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The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) led to the death of millions of people worldwide and thousands more infected
individuals developed sequelae due to the disease of the new coronavirus of 2019
(COVID-19). The development of several studies has contributed to the knowledge
about the evolution of SARS-CoV2 infection and the disease to more severe forms.
Despite this information being debated in the scientific literature, many mechanisms still
need to be better understood in order to control the spread of the virus and treat clinical
cases of COVID-19. In this article, we carried out an extensive literature review in order to
bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic,
immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic.
This information gathered in this article will enable a broad and consistent reading of the
main aspects related to the current pandemic.
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INTRODUCTION

On December 8, 2019, a viral infection, previously unidentified, characterized by severe pneumonia,
was reported in an individual who frequented a small local fish and wildlife market in the city of
Wuhan, Hubei Province, China (Lu H. et al., 2020). The analysis based on nucleotide sequencing
technology of the virus genome isolated from the blood of sick individuals led to the identification
of a new coronavirus as the causative agent of the outbreak (Gorbalenya et al., 2020). Initially, the
infected individuals were those who visited the seafood market or consumed foods of animal origin
probably infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Later, a
more in-depth analysis through contact tracing of patients positive for COVID-19 revealed that
several individuals with no history of trips to the seafood market also tested positive for the disease,
indicating the possibility of transmission from person to person (Chan J. F. et al., 2020; Chen J.
et al., 2020; Ji et al., 2020).

During the second week of January 2020, due to the travel season of the Spring Festival, the new
SARS-CoV-2 spread to other provinces of China and thus to other countries (Lu H. et al., 2020). The
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first case of SARS-CoV-2 infection confirmed outside of China
was in Thailand on January 13, 2020. On January 16, 2020,
the first case was confirmed in Japan. As of January 25, 2020,
the number of confirmed cases had reached 2062, including
in countries such as Hong Kong, Macao, Australia, Malaysia,
Singapore, France, South Korea, Taiwan, United States, Vietnam,
Nepal, and Sweden (Dhama et al., 2020). Due to the severity of
this outbreak and its ability to spread internationally, the World
Health Organization (WHO) declared a global health emergency
on January 31, 2020. On March 11, 2020, a pandemic was declared
(Cucinotta and Vanelli, 2020). Data published by the WHO
showed that up to December 3, 2021, 22,105,872 people had been
confirmed infected by the new coronavirus, 614,964 had died, and
312,827,402 doses of vaccine were administered (World Health
Organization [WHO], 2021a).

This review aims to explore and summarize the available
evidence on the main viral characteristics, immune response,
diagnostic methods, therapeutic options and candidate/approved
vaccines against SARS-CoV-2, so that this information can serve
as a basis for a better understanding of future studies on SARS-
CoV-2 and COVID-19.

SARS-CoV-2

Morphological, Genomic Structure and
Replication of SARS-CoV-2
Coronaviruses are spherical, enveloped viruses of approximately
120 nm in diameter, containing a helical symmetry nucleocapsid,
with a single-stranded RNA genome of positive polarity, non-
segmented, 29.9 kb in size (NC_045512.2), and a GC content of
38% (Chan K. et al., 2020; Figure 1B). Its genome is composed
of 13 open reading frames (ORFs) (Lu R. et al., 2020) encoding
7096 amino acids that constitute four structural proteins spike
(S), envelope (E), membrane (M), and nucleocapsid (N) (Table 1)
and 15 non-structural proteins (NSP1, NSP2, NSP3, NSP4,
NSP5, NSP6, NSP7, NSP8, NSP9, NSP10, NSP12, NSP13, NSP14,
NSP15, and NSP16), in addition to eight accessory proteins
(3a, 3b, 6, 7a, 7b, 8b, 9b, and ORF14) that perform numerous
functions in the processes of virus replication and assembly
(Wu A. et al., 2020; Figure 1A). In comparison to SARS-CoV,
SARS-CoV-2 lacks protein 8a but has a longer 8b protein,
with approximately 121 amino acids, and a shorter 3b protein,
containing 22 amino acids (Chan K. et al., 2020; Wu A. et al.,
2020). More than 380 amino acid substitutions, located mainly
in the NSP3, NSP2, and S proteins, have been identified between
SARS-CoV-2 isolates and the consensus sequence, leading to
divergence in the functional and pathogenic traits between it
and other coronaviruses (Wu A. et al., 2020). We synthesized
the role of structural proteins in the SARS-CoV-2 replication
cycle (Table 1).

The SARS-CoV-2 replication cycle begins with the binding
of the S protein of the virus with the angiotensin-2 converting
enzyme (ACE-2) of the host, considered the specific receptor of
SARS-CoV-2 in human cells (Hoffmann et al., 2020). ACE2 is
a type I membrane glycoprotein responsible for the conversion
of angiotensin II into angiotensin 1–7 and is expressed in the

lungs, nose, heart, intestine, and kidneys (Yan et al., 2020). The
S protein of SARS-CoV-2 is a class I fusion protein that protects
its fusion domain, keeping it hidden and inactive until the virus
finds a host cell with its receptor, where it is then proteolytically
cleaved into a hook-shaped structure that is necessary for its
incorporation into the membrane of the target cell (Li and
Petrovsky, 2016). The binding of the S protein to ACE-2 is
dominated by polar contacts mediated by hydrophilic residues
located in its C-terminal domain and promotes a cleavage
event dependent on the endosomal cysteine proteases CatB and
CatL or the transmembrane serine protease TMPRSS2, which
exposes the protein S fusion peptide in order to favor viral entry
(Hoffmann et al., 2020; Wang et al., 2020a; Yan et al., 2020). Two
possible new SARS-CoV-2 receptors were recently identified:
the tyrosine kinase AXL receptor and the transmembrane
surface glycoprotein CD147 (inducer of extracellular matrix
metalloproteinase or basigin), both capable of interacting with
the S protein (Wang et al., 2020b; Wang S. et al., 2021). In
addition, the cell receptor neuropilin-1 (NRP1), expressed in
the olfactory epithelium, also seems to facilitate SARS-CoV-2
infection by interacting with the S protein (Daly et al., 2020).

