threads were also selected under AUTO option
(using the command line: iqtree -s alignment_file -m -MFP -bb
1000 -nt AUTO). All other parameters were set to their default
values. The ML trees were then visualized on the IToL web server
(Letunic and Bork, 2016).

The related species of the putatively unknown species
were identified based on phylogenetic reconstruction, and the
percentage identity of sequences in the 5 datasets between
the putatively unknown species and their related species was
calculated by BLAST (Supplementary Table 10).

Analysis of Divergence Times
Species divergence times were calculated using BEAST v2.6.2
(Bouckaert et al., 2014) based on two datasets without
shared species: all available mt PCGs dataset of 54 species
(Supplementary Table 11) and cox1 + nad1 fragments dataset
of other classified 54 species (Supplementary Table 12). These
two datasets were aligned and trimmed with MAFFT v7.487 and
Trimal v1.2 as described above, and were partitioned according
to different genes. Model selection of partitions was identified
by Partition Finder v2.1.1 (Lanfear et al., 2012) with the set of
“linked” branch lengths, “beast” models, “aicc” model selection,
and “greedy” search. Partition schemes and substitution models
can be found in Supplementary Table 9. The Strict Clock model
was chosen to ignore the rate differences between the branches
in the mode and the gamma category count was set to 4. Other
settings, such as substitution rate and shape, in the site model
were evaluated in the analysis. The Calibrated Yule model (Heled
and Drummond, 2015) was used as the tree prior, as it is a
simple model of speciation that is generally appropriate when
considering sequences from different species. Time calibration
was calibrated with the divergence date between T. saginata and
T. asiatica (∼1.14 Mya) and divergence date between Schistosoma
japonicum and S. mansoni (∼56.10 Mya), which agreed with
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FIGURE 1 | Maximum likelihood analyses of the four “putative new species” with other Cyclophyllidea species, except for Taeniidae, based on simplified 28S rDNA
(A), cox1 (B) and nad1 (C) fragments. Alternating black and gray bands are used to classify different genera in the Taxonomy of NCBI, The Roman numerals to the
right of the bands represent outgroup and different genus names (i.e., I: outgroup, II: Mesocestoididae, III: Catenotaeniidae, IV: Dipylidiidae, V: Anoplocephalidae, VI:
Paruterinidae, VII: Gryporhynchidae, VIII: Dilepididae, IX: Hymenolepididae, X: Dipylidiidae). The N after the species name represents “putative new species”.
Bootstrap frequency support values are stated only for nodes where > 80%.

reported fossil evidence from shark coprolites and previously
estimated dates based on mt genes (Wang et al., 2016). Posterior
probability estimates were sampled every 1,000 iterations over a
total of 10,000,000 iterations per MCMC run. Other options were
run on their default values. Tracer (v1.7.1) was used to summarize
posterior probabilities. Trees were annotated via TreeAnnotator
(v2.1.2) using a maximum clade credibility tree and median
heights settings with 10% burn-in. The number of divergence
nodes in every 2 Mya was summarized based on the evolutionary
divergence time trees of two datasets, respectively.

RESULTS

Species Identification and Phylogenetic
Relationships
The hosts of parasites were confirmed by BLAST searches
(Supplementary Table 1; see Supplementary Table 3 for
GenBank accession nos. of host cytb gene). Two of the
parasite species were cysticerci and adult worms, each retrieved
from the abdominal cavity and intestinal tract of two vole
hosts (Neodon leucurus) collected from the same pasture
location near the Shigatse City of Tibet Autonomous Region
(Supplementary Table 1). Phylogenetic analyses shown in
Supplementary Figure 1 and Figures 1A–C confirmed that
these two species likely belong to the genera Mesocestoides
and Paranoplocephala, and were labeled as Mesocestoides sp.
RKZ08 and Paranoplocephala sp. RKZ13, respectively. The

