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Gene-sized chromosomes are a distinct feature of the macronuclear genome in ciliated
protists known as spirotrichs. These nanochromosomes are often only several kilobase
pairs long and contain a coding region for a single gene. However, the ways in
which transcription is regulated on nanochromosomes is still largely unknown. Here,
we generated macronuclear genome assemblies for two species of Pseudokeronopsis
ciliates to better understand transcription regulation on gene-sized chromosomes. We
searched within the short subtelomeric regions for potential cis-regulatory elements
and identified distinct AT-rich sequences conserved in both species, at both the
5’ and 3’ end of each gene. We further acquired transcriptomic data for these
species, which showed the 5’ cis-regulatory element is associated with active gene
expression. Gene family evolution analysis suggests nanochromosomes in spirotrichs
may originated approximately 900 million years ago. Together our comparative genomic
analyses reveal novel insights into the biological roles of cis-regulatory elements on
gene-sized chromosomes.

Keywords: ciliates, Pseudokeronopsis carnea, Pseudokeronopsis flava, phylogenomics, nanochromosome

INTRODUCTION

Gene-sized chromosomes (nanochromosomes) are an intriguing genetic architecture found in a
subset of ciliates, one of the most diverse clades of unicellular eukaryotes. Ciliates contain two
distinct types of nuclei, called the micro- and macronucleus, which are both present in the cell
throughout its vegetative life cycle (Yan et al., 2017; Jiang et al., 2019; Sheng et al., 2021). During
sexual reproduction (conjugation), zygotic micronuclear (MIC) chromosomes are fragmented into
somatic macronuclear (MAC) chromosomes through a series of genome wide rearrangements
(Chalker and Yao, 2011; Chen et al., 2014; Zhao et al., 2019, 2020; Sheng et al., 2020). For
spirotrichous ciliates including Oxytricha, Stylonychia, Uroleptopsis, Euplotes and Strombidium, this
fragmentation is extensive, resulting in a MAC genome composed of more than 10,000 telomere-
capped chromosomes (Steinbrück et al., 1981; Prescott, 2000; Swart et al., 2013; Zheng et al.,
2018; Chen et al., 2019; Li et al., 2021). These linear nanochromosomes are usually smaller than

Frontiers in Microbiology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 775646

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.775646
http://creativecommons.org/licenses/by/4.0/
mailto:qd_liliy@sina.com
https://doi.org/10.3389/fmicb.2022.775646
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.775646&domain=pdf&date_stamp=2022-02-21
https://www.frontiersin.org/articles/10.3389/fmicb.2022.775646/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-775646 February 15, 2022 Time: 15:41 # 2

Zheng et al. Cis-Regulatory Element on Nanochromosomes

mitochondrial chromosomes and can carry one or few genes
and can be few hundred base pairs up to several kilobases
in size (Swart et al., 2013; Zhang et al., 2021). These general
features make spirotrichous ciliates excellent models to study
chromosomal architecture and functions (Zhao et al., 2021;
Zheng et al., 2021).

The cis-regulatory elements (CREs, e.g., promoter, enhancer,
and insulator) needed for transcription regulation in eukaryotes
are often located in intergenic regions (Levine and Tjian, 2003).
The existence and nature of cis-regulatory elements, and the
methods of gene regulation in ciliates in general, are poorly
understood. Furthermore, since nanochromosomes contain only
very short regions outside of the coding sequence, the space to
harbor CREs is limited. Surprisingly, studies of other spirotrich
genomes have not immediately revealed the presence of any
conserved, recognizable sequences or patterns that could be tied
to the regulation of gene expression (Swart et al., 2013; Chen et al.,
2019; Li et al., 2021; Zheng et al., 2021).