After viral entry, the SARS-CoV-2 genomic RNA serves as a
transcript that allows the translation of two polyproteins (pp1a
and pp1ab), encoded in the 3′ two-thirds of the genome as ORF1a
and ORF1b (Zhou P. et al., 2020). These polyproteins are cleaved
by the action of two viral proteases (NSP3-PLpro and NSP5-
Mpro), generating 16 non-structural proteins that are assembled
into the replicase–transcriptase complex, which will later give rise
to genomic and subgenomic RNAs (Fehr and Perlman, 2015).
NSPs also induce cell membrane rearrangement to form double-
membrane vesicles (DMVs), where the replication-transcription
complex (RTC) is anchored (Ziebuhr et al., 2000; Angelini et al.,
2013). The other third of the genome, at the 5′ end, encodes
structural (S, E, M, and N) and accessory proteins (3a, 3b, 6,
7a, 7b, 8b, 9b, and ORF14) (Siu et al., 2008; Fehr and Perlman,
2015; Wu A. et al., 2020). In addition to complexes between viral
proteins, different interaction complexes are formed between
structural and non-structural proteins of the virus and host cell
proteins (Srinivasan et al., 2020).

The replication of SARS-CoV-2 is a complex process
that involves atypical RNA revision by NSP14, one of
the non-structural proteins generated by the cleavage
of the pp1ab polyprotein (Romano et al., 2020). Such a
revision mechanism present in coronaviruses, unknown
among RNA viruses before their discovery in SARS-
CoV, results in replication error rates more than 10 times
lower than those of other RNA viruses (approximately
10−6 mutations/nucleotide/cycle/nucleotide/cycle)
(Rausch et al., 2020).

Structural proteins translated from subgenomic mRNAs
are inserted into the endoplasmic reticulum (ER) and pass
through the secretory pathway to the ER–Golgi intermediate
compartment (ERGIC), where the S protein is cleaved into two
subunits, S1 and S2 (Jaimes et al., 2020). The newly synthesized
viral genome forms a complex with the N protein in the ERGIC
for the assembly of new SARS-CoV-2 particles in an event
mediated by the M protein with contributions from the E protein
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FIGURE 1 | Morphological structure, genome, and replication of SARS-CoV-2. (A) Viral genome. (B) Viral particle. (C) SARS-CoV-2 replication cycle.

TABLE 1 | SARS-CoV-2 structural proteins and their roles in the viral replication cycle.

Protein Function References

Spike (S) Divided into two subunits (S1 and S2) it is able to bind to the host cell through its receptor-binding
domain. The S1 subunit is involved in binding the virus to the host cell membrane, while the S2
subunit acts in fusing the viral envelope with the cell membrane.

Hoffmann et al., 2020;
Lan et al., 2020; Wrapp

et al., 2020

Nucleocapsid (N) It binds and packages viral RNA into ribonucleoprotein complexes (RNP) located inside the viral
envelope, forming a separate layer from the M, E, and S envelope proteins. This protein is recruited
into the replication-transcription complex by NSP3 and, therefore, it is believed to be also involved
in viral genome replication.

Chang et al., 2020;
Cong et al., 2020; Yao

et al., 2020

Envelope (E) Protein E has a transmembrane domain and is relatively small in size, with about 75 amino acids,
which aid in the assembly and release of virions.

Nieto-Torres et al.,
2015;

Venkatagopalan et al.,
2015; Lu R. et al., 2020

Membrane (M) It has about 222 amino acids and is the most present protein in the viral particle, giving definitive
shape to the virion envelope. This protein works simultaneously with proteins E, N, and S and plays
an important role in ribonucleic acid (RNA) packaging and virus assembly.

Tang X. et al., 2020

(Siu et al., 2008; Tseng et al., 2013). New viral particles emerge
from ERGIC and are transported through vesicles to be released
into the extracellular medium by exocytosis (Ulasli et al., 2010;
Figure 1C).

Taxonomic Classification
Coronaviruses belong to the family Coronaviridae, which
contains four genera (Alphacoronavirus, Betacoronavirus,
Deltacoronavirus, and Gammacoronavirus) and includes species
with a single-stranded RNA genome with positive polarity and
26–32 kb (International Committee on Taxonomy of Viruses
[ICTV], 2019). SARS-CoV-2 belongs to the B strain of the
genus Betacoronavirus, whose members infect only mammals

(International Committee on Taxonomy of Viruses [ICTV],
2020; Mittal et al., 2020). Coronaviruses are zoonotic viruses
with high mutation rates that infect a wide variety of wild and
domestic animals and can also infect humans. Evolutionary
analyses have shown that Alphacoronavirus and Betacoronavirus
have bats and rodents as reservoirs, while birds are possible
reservoirs of Deltacoronavirus and Gammacoronavirus (Chan
et al., 2013, 2015).

The Origin
Until 2002, coronaviruses were not known to cause serious
infections in humans. This scenario changed with the emergence
of SARS-CoV in an animal market located in southern China,
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which later affected more than 8,000 people, with 774 deaths
worldwide (Drosten et al., 2003; Lau et al., 2003). In 2012, a
new coronavirus was identified as responsible for Middle East
respiratory syndrome (MERS-CoV), infecting more than 2428
individuals and killing 838 (Zaki et al., 2012). SARS-CoV and
MERS-CoV originated from bats and then jumped to another
mammalian host, the civet of Himalayan palms (Paguma larvata)
in the case of SARS-CoV and the dromedary camel (Camelus
dromedarius) in the case of MERS-CoV, before infecting humans
(Song et al., 2005; Azhar et al., 2014).

SARS-CoV-2 is the third beta-coronavirus to infect humans.
Identified in late 2019, it probably originated from bats and, over
time, accumulated mutations that gave it the capacity for zoonotic
transmission (Zhou P. et al., 2020). The bat coronavirus RaTG13
seems to be the closest relative to SARS-CoV-2, since it shares
93.1% identity in the nucleotide sequence of the S gene and 98%
identity in the amino acid sequence of the S protein (Wrapp et al.,
2020; Zhou P. et al., 2020). The transmission route of SARS-CoV-
2 (or its direct ancestor) from bats to humans, either directly
or through an intermediate animal species, remains undefined
(Banerjee et al., 2021). The complete genomic sequences of
SARS-CoV-2 obtained from five patients at an early stage of the
outbreak were almost identical, and they had 79.6% similarity
with the SARS-CoV sequences (Li et al., 2020; Xu et al., 2020).
Initially, the virus was named new coronavirus 2019 (2019-
nCoV). On February 11, 2020, the Coronavirus Study Group of
the International Committee of Virus Taxonomy officially named
it SARS-CoV-2 based on phylogenetic analyses that showed
similarity with SARS-CoV (Gorbalenya et al., 2020).