cysticerci collected from the liver of plateau pika (Ochotona
curzoniae) from Xietongmen county of Tibet and zokors
(Eospalax fontanierii) from Xiahe county of Gansu province were
confirmed to be the same species by alignment of cox1 and
18S rDNA segments, which was in the monophyletic group of
the genus Hydatigera in the phylogenetic trees (Figure 2), and
was marked as Hydatigera sp. XHPW10. The final species was
an adult tapeworm collected from the intestine of plateau pikas
from Shiqu county, Sichuan province, and occurred within the
genus Mosgovoyia (Supplementary Figure 1 and Figures 1A–
C), and was thus named Mosgovoyia sp. SQ20. These four
species were identified as newly sequenced and “putative new
species” as their cox1 and nad1 sequences having less than 95%
identity with available related taxa (Supplementary Table 10;
Xiao et al., 2005). The degree of differentiation of their mt
genes was higher than that of the nuclear genes 18S and 28S
rDNA (Supplementary Table 10), reflecting their differentiation
likely results from the so-called deep mitochondrial divergence
(DMD, Zhang et al., 2019). In addition, three known cysticerci of
Taeniidae, T. caixuepengi, T. crassiceps, and Versteria mustelae,
were also identified in the present study (see Supplementary
Table 13 for their cox1 fragments).

General Features of the Mitochondrial
Genome of “Putative New Species”
The complete mt genomes of the four “putative new species”
were 13,361 bp (GenBank ID: MW808979), 13,730 bp (GenBank
ID: MW808980), 14,148 bp (GenBank ID: MW808981), and
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FIGURE 2 | Maximum likelihood analysis of 18S rDNA of family Taeniidae. The N after the species name represents “putative new species.” The outgroup is the
same as Figure 1. Bootstrap frequency support values are stated only for nodes where > 80%.

13,776 bp (GenBank ID: MW808982) in length. Each of them
contains two rRNA genes (rrnS and rrnL) and 12 protein-
encoding genes (atp6, cytb, nad4L, cox1-3, and nad1-6), which
are arrayed in the typical order of mt genomes of cestodes.
They each contain the 22 typical tRNA genes set of cestodes,
and share a common set of anticodons. The order of tRNA
genes is roughly the same, except between nad6 and nad5 genes.
Species Paranoplocephala sp. RKZ13 had a repeat sequence of
trnL and trnR in the highly variable region between nad6 and
nad5, suggesting that it had an insertion sequence in this region
that made its mt genome longer than the other three species
(Figure 3 and Table 1).

Flatworms use a unique set of mt code for protein translation
(Nakao et al., 2000; Telford et al., 2000). In addition to ATG, GTG
was also used as an initiation codon in a small fraction of coding
genes in their mt genomes. For the termination codon, all species
used only TAA and TAG; TGA was not identified as a termination
codon (Table 1).

Divergence Times Analysis
The divergence time based on the two datasets used for time
calibration is consistent with previous genome-based analysis

results (Figure 4; Wang et al., 2016). Three of the “putative
new species,” Mesocestoides sp. RKZ08, Mosgovoyia sp. SQ20, and
Hydatigera sp. XHPW10, might have originated from a similar
phase in the late Miocene, while Paranoplocephala sp. RKZ13
diverged during the Pleistocene (Figure 4). By summarizing the
number of divergent time nodes in the divergence time trees over
time, it was found that the trees of mt PCGs and cox1 + nad1
produced similar differentiation rate trends: there was a slight
acceleration of the evolutionary rate in the period 14–24 Mya, and
a marked acceleration during the period 4–10 Mya (Figure 5).
However, compared with cox1 + nad1, the differentiation rate
of mt PCGs was faster in the 14–24 Mya but slower in 4–10
Mya, which may have been caused by the species bias used
in both datasets.

DISCUSSION

Given the rich diversity and the large rodent population in
western China and the few published reports of tapeworms in
rodents, except for Taeniidae (Xiao et al., 2005; Zhao et al., 2014;
Wang et al., 2018; Zhang et al., 2018; Wu et al., 2021), the present
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FIGURE 3 | The diagram of complete mitochondrial genome of Mesocestoides sp. RKZ08 (A), Paranoplocephala sp. RKZ13 (B), Hydatigera sp. XHPW10 (C), and
Mosgovoyia sp. SQ20 (D). The protein-encoding genes are depicted in plum, the tRNAs are depicted in green, the rRNAs are depicted in light green and the
non-coding mitochondrial regions (NCRs including LNR and SNR) are depicted in gray. The inferred gene boundaries of them are shown in Table 1.

knowledge of tapeworm biodiversity in rodents in western China
suggests far greater biodiversity yet to be uncovered.