To help elucidate the mechanism of transcription regulation
on gene-sized chromosomes, we carried out deep genomic
sequencing and assembly for the MAC genomes of two
new spirotrichous ciliates, Pseudokeronopsis carnea and
Pseudokeronopsis flava. Pseudokeronopsis species have long
been recognized and studied for their distinct cell shape and
fascinating pigment colors (Song et al., 2004; Baek et al., 2011)
(Figure 1 and Supplementary Table 1). Like other spirotrichs,
Pseudokeronopsis cells are large and can provide abundant
DNA, making them ideal prospects for in-depth genetic studies
(Dong et al., 2020; Luo et al., 2021). To date these types of
studies have been limited by a lack of genomic data, and
many features of Pseudokeronopsis genomes, including the
presence of nanochromosomes, have been unknown until now.
Combining both genomic and transcriptomic data, we searched
the subtelomeric regions of their compact chromosomes for
potential conserved CREs. Using a variety of genome evolution
analyses, we reveal the origin of gene-sized chromosomes in
spirotrichs and the regulatory elements they harbor.

MATERIALS AND METHODS

Cell Culture and Sample Preparation
Pseudokeronopsis carnea and P. flava cells were isolated
from a freshwater pond in Baihuayuan Park (36◦04′N,
120◦22′E), Qingdao, China. Species were initially determined by
morphological features and later confirmed by sequencing their
SSU-rRNA genes. A single cell was picked, washed, and cultured
in flasks using filtered and autoclaved pond water. Cells were
incubated with rice grains at 23◦C for 21 days, then collected
using a glass micropipette under a stereomicroscope. Genomic
DNA was extracted using the MagAttract HMW DNA kit
(QIAGEN, #67563, Germany). A DNA library was constructed
with NEBNext DNA Library Prep Master Mix Set for Illumina
(NEB, United States) following the manufacturer’s instructions.
RNA extraction was performed with the RNeasy Plus Mini Kit
(Qiagen, Germany) following the manufacturer’s instructions.
The RNA libraries were generated using NEBNext Ultra RNA

Library Prep Kit for Illumina (NEB, United States) following the
manufacturer’s instructions.

Illumina Sequencing and Genome
Assembly
Pair-end 150 bp sequencing reads were performed on the
Illumina Hiseq 2500 platform, producing 20 Gb and 10 Gb
of clean data for the DNA and RNA libraries, respectively.
Genomes were assembled using SPAdes v3.12 (Bankevich et al.,
2012) (parameters: -k 21,33,55,77 –careful). Contigs with low
coverage (< 2×) or small size (< 200 bp) were removed. QUAST
v5.0.2 (Gurevich et al., 2013) was used to measure genomic
statistics including GC content and N50. RSEM v1.3.3 (Li and
Dewey, 2011) was used to calculate the sequencing depth of each
contig. For homologous gene annotation, genomic contigs were
aligned with protein sequences from the SWISS-PROT database
using BLASTX v2.3.0 (Camacho et al., 2009) (parameters:
evalue = 1e-5, querygenecode = 6). Gene model annotation
information was extracted using a custom Perl script and used
to train AUGUSTUS v2.5.5 (Stanke et al., 2006) (parameters: –
species = pseudokeronopsis –min_intron_len 15,39) for gene
model prediction. RNA-seq reads were assembled into transcripts
using rnaSPAdes v3.11.1 (Bushmanova et al., 2019) and aligned
with the genome assembly by BLAT v3.6 (Kent, 2002) to optimize
the gene models. Predicted genes without start and stop codons
were filtered out using a custom Perl script. The RNA-seq
reads were mapped to genome contigs using Tophat2 v2.0.10
(Kim et al., 2013). The mapped read count of each gene was
measured by featureCounts v1.6.1 (Liao et al., 2013). Potential
cis-regulatory sequence motifs were searched within subtelomeric
regions using MEME v5.3.3 (Bailey et al., 2015). The sequence
motifs identified were visualized using WebLogo 3 (Crooks et al.,
2004). Frequency of stop codon usage (TAA, TGA, and TAG)
was measured from the homolog sequence alignment between
the CDS or transcript sequences of each species and the ciliate
protein library using BLASTX v2.3.0 (parameter: evalue = 1e-5),
as previously described (Pan et al., 2019).