Genetic Variants of SARS-CoV-2
Since the beginning of the pandemic, the genome plasticity of
SARS-CoV-2 was evidenciated with the detection of multiple
sites in the genome under positive selection (Velazquez-Salinas
et al., 2020). Viruses belonging to the same strain, but containing
different subsets of mutations, can be classified as different
variants that are characterized by their transmissibility, disease
severity, and ability to escape humoral immunity. Increased
transmissibility is demonstrated by the ability of a variant to
compete with other variants and to exhibit a higher effective
reproduction rate and/or secondary attack rate compared to
other circulating variants (Korber et al., 2020; Volz et al., 2021).
Next, we summarize the molecular characteristics of the main
variants of SARS-CoV-2 (Table 2).

The mutations identified throughout the pandemic in the
morphology of the virus clearly demonstrate, in addition to
its adaptive capacity, its ability to develop evolutions in order
to increase its ability to escape the host’s immune response,
as well as make its entry into the cell easier, such mutations
imply an increase in transmissibility or harmful alteration
in the epidemiology of COVID-19; an increase in virulence
or change in the clinical presentation of the disease; and/or
diminished effectiveness of social and public health measures
or available diagnostics, vaccines and therapies. Therefore, the
wide vaccination coverage of the world population and the
maintenance of measures to control the spread of the virus
are the only efficient measures to contain these evolutions

in the pathogenesis of the virus and in the effective control
of the pandemic.

GENETICS OF THE HUMAN HOST IN
SARS-CoV-2 INFECTION

The role of human host genetic variability in the evolution of
SARS-CoV-2 infection has been extensively proposed due to the
great heterogeneity in the clinical manifestations of COVID-19
and the variation in mortality rates between populations and
ethnicities, which are strong indicators of the modulatory effect
of host genetics on its pathogenesis (Chakravarty, 2021; Fricke-
Galindo and Falfán-Valencia, 2021; Mohammadpour et al., 2021).

Studies on the genetic predisposition to COVID-19 have been
of various kinds, such as meta-analyses (Benetti et al., 2020;
Poulton et al., 2020; Rendeiro et al., 2020; Bernal et al., 2021),
in silico approaches (Vique-Sanchez, 2020; Wang et al., 2020c;
Calcagnile et al., 2021), in vitro (Hashizume et al., 2021), case–
control studies (Amraei et al., 2020; Sakuraba et al., 2020), and
case series (Asselta et al., 2020; Russo et al., 2020; Wang et al.,
2020d).

In case–control studies, there are two main approaches: (i)
those rationally based on functional evidence (Lambert et al.,
2005; Heurich et al., 2014; Cao et al., 2020; Maucourant et al.,
2020; Wang et al., 2020d; Secolin et al., 2021), which search
for specific candidate genes and investigate allele frequencies
or differences in gene expression levels; and (ii) those based
on genomic searches, such as whole-genome sequencing (WGS)
(Wang et al., 2020f), whole-exome sequencing (WES) Zhang
et al., 2020b; Kosmicki et al., 2021), and genome-wide association
studies (GWAS) (Ellinghaus et al., 2020; Hu J. et al., 2020;
Pairo-Castineira et al., 2021). Supplementary File organizes the
associations reported in the literature by cytogenetic location,
discriminating the evidence of association by type of study
(WGS, WES, GWAS, case-control, meta-analyses, and functional
evidence). A total of 51 regions could be identified containing
approximately 86 candidate genes.

In this context, altered immune responses, such as those
caused by primary immunodeficiencies (PIDs), may be important
in disease progression, where at least one case of death has already
been reported during coronavirus infection (Szczawinska-
Poplonyk et al., 2013). More severe viral infections have been
associated with the presence of PID (Dropulic and Cohen, 2011),
which constitute a group of more than 350 rare diseases that
together have a considerable prevalence (McCusker et al., 2018).
Genetically, PIDs are heterogeneous, most often monogenic. The
registry of rare diseases ORPHANET1 recognizes at least 308
genes involved in PIDs, which makes their diagnosis complex and
their prevalence underestimated.

Total exome sequencing of SARS-CoV-2 identified 24
functional variants in eight genes, TLR3, UNC93B1, TICAM1,
TBK1, IRF7, IFNAR2, IRF3, and IFNAR1 (Zhang et al., 2020a),
of which the first six are on the list of 308 genes known to be
associated with PID. Additionally, the ADAM17 gene, which is

1https://www.orpha.net/consor/cgi-bin/index.php
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TABLE 2 | Description/features of SARS-CoV-2 variants of concern.

Variant/WHO label Lineage Description Additional aminoacid/key mutations

Alpha (Davies et al., 2021;
Galloway et al., 2021; Volz
et al., 2021; Walensky
et al., 2021)

B. 1. 1. 7 UK lineage of concern, associated with the N501Y
mutation

United Kingdom, September-2020
+++ Transmissibility
++ Severity

+S: 484K
+S:452R
N501Y
P681H

Deletions: H69-V70
Y144/145

Beta (Tegally et al., 2021;
Wibmer et al., 2021)

B. 1. 351 South Africa, May-2020
+Transmissibility
Severity: possible

+S:L18F
N501Y
K417N
E484K

Gamma (Candido et al.,
2021; Wang P. et al., 2021)

P.1 Brazilian lineage with a number of spike mutations with
likely functional significance E484K, K417T, and N501Y.

Brazil, Dez-2020
++ Transmissibility
Severity: possible

+S:681H
N501Y
K417T
E484K

Delta (European Centre for
Disease Prevention and
Control [ECDC], 2021;
Motozono et al., 2021)

B. 1. 617. 2 Predominantly India lineage with several spike
mutations.

India, October-2020
+++ Transmissibility
+++ Severity

+S:417N
+S:484K

L452R
E484Q

Omicron (Callaway, 2021;
Gao et al., 2021)

B. 1. 1. 529 Several mutations that are found in other variants of
concern and that are thought to make the virus more

infectious.
Multiple countries, November-2021

D614G
N501Y
K417N

also on the list, has been implicated in the ability of SARS-CoV-2
to infect cells and modulate the inflammatory response (Heurich
et al., 2014; Palau et al., 2020; Zipeto et al., 2020).