Here, the mt genes and 18S or 28S rDNA fragments of four
(two larvae and two adults) unidentified Cyclophyllidea species
differed from their related species (Supplementary Table 10).
However, due to the specimen distortion and insufficient
specimen encountered in this study, it is not clear whether
they have been described morphologically. All four species
showed apparent discordance percentage identity with the related

species in their mtDNA and 18S or 28S rDNA, which is
the common DMD pattern across the animal kingdom, and
demonstrated in Echinococcus granulosus sensu stricto (Kinkar
et al., 2017), possibly due to the parthenogenetic inheritance
of mitochondria, gene flow and recombination in the nuclear
genome (Toews and Brelsford, 2012).

The larvae Hydatigera sp. XHPW10 was found to live in the
livers of both zokors from northeast of QTP and plateau pika
from southwest of QTP (Supplementary Table 1). This adds
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TABLE 1 | The list of mitochondrial genome annotation for four “putative new species”.

Genes Positions of nucleotide sequences (bp) Initiation and termination codons Anticodons

RKZ08 RKZ13 XHPW10 SQ20 RKZ08 RKZ13 XHPW10 SQ20

trnG 1–67 1–62 1–67 1–63 TCC

cox3 73–717 68–712 70–714 65–715 ATG/TAA ATG/TAA ATG/TAA ATG/TAG

trnH 726–794 713–783 716–784 709–778 GTG

cytb 798–1892 787–1881 787–1,854 782–1876 ATG/TAG GTG/TAG ATG/TAG GTG/TAG

nad4L 1,895–2,155 1,884–2,144 1,877–2,137 1,892–2,152 GTG/TAG ATG/TAA GTG/TAG ATG/TAA

nad4 2,116–3,372 2,111–3,358 2,104–3,354 2,113–3,366 GTG/TAA GTG/TAG GTG/TAA GTG/TAG

trnQ 3,373–3,435 3,359–3,426 3,355–3,417 3,367–3,428 TTG

trnF 3,434–3,499 3,425–3,488 3,415–3,479 3,427–3,490 GAA

trnM 3,495–3,562 3,485–3,551 3,475–3,542 3,489–3,554 CAT

atp6 3,568–4,080 3,557–4,063 3,551–4,069 3,558–4,073 ATG/TAA ATG/TAA ATG/TAG ATG/TAG

nad2 4,103–4,978 4,073–4,948 4,076–4,966 4,083–4,964 ATG/TAG ATG/TAG ATG/TAG ATG/TAA

trnV 4,983–5,047 4,951–5,014 4,967–5,030 4,978–5,041 TAC

trnA 5,048–5,115 5,014–5,077 5,036–5,103 5,040–5,106 TGC

trnD 5,121–5,187 5,082–5,142 5,108–5,171 5,106–5,166 GTC

nad1 5,192–6,079 5,145–6,035 5,176–6,069 5,170–6,060 ATG/TAA ATG/TAG ATG/TAG ATG/TAG

trnN 6,095–6,160 6,041–6,109 6,070–6,137 6,066–6,131 GTT

trnP 6,163–6,226 6,117–6,180 6,145–6,207 6,137–6,200 TGG

trnI 6,227–6,290 6,180–6,245 6,206–6,269 6,200–6,264 GAT

trnK 6,294–6,358 6,244–6,308 6,274–6,336 6,275–6,337 CTT

nad3 6,362–6,709 6,310–6,657 6,334–6,681 6,342–6,689 ATG/TAA ATG/TAG GTG/TAG ATG/TAA

trnS 6,718–6,776 6,656–6,714 6,680–6,738 6,692–6,751 GCT

trnW 6,780–6,845 6,715–6,776 6,746–6,809 6,756–6,818 TCA

cox1 6,851–8,449 6,774–8,342 6,810–8,462 6,816–8,408 ATG/TAA ATG/TAG ATG/TAG ATG/TAA

trnT 8,456–8,518 8,365–8,429 8,427–8,490 8,395–8,458 TGT

rrnL 8,519–9,488 8,430–9,393 8,491–9,452 8,459–9,431

trnC 9,489–9,554 9,394–9,450 9,453–9,511 9,432–9,496 GCA

rrnS 9,555–10,282 9,451–10,187 9,512–10,232 9,497–10,232

cox2 10,283–10,861 10,188–10,760 10,233–10,859 10,233–10,808 ATG/TAA ATG/TAA ATG/TAA ATG/TAA

trnE 10,864–10,932 10,771–10,837 10,816–10,883 10,813–10,877 TTC

nad6 10,933–11,394 10,842–11,300 10,884–11,336 10,881–11,348 ATG/TAG GTG/TAG GTG/TAG ATG/TAA

trnY 11,403–11,467 11,862–11,928 11,339–11,402 11,340–11,403 GTA

SNR 11,468–11,689 11,301–11,632 11,472–11,526 11,404–11,585

trnL 11,757–11,824 11,633–11,698 11,410–11,471 11,667–11,728 TAG

trnL* 11,705–11,768 CAA

trnR* 11,782–11,838 ACG

trnS 11,690–11,755 11,927–11,999 11,527–11,593 11,586–11,647 TGA

trnL 11,863–11,925 12,046–12,111 11,602–11,663 11,751–11,813 TAA