Phylogenomic Analysis and Genome
Evolution
A total of 238 orthogroups were identified among 31 ciliates (see
Supplementary Table 2) using OrthoFinder and were aligned
using mafft (Emms and Kelly, 2019). The concatenated ortholog
sequence alignment dataset was used for phylogenomic analysis
on CIPRES Science Gateway server v3.3 (Miller et al., 2010).
RAxML-HPC2 v8.2.9 (Stamatakis, 2014) under LG model of
amino acid substitution (0 distribution + F, four rate categories,
1,000 bootstrap replicates) was used to perform maximum
likelihood (ML) analysis. PhyloBayes MPI 1.5a (Lartillot et al.,
2009) (CAT-GTR model + 0 distribution, four independent
chains, 4,000 generations with 10% burn-in, convergence
Maxdiff < 0.3) was used to perform Bayesian inference (BI)
analysis. The phylogenetic tree was visualized using MEGA
v7.0.20 (Kumar et al., 2016). The time of speciation was estimated
using r8s (Sanderson, 2003) and corrected using calibration times
obtained from the TimeTree database (Hedges et al., 2006).
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FIGURE 1 | Morphology and genome size of model organisms including ciliates. From left to right, bacteria (Staphylococcus aureus and Escherichia coli),
cyanobacteria (Gloeobacter violaceus), yeast (Saccharomyces cerevisiae), amoeboid protists (Entamoeba moshkovskii), ciliated protists (Ichthyophthirius multifiliis,
Stylonychia lemnae, Oxytricha trifallax, Pseudokeronopsis flava, Halteria grandinella, Paramecium tetraurelia, Pseudokeronopsis carnea, Stentor coeruleus, Euplotes
octocarinatus, Tetrahymena thermophila), nematode (Caenorhabditis elegans), thale cress (Arabidopsis thaliana), fruit fly (Drosophila melanogaster), and zebrafish
(Danio rerio).

Computational analysis of gene family evolution (CAFE) (De Bie
et al., 2006) was performed to identify gene families that have
undergone significant expansion or contraction. Gene families
were annotated against the Gene Ontology (GO) database using
InterProscan (Jones et al., 2014). R package clusterprofiler (Yu
et al., 2012) was used to conduct an enrichment analysis of
expanded and contracted gene families.

RESULTS AND DISCUSSION

Compact Genome Architecture and
Reassigned Stop Codons
Using high-throughput sequencing data, we assembled the
MAC genomes of two Pseudokeronopsis species (Table 1). The
genome assemblies of P. carnea and P. flava are 76.8 Mb and
52.5 Mb in size, respectively, in line with other known ciliate
genomes (Figure 1). Most of the contigs bear telomeric repeats
(C4A4) on at least one end (P. carnea, 81.1%; P. flava, 82.8%).
The average size of contigs capped with telomeric repeats on
both ends is 1.7 kb (P. carnea) and 1.1 kb (P. flava), and

the vast majority (P. carnea, 97%; P. flava, 96%) appear to
be gene-sized chromosomes (Figures 2A,B), consistent with
the nanochromosome architecture found in other spirotrich
genomes. Predicted gene numbers in P. carnea and P. flava
are 12,734 and 9,520, respectively. 84% of P. carnea and 78%

TABLE 1 | MAC genome assembly information for two
Pseudokeronopsis species.

P. carnea P. flava

Genome size (Mb) 76.8 52.5

% GC 41.7% 40.4%

Contig 37,909 37,545

% contig with telomere* 81.1% 82.8%

% scaffold (two telomeres)** 38.6% 32.7%

N50 (scaffold) 2,120 1,712

Gene 12,734 9,520

Exon 31,869 21,757

*Percentage of contigs capped with telomere repeats on at least one of two ends.
**Percentage of scaffolds capped with telomere repeats on both ends.