Few studies have addressed the direct relationship between
PID and COVID-19 directly. A meta-analysis suggests a
correlation between the prevalence of selective IgA deficiency,
the most common PID, and the prevalence of COVID-19
(Naito et al., 2020). A case series with two men from two
families indicated that mutations in the TLR7 gene, one of those
implicated in PID, were present in these patients with severe
COVID-19 (Van der Made et al., 2020). An important prospective
study suggests a 10-fold higher mortality rate from COVID-19 in
children with PID (Delavari et al., 2020).

Together, these observations show that studies on the genetic
modulation of COVID-19 by PID-related genes are consistent.
Thus, Supplementary File shows that of the 51 chromosomal
regions associated with COVID-19, 37 (72.5%) also contain
PID-related genes, as described in ORPHANET. Among these
51 regions, those present on chromosomes 6, 19, and 21
stand out. On chromosome 6, more specifically in the MHC
class I and II regions (6p21.32, 6p21.33, 6p22.1), the evidence
of association with COVID-19 comes from WGS, GWAS,
functional (expression and affinity) studies, meta-analyses, and
case–control studies, and this region contains several PID-related
genes. On chromosome 19, the most consistently associated
region is the one containing the KIR gene complex (19q13.42),
whose evidence comes from case–control, meta-analysis, and
functional studies (Sakuraba et al., 2020; Bernal et al., 2021;
Rendeiro et al., 2021) and which contains PID-related genes. Two
regions of chromosome 21 (21q22.11, 21q22.3) also have multiple
lines of evidence showing an association with COVID-19,

the most strongly associated being the one that contains the
TMPRSS2 and MX1 genes. TMPRSS2 is already well established
as an important marker for the ease of viral entry (Andolfo et al.,
2020; Asselta et al., 2020; Latini et al., 2020; Sajuthi et al., 2020;
Senapati et al., 2020; Vastrad et al., 2020; Wang et al., 2020c;
Mohammad et al., 2021; Schönfelder et al., 2021; Torre-Fuentes
et al., 2021), while MX1 is a gene responsive to interferon and
is closely directed to the activity of response to viral infections,
including SARS-CoV-2 infection (Russo et al., 2020; Bizzotto
et al., 2020).

The regulation of important genes in COVID-19 has also
been addressed by epigenetic studies, which have shown that
methylation patterns (Corley and Ndhlovu, 2020) and microRNA
expression (Fulzele et al., 2020; Widiasta et al., 2020) are altered
in the disease. The roles of microRNAs in the regulation of key
genes in COVID-19 make them important candidate biomarkers.
Another important aspect of their action is their binding to viral
mRNAs to silence them and act as antivirals, as shown by in silico
studies (Fulzele et al., 2020).

The genes involved in viral infection reported in the literature
are ACE2, TMPRSS2, ADAM17, NRP1, and NRP2. One literature
review (Fulzele et al., 2020) identified 12 relevant microRNAs
in the regulation of ACE2 (miR-18, miR-125b, miR-132, miR-
143, miR-181, miR-200, miR-145, miR-155, miR-212, miR-421,
miR-482-3p, and miR-4262). In addition to these microRNAs
experimentally deduced to target ACE2, an in silico search
was performed in the miRDB database (Chen and Wang,
2020) for possible microRNAs targeting the ACE2, TMPRSS2,
ADAM17, NRP1, and NRP2 genes. Only microRNAs with a
score greater than 94 were considered. The search identified
candidate microRNAs to be relevant biomarkers in the regulation
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of these genes. Additionally, seven microRNAs were described
as candidates targeting the mRNAs of viral genes (Fulzele et al.,
2020), making them an important group of markers.

Finally, a relevant group of microRNAs has been described
as regulators of the inflammatory response (Tahamtan et al.,
2018), of which some belong to the aforementioned list of
microRNAs involved in regulating the expression of genes related
to SARS-CoV-2 infection or targeting viral genes. Table 3 lists the
microRNAs that may be relevant in COVID-19.

Correlating the most recent findings, host genetics linked to
the immune response are strongly suggested as a predictor of
the prognosis of COVID-19. Initial evidence pointing to genes
such as ACE2 as important for viral entry into the host cell is
not as relevant as was expected. Rather, viral entry is now more
clearly linked to genes such as TMPRSS2 and MX1, which are
near each other on chromosome 21. TMPRSS2 is crucial for the
initial phenomena of infection and is responsible for the viral
response related to interferon.

In this scenario, evidence emerged for specific immune
response genes, such as KIR and MHC genes, in addition to
a potential association with multiple PID genes. Therefore, the
current data suggest that the influence of human host genetics
on COVID-19 seems to be polygenic and focused on the genetic
modulation of the immune response, making it increasingly
less likely that the broad spectrum of COVID-19 manifestations
is determined by oligogenic models. Additionally, the relevant
role of multiple immunorelevant genes also favors the role of
epigenetic regulation in these genes, especially microRNAs.

There are several pieces of evidence on the role of host
genetics influencing the dynamics of SARS-CoV-2 infection, the
variability of genes involved in the immune response has a
direct impact on the course of COVID-19, but the magnitude of
genetic diversity makes this elucidation more complex. However,
concentrating efforts in order to discover the key genes involved
in viral pathogenesis, as well as in the escape of the immune
response and, based on this, building a panel with the main
findings, can strongly contribute to the targeting of cases,
enabling a more accurate view on how the evolution of cases
can occur, and thus outline a more effective preventive and
therapeutic planning, contributing to a better dynamics of care
services, as well as favoring the studies of vaccines used today and
those that are still under research.

TRANSMISSION

The transmissibility of SARS-CoV-2 is not known with precision.
It is believed that the ingestion of infected animals as a food
source is the main cause of zoonotic transmission (Ji et al.,
2020). As SARS-CoV-2 is highly similar to SARS-CoV, bats could
be the host of the new coronavirus. In addition, Malaysian
pangolins (Manis javanica) can harbor coronaviruses very similar
to SARS-CoV-2 and are a potential natural reservoir of the virus
(Zhou P. et al., 2020). Human-to-human transmission can occur
through droplets containing infectious particles spread by speech,
coughing, or sneezing, which can reach the mucous membranes
of the eyes, nose, or mouth as portals, or by direct contact with

contaminated surfaces, such as stainless steel, plastic, glass, and
cardboard for at least several hours (Doremalen et al., 2020; Fan
et al., 2020; Xiang Ong et al., 2020). As respiratory viruses have
the highest transmission rate when the patient is symptomatic,
because it is during this period that the viral load reaches a peak,
it is believed that the same occurs with COVID-19 (Zhou F. et al.,
2020). However, the possibility of viral transmission from an
asymptomatic individual (Bai et al., 2020) is not excluded because
there is evidence of asymptomatic or presymptomatic spread of
SARS-CoV-2, highlighting its ability to colonize and replicate in
the throat during the initial infection (Arons et al., 2020; Pan
et al., 2020; Wölfel et al., 2020).