trnR 11,926–11,979 12,124–12,180 11,674–11,731 11,830–11,888 ACG

nad5 11,984–13,564 12,181–13,752 11,735–13,297 11,889–13,457 ATG/TAA ATG/TAA ATG/TAG ATG/TAA

LNR 13,565–13,730 13,753–14,148 13,298–13,361 13,458–13,776

*Stands for the gene in repeat region.

to the recently described cysticerci species in plateau pika from
Qinghai province (Wu et al., 2021). Here the T. caixuepengi
larva was also found to be parasitic in plateau pikas from
Xietongmen, Saga and Sa’gya county of Tibet and Qilian county
of Qinghai (Supplementary Table 1), and so far, not found
in other sympatric rodent species. Due to the absence of
comparative studies, it is currently not clear if this species
has preference only for plateau pikas as its intermediate host.
The larvae of T. crassiceps and V. mustelae were, respectively,

found in Jeminay and Xinyuan county of Xinjiang autonomous
region (Supplementary Table 1), which were also distributed
on the northeast QTP (Li et al., 2013; Zhao et al., 2014). Wide
geographic distributions of identical species suggest that their
endemic geographic range should be far beyond the available
survey data. Except for Mesocestoides sp. RKZ08 identified in
this study, the Me. litteratus is another species of the genus
Mesocestoides reported in Qinghai and Heilongjiang provinces of
China (Wang et al., 2006; Li et al., 2013). However, there is no
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FIGURE 4 | Divergence time construction of concatenated cox1 + nad1 gene (A) and 12 mt PCGs (B) of Cyclophyllidea species. The N after the species name
represents “putative new species”. The blue bar represents interval of 95% highest probability density. The time scale bars in different colors shows the extent of the
Eocene, Oligocene, Miocene, Pliocene, and Pleistocene period.

FIGURE 5 | The number of divergent nodes in every 2 Mya over time based on the divergence time trees of Figure 4. The orange curve represents the change of
divergence nodes number based on Figure 4A. The blue curve represents the change of divergence nodes number based on Figure 4B.

previous record of Paranoplocephala spp. and Mosgovoyia spp.
available in China except for Paranoplocephala sp. RKZ13 and
Mosgovoyia sp. SQ20 found in this study.

Complete mt genomes of the four “putative new species”
were sequenced and annotated, and the sequences were clearly
different from all available mt genomes sequences; however,
they were similar in length, gene order and composition as

other cyclophyllideans with respect to rRNA, tRNA, and protein-
encoding genes (Le et al., 2000; Jeon et al., 2005, 2007; Wu
et al., 2021). Different arrangement of genes occurred in tRNA
genes between nad5 and nad6 genes, but was consistent with
their respective most relative species, matching the expectation
that the arrangement of mt genes partly determines the genetic
relationship of parasites (Gazi et al., 2016). Moreover, repeat
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copies of tRNA gene between the nad5 and nad6 genes in
the mt genome of E. granulosus sequenced by third-generation
sequencing have been reported (Kinkar et al., 2019). We also
observed a repeat sequence of trnL and trnR genes between nad5
and nad6 genes of the Paranoplocephala sp. RKZ13 mt genome
(Figure 3 and Table 1), which indicates that there may be hidden
tRNA gene repeats in the mt genome of tapeworms that are
hard to identify due to errors in PCR amplification and Sanger
sequencing, techniques which often fail to recover repeat regions
(Kinkar et al., 2019).