Frontiers in Microbiology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 775646

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-775646 February 15, 2022 Time: 15:41 # 4

Zheng et al. Cis-Regulatory Element on Nanochromosomes

FIGURE 2 | Macronucleus (MAC) genomic features of two Pseudokeronopsis ciliates and phylogenomic analysis. (A–D) Size distribution of chromosomes, gene
bodies (start to stop codon, including introns), introns, and 5′ subtelomeric regions of P. flava and P. carnea MAC genomes. (E) A schematic illustrating the canonical
structure of nanochromosomes in P. flava and P. carnea MAC genomes. Tel, telomere; Subtel, subtelomeric region. The average size of each region is shown in the
parentheses. (F) Phylogenomic tree (left) and stop codon reassignment (right). Phylogenomic tree is estimated from a concatenated dataset of 238 orthologous
proteins by Bayesian inference (BI) and maximum likelihood (ML) methods. Black dots denote full support (BI 1.0/ML 100%). Hyphens denote topological
disagreement between ML and BI analyses. O, class Oligohymenophorea; C, class Colpodea; L, class Litostomatea; S, class Spirotrichea; P, class Protocruzia; H,
class Heterotrichea; M, class Mesodiniea. The scale bar corresponds to 50 substitutions per 100 amino acid positions.

of P. flava genes are annotated using SWISS-PROT or NR
databases. Introns in these species are tiny (only 36 nucleotides
on average for both P. carnea and P. flava), a feature also
observed in several other ciliate genomes (Figure 2C). The
subtelomeric regions between the transcription start site (TSS) or
transcription end site (TES) and the adjacent 5′ telomere repeat
are also short (Figure 2D), similar to previous observations in
the nanochromosomes of Oxytricha, Euplotes and Strombidium
(Kim et al., 2013; Swart et al., 2013; Chen et al., 2019). Overall,
the combined genomic features of Pseudokeronopsis represent
an extremely compact eukaryotic genome architecture, with
single genes containing minimal introns, nested between short
subtelomeric regions (Figures 2D,E).

To perform the phylogenomic analysis, we collected public
genomic/transcriptomic datasets available for 31 ciliates
(Supplementary Table 2), and identified 238 orthologs among
P. carnea, P. flava, and these species. The system assignment of
species we describe here based on maximum likelihood (ML)
and Bayesian inference (BI) methods generally agrees with
previous studies (Gentekaki et al., 2017; Chen et al., 2018).
Phylogenomic analysis of the P. carnea and P. flava sequenced
in the current study shows full support for their cluster with
two previously reported Pseudokeronopsis species (Figure 2F).
The analysis also supports a larger cluster that includes the
spirotrichs Oxytricha trifallax and Stylonychia lemnae. Standard
stop codons in ciliates are frequently reassigned to code for
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FIGURE 3 | A conserved potential cis-regulatory element (CRE) in 5′ subtelomeric region on the nanochromosome. (A) Heatmap showing the AT content in the
sequences of 5′ subtelomeric regions of Pseudokeronopsis carnea (left) and P. flava (right). (B) Density plot showing the intermediate position of the CRE in an
AT-rich motif between transcription start site (TSS) and translation start codon. (C) Frequency of base substitutions in 5′ CRE and entire subtelomeric region in
P. flava. “AC” indicates nucleotide substitutions where adenine is replaced by cytosine, for example. (D) The presence of the putative 5′ CRE is associated with the
transcription level of its adjacent genes. TPM, transcripts per million. ****p < 0.0001. (E) Pie plots showing the percentage of active and silent genes correlated with
the presence or absence of the putative 5′ CRE on nanochromosomes.

amino acids (Swart et al., 2016). Similar to these two species, the
stop codons “TAA” and “TAG” are consistently reassigned in all
Pseudokeronopsis species, leaving “TGA” as the only stop codon
(Figure 2F and Supplementary Table 2), reflecting the close
evolutionary relationship between these groups. Interestingly,
compared to previous phylogenomic analysis result in which
the litostomatean Entodinium is not included (Chen et al.,
2018), we find that the clustering of class Litostomatea and
class Spirotrichea is poorly supported in the current BI tree,
and not supported at all by the ML tree (Litostomatea clusters
with Colpodea first after including Entodinium). This opens the
possibility that the assignment of litostomateans could require
further review in the future by expanding sampling.