The genetic material of SARS-CoV-2 has been detected in the
feces, whole blood, and urine of patients with COVID-19, but it
has not been documented whether transmission by these means
is possible (Young et al., 2020). The possibility of fecal aerosol
transmission was described in a report based on circumstantial
evidence, and this may have caused the community outbreak
of COVID-19 in a high-rise building in Canton, China (Kang
et al., 2020). Little is known about the vertical transmission
of SARS-CoV-2, and further studies are needed to assess its
transmissibility from pregnant woman to fetus (Chen H. et al.,
2020; Hu X. et al., 2020). However, in March 2020, the first
proven case of transplacental transmission of SARS-CoV-2 was
described, involving a pregnant woman affected by COVID-
19 during late pregnancy, with detection of the viral genome
in the amniotic fluid collected before rupture of the placenta
(Vivanti et al., 2020).

To date, there is no evidence of viral transmission from pets
to humans. Ferrets and cats are highly susceptible to SARS-CoV-
2, while dogs have low susceptibility; other animals, including
pigs, chickens, and ducks, are not susceptible to the virus under
experimental conditions (Shi et al., 2020). Interestingly, viral
transmission between cats has been observed (Shi et al., 2020).
Another study showed that 22 cats in France and two of 10
cats in China from patients with COVID-19 had SARS-CoV-2
infection with mild respiratory and digestive symptoms (Sailleau
et al., 2020). This indicates that cats, being common pets, can
theoretically transmit the virus to other animals and, possibly,
humans. Still, there is no clear evidence that transmission of
SARS-CoV-2 has occurred from cats to humans. In ferrets, SARS-
CoV-2 is able to replicate in the upper respiratory tract without
causing serious illness or death (Shi et al., 2020). Recently,
an outbreak of SARS-CoV-2 in visions (Neovison mink) was
reported on several farms in the Netherlands with transmission
events to humans via respiratory droplets promoting secondary
transmission of a mink SARS-CoV-2 variant back for humans
(Oude Munnink et al., 2021; Shuai et al., 2021). Between
April 26 and November 22, 2020, 14 outbreaks of COVID-
19 occurred on commercial mink farms in Utah, one outbreak
in a commercial mink farm in Wisconsin, and another in
Oregon, USA (United States of America). Clinical signs included
respiratory signs and sudden death from a total of 12,330 deaths
among 145,757 susceptible animals (Eckstrand et al., 2021).

Repeat infections of SARS-CoV-2 between humans and
animals (spillback) can lead to the emergence of new animal
reservoirs, with risk of secondary infection (spillover) for humans
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TABLE 3 | MicroRNAs possibly relevant in COVID-19, according to their type of evidence.

MicroRNAs with in silico evidence of regulation of the expression of genes related to SARS-CoV-2 infection:

hsa-miR-124-3p, hsa-miR-1297, hsa-miR-153-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-3133, hsa-miR-3163, hsa-miR-331-3p, hsa-miR-33a-3p,
hsa-miR-3646, hsa-miR-4465, hsa-miR-4500, hsa-miR-506-3p, hsa-miR-5094, hsa-miR-548ae-3p, hsa-miR-548ah-3p, hsa-miR-548aj-3p, hsa-miR-548am-3p,
hsa-miR-548aq-3p, hsa-miR-548j-3p, hsa-miR-548x-3p, hsa-miR-578, hsa-miR-6844, hsa-miR-7977, hsa-miR-92a-1-5p

MicroRNAs with experimental evidence of regulation of ACE2 expression:

hsa-miR-125b, hsa-miR-145, hsa-miR-181, hsa-miR-200, hsa-miR-212, hsa-miR-421, hsa-miR-482-3p, hsa-miR-18, hsa-miR-132, hsa-miR-143, hsa-miR-155,
hsa-miR-4262

MicroRNAs with in silico evidence of regulation of viral gene expression:

hsa-miR-15b-5p, hsa-miR-15a-5p, hsa-miR-548c-5p, hsa-miR-548d-3p, hsa-miR-409-3p, hsa-miR-30b-5p, hsa-miR-505-3p

MicroRNAs with evidence of regulation of the inflammatory response:

hsa-miR-21, hsa-miR-24, hsa-miR-124, hsa-miR-145, hsa-miR-146, hsa-miR-149, hsa-miR-155, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-181d

through an animal reservoir, which can lead to the appearance
of variants of SARS-CoV-2, as described above. Such events are
of great concern, as the formation of wild virus reservoirs, the
appearance of a mutant strain with increased transmissibility
and severity of SARS-CoV-2 in humans puts efforts for the
long-term control of COVID-19 at risk and they also threaten
vulnerable animal populations that are particularly susceptible to
lethal diseases.

DIAGNOSIS OF COVID-19

Faced with the pandemic caused by the new coronavirus, the
early and safe diagnosis of the infection is extremely important
to interrupt the transmission of the disease and assist in making
decisions such as isolation and/or distancing of people, which will
provide more time for public health implementation measures
that may have positive impacts in reducing the problems
associated with COVID-19.

According to the WHO, the diagnosis of COVID-19 can
be clinical or epidemiological, using the International Code
of Diseases (ICD) ICD-10 Z20.9 (contact with exposure to
unspecified communicable disease) as a record. In the face
of clinical manifestations suggestive of the disease and when
laboratory confirmation is inconclusive or not available, the
patient is considered infected and the ICD UO7.2 (unidentified
virus - attributed to a clinical or epidemiological diagnosis of
COVID) should be used for recording –19, when laboratory
confirmation is inconclusive or unavailable. Includes diagnosis
of a probable case or suspected case of COVID-19). On the
other hand, those with a diagnosis confirmed by laboratory tests
must be registered using the code ICD-UO7.1 (identified virus –
attributed to a COVID-19 diagnosis confirmed by laboratory
tests) (Brazil Ministério da Saúde, 2020).