Genetic drift and adaptive differentiation between allopatric
populations is responsible for most speciation amongst plants
and animals (Turelli et al., 2001). For parasites, however, host
association is a key driver in their evolution. Host switching
among sympatric populations may lead to ecological isolation,
so sympatric speciation of parasites is common (de Meeûs
et al., 1998; Paul, 2002; Huyse et al., 2005; Wu et al.,
2021). These two models of evolution are not in conflict: the
adaptation of parasite to specific host is like the adaptation
of animal to specific living environment; so, the evolution
of the host, especially its immune system, may be viewed
as equivalent to the change of the living environment for
the parasite. The environmental and climatic changes caused
by the uplift of the QTP are a major driving force for the
evolution of associated biotas (Favre et al., 2015). Paleobotanical
data suggest that the southeastern margin of the QTP was
dominated by a warm and humid subtropical or tropical
climate during the Miocene due to the influence of South
Asian and East Asian monsoons (Sun and Wang, 2005; Jacques
et al., 2011). Since the mid-Miocene, the significant rise of
the Himalayas and the Tianshan Mountains, together with
worldwide cooling, incurred dramatic changes in air circulation,
leading to gradual aridification of the QTP and Central Asia
(Miao et al., 2012; Favre et al., 2015). Finally, in the Late Miocene
and Early Pliocene, QTP uplift resulted in the accumulation
of global ice and the eventual disappearance of the Tethys
Sea, which also contributed to the drying of Central Asia
(Lu and Guo, 2013).

These timelines of climatic and environmental changes caused
by the uplift of the QTP are highly consistent with the timelines of
the differentiation rate of Cyclophyllidea species analyzed in this
study (Figures 4, 5) and that of plateau pika analyzed in Wang
et al. (2020). We speculated in this study that the differentiation
of cyclophyllideans may have been driven by host evolution
caused by the uplift of the QTP. During the tropical period
of QTP, the optimum living environment created the biological
diversity (Cai et al., 2020; Päckert et al., 2020), and the species of
Cyclophyllidea gradually differentiated. With the rapid uplift of
the QTP, the environment changed into a dry and cold climate
(Lu and Guo, 2013), and species differentiation of Cyclophyllidea
was accelerated by the rapid adaptive evolution of their hosts
and geographical isolation caused by the radiation of hosts to
the Palaearctic (Favre et al., 2015; Xing and Ree, 2017; Päckert
et al., 2020). Finally, in the last 2 million years, Cyclophyllidea
differentiation demonstrated an accelerated diversification based
on cox1 + nad1 divergence tree (Figure 5), which may be
related to the evolution and broad distribution of mammals in

Eurasia and the associated population expansion and migration
of hominids from Africa to Asia (Dennell, 2004; Rohland et al.,
2005; Brugal and Croitor, 2007; Turner et al., 2008; Klein,
2009; Terefe et al., 2014; Wang et al., 2016). The Host-parasite
Database of Natural History Museum (HPDNHM) found that
most tapeworm were prevalent mainly in the Palaearctic,5

which is also consistent with the viewpoint that the order
Cyclophyllidea originated from the QTP. The Nearctic is another
major endemic area where Cyclophyllidea species may have
spread over land Bridges across the Bering Strait. However, some
species parasitizing birds and other economic and companion
animals tend to show a global epidemic, which may be due to
the long-distance migration of birds and the spread of human
trade and activities.

Phylogenetic reconstruction reveals that some classifications
of Cyclophyllidea species may need to be redefined. Closely
related species of tapeworm parasites often have similar host
specificities and life history (Scholz et al., 2021), a pattern
common in the HPDNHM and in our evolutionary analyses,
and may provide a basis for revising the classification of
Cyclophyllidea species; for example, the family Hymenolepididae
and Anoplocephalidae can be divided into multiple families
(Figures 1A–C), and Thysanotaenia congolensis should be
reclassified into family Davaineidae (Figures 1A,C). However,
considering that there is still a large number of undiscovered
species, which may provide better support for classification, the
current classification status is likely to remain for some time.

CONCLUSION

In conclusion, this study expands the biodiversity of
Cyclophyllidea in rodents in QTP and its surrounding mountain
systems, and suggests an “out of QTP” hypothesis for the
Cyclophyllidea, wherein species differentiation was driven
by the uplift of the QTP. Although beyond the scope of this
study to consider the evolutionary relationships and history
of the whole cyclophyllideans, the species analyzed represent
10 of all 16 families, making this the most extensive study of
the evolution of Cyclophyllidea order to date. Verifying the
taxonomic revision and the “out of QTP” hypothesis requires
more sampling and investigation, including data on a wider
geographic and host range, and molecular studies uncovering
patterns of host-parasite co-evolution.
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