Conserved AT-Rich Sequences Identified
as Potential Cis-Regulatory Elements
Although Pseudokeronopsis nanochromosomes have limited
space, we found an AT-rich region exists in the 5′ subtelomeric
regions of most complete nanochromosomes that carry single

genes (92.7 and 98.5% for P. carnea and P. flava, respectively)
(Figure 3A). Further analysis 5′ subtelomeric regions reveals
a 15 nt putative CRE in the sequence motif WnAWTWn
which is positioned between the transcription start site (TSS)
and translation start codon in both species (Figure 3B).
Similar CREs were identified in the 5′ subtelomeric regions
on the nanochromosomes of Strombidium (Li et al., 2021)
and Nyctotherus (McGrath et al., 2007). We identified an
additional AT-rich element in the Pseudokeronopsis species,
this time in the 3′ subtelomeric regions, with the sequence
motif “TTNATTTCNTTAA.” This sequence is found between
the translation stop codon and the transcription end site
(TES) (Supplementary Figure 1A), and is distinct from the 5′
subtelomeric sequence at the other end.

To demonstrate that these potential CREs are conserved
evolutionarily, we investigated the base substitution rate of
nucleotides in the 5′ subtelomeric regions. The base substitution
rate in the putative CRE is 50% lower than that in the entire
subtelomeric region (48.2 and 55.2% for P. carnea and P. flava,
respectively), indicating that nucleotides in the CRE are under

Frontiers in Microbiology | www.frontiersin.org 5 February 2022 | Volume 13 | Article 775646

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-775646 February 15, 2022 Time: 15:41 # 6

Zheng et al. Cis-Regulatory Element on Nanochromosomes

FIGURE 4 | Gene family evolution analysis of 31 ciliates based on 238 orthogroups. Green and red numbers represent the expanded or contracted gene families in
each branch, respectively. MRCA, most recent common ancestor. O, class Oligohymenophorea; C, class Colpodea; L, class Litostomatea; S, class Spirotrichea; P,
class Protocruzia; H, class Heterotrichea; M, class Mesodiniea.

stronger selection. The substitution pattern also shows a distinct
difference between the 5′ CRE and surrounding nucleotides
(Figure 3C and Supplementary Figure 1B). Compared with the
entire subtelomeric region, the substitution rate of A-to-G and
T-to-C is greatly reduced in the CRE, but dramatically increased
in C-to-A substitutions, indicating that G/C nucleotides in the
CRE are consistently being replaced by A/T nucleotides.

Although not positioned upstream of the TSS, as is seen
for TATA-box-like elements in other eukaryotic organisms
like yeast (Lin et al., 2010), these sequences may still act
as non-canonical regulatory CREs that bind transcriptional
trans-activating factors. To determine whether this motif is
related to transcription initiation, we compared the expression
of genes on nanochromosomes that either possess or lack
this CRE in their 5′ subtelomeric regions. We observed that
genes with this CRE have significantly higher transcription
levels in both species (Figure 3D). The majority of genes
without the 5′ CRE are silent and the putative CRE is more
associated with active genes, which could be the source of this
transcription activity difference (Figure 3E). On the contrary,
most of the genes with the adjacent CRE are actively transcribed
(94.2 and 90.4% for P. carnea and P. flava, respectively).
These observations suggest that transcription initiation on
Pseudokeronopsis nanochromosomes depends on this CRE near
the transcription start site, though the nature of this CRE is

not clear. The sequence may act as a promoter by binding
directly to a transcription factor, or it may contribute a necessary
structural feature to the DNA in this region. Future studies
should further test whether chromatin accessibility is greater at
this location, and if active chromatin marks are enriched (Sheng
et al., 2021). A similar association between the 3′ CRE and gene
transcription was also identified (Supplementary Figures 1C,D).
Together with the conserved base substitution patterns, our
results reveal a strong evolutionary selection pressure upon the
AT-rich CRE, and suggest it plays a functionally important
role in transcription regulation. Considering the compact
nanochromosome architecture, the inclusion of these sequences
in the primary transcript UTRs, and reassignment of stop
codons in these species, it is also possible that these CREs
assist in translation initiation/termination at the 5′ and 3′ ends,
respectively.