The Brazilian Ministry of Health included new criteria for the
characterization of COVID-19 cases, going beyond the laboratory
tests already adopted. Given the difficulties of testing, the agency
allowed for the following individuals to be deemed infected by the
new coronavirus (Brazil Ministério da Saúde, 2020; Figure 2).

SARS-CoV-2 was initially characterized by sequencing its
genome, which provided the necessary information to develop
quantitative or real-time polymerase chain reaction (PCR) tests
for viral detection (Zhou P. et al., 2020; Zhu et al., 2020). Different

laboratory diagnostic tools are used in clinical practice to confirm
cases of SARS-CoV-2 infection and differ in terms of sample type,
collection time, specificity, and sensitivity (Table 4).

The COVID-19 pandemic highlighted the importance
of laboratory diagnostic methods. Currently, nucleic acid
amplification methods represent the gold standard for the
diagnosis of COVID-19 infection with several RT-PCR-based
tests approved by different national and international regulatory
agencies. However, despite the high sensitivity of RT-PCR, the
need for trained professionals and expensive instruments and
reagents that limit its application, especially in low-income
countries, drive the development of diagnostic methods to
overcome the limitations of RT-PCR, among them, low-
cost diagnostic strategies are promising and can be used for
the effective diagnosis of COVID-19 infection in low- and
middle-income countries. Rapid antigen and antibody tests and
immunoenzymatic serological tests represent the most widely
used techniques for monitoring the spread of SARS-CoV-2
infection. It is important to note that, despite the low cost of
such techniques, the low sensitivity and specificity of LFIAs
and ELISAs, the use of such point-of-care tests enabled the
implementation of effective health surveillance systems that
allowed for the effective management of the COVID pandemic
-19, thus limiting the number of infections.

The scientific community in a short period developed several
useful methods to correctly diagnose a suspected case of SARS-
CoV-2 infection. Despite the limitations of some laboratory
diagnostic methods, it is necessary to take into account not
only the test to be used but also the patient’s medical history,
the time of exposure to individuals infected with SARS-CoV-
2, the type of sample to be used, be collected and analyzed,
and how to interpret the result. The integration of all these
elements will provide a solid foundation for correctly diagnosing
COVID-19 infection and effectively managing the COVID-
19 pandemic.

TREATMENT APPROACHES

According to the WHO, there are still no specific drugs
for COVID-19. In the early days of the pandemic, many
governments around the world implemented, to some degree,
measures recommended by the WHO to limit the spread of
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FIGURE 2 | Flowchart for identifying individuals possibly infected with the new coronavirus in the absence of laboratory tests.

TABLE 4 | Diagnostic methods for SARS-CoV-2 infection.

Test Type of sample Pros and cons References

RT-PCR Nasopharyngeal smear
or saliva. Collection

within 7 days of
symptoms

Gold standard test for detecting SARS-CoV-2. The
accuracy of the test depends on the stage of the
disease and the degree of viral multiplication. Higher
sensitivities are reported depending on which
genetic targets are used in performing the test

Xiao et al., 2020; Zou et al.,
2020; Erster et al., 2021

Enzyme-Linked
Immunosorbent Assay
(ELISA)
IgM, IgA, IgG

Serum Useful for diagnosing previous infections. Important
for population serological surveillance and research
activities. It is not useful for diagnosing acute
infection.
Descending titles over time (2–3 months)

Huang A. T. et al., 2020;
Huang M. et al., 2020;

Krajewski et al., 2020; Li
et al., 2020; Lucas et al.,
2020; Bichara et al., 2021

Lateral flow
immunoassay (LFIA)
(Antigen or antibody)

Nasal or nazopharinzeal
smear, serum or whole

blood

Detects acute infection through the presence of
viral antigens. Previous infection by detection of
antibodies. Average time 15–20 min. Low cost.
Low sensitivity and specificity of 56.2 and 99.5%,
respectively

Canetti et al., 2020; Dinnes
et al., 2020; Prazuck et al.,

2020

Loop-mediated
isothermal amplification
(LAMP)

Nasal or nazopharinzeal
smear

The accuracy of the test depends on the stage of
the disease and the degree of viral multiplication.
Highly effective, fast results, and limited cost

Broughton et al., 2020;
Huang W. E. et al., 2020;
Bektaş et al., 2021; Jones

et al., 2021;
Juscamayta-López et al.,

2021

CRISPR/Cas Nasal or nazopharinzeal
smear

High sensitivity and specificity rates and low
analysis costs. With 100% sensitivity and specificity Broughton et al., 2020;

Hou et al., 2020; Lucia
et al., 2020

Biosensors Nazopharinzeal smear Tecnologia rápida e altamente sensível. Ausência
de reatividade cruzada com outros coronavirus

Seo et al., 2020; Zhao
et al., 2021

the virus, such as self-isolation, social distancing, hand washing,
closing schools and universities, and mask wearing in public
places (Prather et al., 2020). Due to the lack of specific therapy,

some drugs used in other infectious diseases have been applied
against COVID-19 (Table 5) in clinical practice, although their
effectiveness is controversial.
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The unfortunate SARS-CoV-2 pandemic in early 2020 posed
a challenge to all researchers to find potential therapeutic
agents for treatment. There were extensive efforts to reuse
approved drugs during the COVID-19 pandemic. This strategy
offers several advantages over developing an entirely new drug,
with reduced risk of failure because safety has already been
evaluated. Currently, there are antiviral therapies developed
to induce a direct effect on SARS-CoV-2, either by blocking
viral entry into host cells or by controlling viral enzymes
with a significant contribution to genome replication. A big
step forward in the control of severe cases and deaths
related to COVID-19.

VACCINE PLATFORMS

Multiple vaccine platforms have already been approved for
emergency use against COVID-19. As of August 19, 2021, 20
vaccine candidates were within the WHO evaluation process for
commercialization (World Health Organization [WHO], 2021b;
Table 6).

The efficacy of an effective vaccine depends on the long-term
response of specific antibodies to viral antigens from plasma
cells, as well as the development of persistent memory of T

cells and B cells. In the case of SARS-CoV infection, adaptive
humoral and cellular immune responses are crucial to the
elimination of infection.

Due to the need to ensure the immunity of the population,
clinical trials of SARS-CoV-2 vaccines have accelerated their
development process. To date, few adverse events have been
reported in clinical trials of such vaccines, and the safety of those
that have been tested more extensively is promising.