The Evolution History of Spirotrich
Nanochromosomes
To help understand the origins of spirotrich nanochromosomes,
we investigated the expansion and contraction of gene families
in 31 ciliates based on 238 orthogroups. Nanochromosome
architecture has been reported in species of several disparate
ciliate clades (classes Spirotrichea, Armophorea, and
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Litostomatea), suggesting multiple origins of extensive
fragmentation within ciliates (Riley and Katz, 2001;
McGrath et al., 2007; Huang and Katz, 2014; Špaková et al., 2014;
Park et al., 2021). The spirotrich clade, which features gene-sized
chromosomes, originated approximately 900 million years ago,
accompanied by a dramatic expansion/contraction of several
gene families (Figure 4). Within spirotrichs, Pseudokeronopsis
species originated 220 million years ago, which in turn
separated from the clade containing Oxytricha and Stylonychia
430 million years ago. As gene family expansion reflects
phenotypic diversity and genetic adaptions during evolution
(Harris and Hofmann, 2015; Yan et al., 2019), we identified
1079 and 768 expanded gene families (p < 0.05) in P. carnea
and P. flava, respectively. These expanded gene families are
enriched in a variety of pathways (Supplementary Figure 2).
Compared with three representative species that do not carry
nanochromosomes (Supplementary Figure 3), the expanded
gene families in both Pseudokeronopsis species contribute
to transcription factor binding and sequence-specific DNA
binding. Although given the incomplete nature of the current
ciliate genomic datasets as a limitation, our analyses provide a
baseline about the transcription regulation pathways rewiring
in species with nanochromosomal organization for the future
studies.

CONCLUDING REMARKS

In summary, we report the first macronuclear genome assemblies
of two Pseudokeronopsis ciliates, which consist of compact, gene-
sized nanochromosomes.

Similar to other spirotrichs, Pseudokeronopsis
nanochromosomes have tiny introns and small subtelomeric
regions. We identified AT-rich sequences conserved within the
5′ and 3′ subtelomeric regions in both species and observed that
these potential CREs are associated with active gene expression,
suggesting a role in transcription regulation. Both P. carnea
and P. flava have expanded their complement of genes related
to nucleotide binding and gene expression regulation since the
origin of gene-sized chromosomes in spirotrichs approximately
900 million years ago. Together, these findings suggest that
ciliates may have developed a unique mechanism to regulate
transcription from gene-sized chromosomes during evolution.
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Supplementary Figure 1 | A potential cis-regulatory element (CRE) in 3′

subtelomeric regions of two Pseudokeronopsis ciliate genomes. (A) Density plot
showing the intermediate position of the CRE in a motif “TTNATTTCNTTAA”
between the transcription end site (TES) and translation stop codon in 3′

subtelomeric regions of P. carnea (left) and P. flava (right) genomes. (B) Frequency
of base substitutions in 5′ CRE and entire subtelomeric region in P. carnea. “AC”
indicates substitutions where adenine is replaced by cytosine, for example. (C)
The presence of a putative 3′ CRE is associated with the transcription level of its
adjacent genes. TPM, transcripts per million. ∗∗∗∗p < 0.0001. (D) Pie plots
showing the percentage of active and silent genes correlated with the presence or
absence of the putative 3′ CRE on the nanochromosome.

Supplementary Figure 2 | Pathway annotation by Gene Ontology (GO) of
expanded gene families in spirotrichs: (A) Pseudokeronopsis carnea, (B) P. flava,
(C) Oxytricha trifallax, (D) Stylonychia lemnae, (E) Strombidium sculcatum, and (F)
Euplotes vannus. Q values (FDR) are indicated by color scale and number of
expanded genes in each pathway is indicated by the dot size. Rich factor (as
indicated in the Y-axis) is the ratio of the number of expanded genes in a pathway
to the number of all annotated genes in this pathway.

Supplementary Figure 3 | Pathway annotation by Gene Ontology (GO) of
expanded gene families in Tetrahymena thermophila (A), Paramecium tetraurelia
(B), and Stentor coeruleus (C). Q values (FDR) are indicated by color scale and
number of expanded genes in each pathway is indicated by the dot size. Rich
factor (as indicated in the Y-axis) is the ratio of the number of expanded genes in a
pathway to the number of all annotated genes in this pathway.
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