Along with safety, the efficacy of the vaccine is important.
The FDA recommended that vaccines show at least 50% efficacy
compared to placebo, defined primarily by (i) reduction in
COVID-19 cases, (ii) reduction in COVID-19 severity, or (iii)
reduction in COVID-19 severity infections by SARS-CoV-2
(Food and Drug Administration [FDA], 2020).

Inactivated Virus
Inactivated virus vaccines are being developed by isolating SARS-
CoV-2 from samples of patients hospitalized with COVID-19.
Then the virus is used to infect a cell line in the laboratory,
after which it is chemically inactivated with β-propiolactone
(Gao et al., 2020). This type of platform exposes the vaccinated
individual to several viral proteins instead of a single target, and
depending on the inactivation process, the structural integrity
of the viral antigens can be affected to favor a T cell response

TABLE 5 | Medicines used in the treatment of COVID-19.

Drug name Class Mechanism of action Adverse effect References

Chloroquine and
Hydroxychloroquine

Antiparasitic Inhibition of host cell receptor glycosylation
to block viral entry, acidification of the
endosomal and proteolytic process.

High doses can lead to respiratory
arrest, cardiac arrest, and
hypokalemia.

Savarino et al., 2003; Yamamoto et al.,
2004; Eze et al., 2021

Lopinavir/Ritonavir Antiviral Inhibition of 3CL protease.
Inhibition of viral replication.

Risks for pediatric patients Chu et al., 2004; Kim et al., 2016

Remdesivir Antiviral RNA-dependent RNA polymerase inhibitor.
Block viral replication

There is no information on whether
overdosing can cause any adverse
effects

Hoehl et al., 2020; Li and De Clercq,
2020; Wang et al., 2020e

Heparin Anticoagulant
and anti-

inflammatory

Heparin binds to the RBD of the
SARS-CoV-2 protein S, inhibiting viral
infection

Platelet count usually decreases to
between days 5 and 12

Kawase et al., 2012; Zhou et al., 2015;
Hoffmann et al., 2020; Mycroft-West
et al., 2020; Tang N. et al., 2020;
Yamamoto et al., 2020

Tocilizumab Monoclonal
antibody

IL-6 inhibiting receptor.
Cytokine storm reduction blockade.

Overdose-neutropenia Guaraldi et al., 2020; Rosas et al., 2020

Anakinra Immune
Response
Modulator

Monoclonal antibody that acts against the
IL-1 receptor

Rheumatoid arthritis
(incidence > 10%)

Conti et al., 2020

Baricitinib Immune
Response
Modulator

Antiviral activity
Inhibitor of clathrin-mediated endocytosis
Janus kinases 1 and 2 (JAK1/2 inhibitor)

Multiple adverse reactions
Cantini et al., 2020; Richardson et al.,
2020

Camostat Mesilate Antiviral TMPRSS2 inhibitor that prevents replication
Viral Blocks viral mutation

Rash, pruritus, nausea, abnormal
values from laboratory tests and
diarrhea

Uno, 2020

Molnupiravir Antiviral It works by inducing mutagenesis in viral
RNA, causing the newly formed RNA
strand chain to terminate

Mild adverse effects Kabinger et al., 2021; Zhou et al., 2021

Paxlovid Antiviral It inhibits viral replication at a stage known
as proteolysis, which occurs before viral
RNA replication

Absent Wang et al., 2020g; Ahmad et al.,
2021; Pfizer, 2021
https://www.pfizer.com/news/press-
release/press-release-detail/pfizers-
novel-covid-19-oral-antiviral-
treatment-candidate

Frontiers in Microbiology | www.frontiersin.org 9 February 2022 | Volume 13 | Article 789882

https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate
https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate
https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate
https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-789882 February 5, 2022 Time: 14:54 # 10

da Silva Torres et al. Complexity of SARS-CoV-2 Infection

TABLE 6 | Vaccines available and in development for protecting against SARS-CoV-2.

Manufacturer Vaccine name Platform Evaluation status Status

BioNTech Manufacturing GmbH BNT162b2/COMIRNATY
Tozinameran (INN)

Nucleoside modified mRNA Finished Approved for use

AstraZeneca, AB AZD1222 Vaxzevria Recombinant ChAdOx1 adenoviral vector
encoding the Spike protein antigen of the
SARS-CoV-2.

Finished Approved for use

Serum Institute of India Pvt. Ltd Covishield (ChAdOx1_nCoV-19) Recombinant ChAdOx1 adenoviral vector
encoding the spike protein antigen of the
SARS-CoV-2.

Main data finalized Approved for use

Janssen–Cilag International NV Recombinant, Ad26.COV2.S Recombinant, replication-incompetent
adenovirus type 26 (Ad26) vectored vaccine
encoding the (SARS-CoV-2) spike protein

Finished Approved for use

Moderna Biotech mRNA-1273 mRNA-based vaccine encapsulated in lipid
nanoparticle (LNP)

Finished Approved for use

Beijing Institute of Biological
Products Co., Ltd. (BIBP)

SARS-CoV-2 Vaccine (Vero Cell),
Inactivated (lnCoV)

Inactivated, produced in Vero cells Finished Approved for use

Sinovac Life Sciences Co., Ltd. COVID-19 Vaccine (Vero Cell),
Inactivated/CoronavacTM

Inactivated, produced in Vero cells Finished Approved for use

The Gamaleya National Center Sputnik V Human Adenovirus Vector-based
COVID-19 vaccine

Waiting, waiting for
submission

Approved for use

Bharat Biotech, India SARS-CoV-2 Vaccine, Inactivated
(Vero Cell)/COVAXIN

Whole-Virion Inactivated Vero cells In progress Approved for use

Sinopharm/WIBP Inactivated SARS-CoV-2 Vaccine
(Vero Cell)

Inactivated, produced in Vero cells In progress In progress. Not
approved

CanSinoBio Ad5-nCoV Recombinant novel coronavirus vaccine
(adenovirus type 5 vector)

- In progress. Not
approved

Nonavax NVX-CoV2373/Covovax Recombinant nanoparticle prefusion spike
protein formulated with Matrix-MTM

adjuvant

– In progress. Not
approved

Sanofi CoV2 preS dTM-AS03 vaccine Recombinant, adjuvanted – In progress. Not
approved

Serum Institute of India Pvt. Ltd NVX-CoV2373/Covovax Recombinant nanoparticle prefusion spike
protein formulated with Matrix-MTM

adjuvant

– In progress. Not
approved.

Clover Biopharmaceuticals SCB-2019 Novel recombinant SARS-CoV-2 spike
(S)-Trimer fusion protein

– In progress. Not
approved

Urevac Zorecimeran (INN) concentrate and
solvent for dispersion for injection;
Company code:
CVnCoV/CV07050101

mRNA-based vaccine encapsulated in lipid
nanoparticle (LNP)

– In progress. Not
approved

Vector State Research Center of
Virology and Biotechnology

EpiVacCorona Peptide antigen – In progress. Not
approved

Zhifei Longcom Recombinant Novel Coronavirus
Vaccine (CHO Cell)

Recombinant protein subunit – In progress. Not
approved

IMBCAMS SARS-CoV-2 Vaccine, Inactivated
(Vero Cell)

Inactivated – In progress. Not
approved

BioCubaFarma Soberana 01, Soberana 02
Soberana Plus Abdala

SARS-CoV-2 spike protein conjugated
chemically to meningococcal B or tetanus
toxoid or aluminum

– In progress. Not
approved

Adapted from World Health Organization [WHO] (2021c). –, No information.

toward a Th2 profile (Tregoning et al., 2020). In 2020, a pilot
study of a candidate inactivated SARS-CoV-2 vaccine (BBIBP-
CorV) demonstrated high productivity and good genetic stability
over the SARS-CoV-2 vaccine (Wang et al., 2020h).

Attenuated Virus
This type of platform simulates natural infection using
deoptimized viral genomes that are not translated efficiently in
hosts (Tregoning et al., 2020). With a low level of infection,
these vaccines induce robust and long-lasting immune responses

(Yong et al., 2019). However, the storage of these vaccines at low
temperature and their contraindication in immunocompromised
patients and the elderly may be considered disadvantages
(Sarmiento et al., 2016).

Viral Vectors
Vaccines using recombinant virus vectors work similarly to
an endogenous pathogen, expressing the target protein in the
cytoplasm of the host cell. This location favors the response of
cytotoxic T cells, establishing the cell-mediated immunity that
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is crucial for the elimination of virus-infected cells (Coughlan,
2020). Vaccines using adenoviral vectors can induce potent
antibodies and T cell responses, with variations in intensity
depending on the serotype (Tan et al., 2004). Currently, there are
two vaccine candidates against SARS-CoV-2 in phase I/II clinical
trials that use the measles virus (NCT04497298) or the vesicular
stomatitis virus (NCT04569786) as a vector (Jon, 2020).

Nucleic Acid
In addition, DNA or RNA vaccination is also able to trigger
humoral and cellular immune responses through the activation
of CD4+ helper T cells and CD8+ cytotoxic T cells, respectively.
Upon entering the cell, DNA vaccines are detected by a variety
of innate immune receptors, such as interferon gene stimulator
(STING)/TANK binding kinase 1 (TBK1). The IRF3 pathway,
the inflammasome, and many other factors are involved in the
mode of action of the DNA vaccine (Li and Petrovsky, 2016).
Two studies have analyzed the immunogenicity of these vaccine
platforms against SARS-CoV-2 in animal models (Smith et al.,
2010; Patel et al., 2020).

Recombinant Protein Subunit
Subunit vaccines, particularly those based on the RBD of the
SARS-CoV S protein, contain the main antigenic determinants
that can induce neutralizing antibodies and CD8+ T cell
responses (Bonavia et al., 2003; He et al., 2006). This characteristic
provides useful information for designing safe and effective
vaccines against SARS-CoV-2, since the RBD of the S protein
of SARS-CoV-2 contains similar epitopes. However, they are
vaccines that generally require adjuvants or nanoparticles to
increase their immunogenicity. A subunit vaccine (StriFK-
FH002C) prevented hamsters from transmitting the virus to
other, unvaccinated hamsters in cohabitation, causing a lower
viral load in the upper respiratory tract of hamsters vaccinated
after the challenge, showing that the vaccine is a candidate for
SARS-CoV-2 (Wu et al., 2021).

Despite this success, the goal of achieving global herd
immunity through vaccination, which would allow for the
abandonment of other non-pharmaceutical interventions and
restrictions on our social, cultural, and recreational activities has
not yet been achieved in all countries. This is due to a number
of reasons and unexpected developments that challenged and
delayed the progress of vaccination. One of the most striking
developments has been the rapid local and global emergence of
SARS-CoV-2 variants with different transmission and immune
evasion properties. This not only started new waves of infections
but also impacted the evaluation of the vaccine’s efficacy in
clinical trials. Another major obstacle to global immunity is
represented by a strong imbalance in the worldwide distribution
of vaccines. A global pandemic strategy combined between
prevention measures and vaccination will minimize the burden
of infection for the poor, but also for rich countries, and
depends on the equitable distribution of vaccines to establish
large-scale immunity at the global level and contain the COVID-
19 pandemic.

SOCIOECONOMIC ASPECTS OF THE
PANDEMIC

Individuals affected by COVID-19 are potentially at risk of
physiological and economic harm. The decline of the economy
began with the decrease in activity in the travel, tourism, and
export sectors (Organization for Economic Cooperation and
Development [OECD], 2020; Khan et al., 2020), but soon its
generalized effects hindered production and consumption, with
layoffs and bankruptcies in all sectors.

In 2020, the pandemic scenario accentuated the decline in
the economies of Latin American and Caribbean countries,
which have low economic growth (Organization for Economic
Cooperation and Development [OECD], 2020). This scenario,
together with the economic slowdown faced in previous years
and the drop in activity caused by the pandemic, has negatively
affected living standards and well-being in the countries
of the region (Organization for Economic Cooperation and
Development [OECD], 2020). The most vulnerable population
will be low-income people, approximately 74% of whom
work informally (Organization for Economic Cooperation and
Development [OECD], 2020). By itself, the pandemic attempts to
affect the present and the future with regard to the aspect of life
of the people, which includes material goods (income, quality of
employment, and housing) and aspects such as education, ability
to form skills, in addition to emotional well-being (Khan et al.,
2020; Organization for Economic Cooperation and Development
[OECD], 2020).

The global economic recovery is predicted to be slow;
for 2021, it will increase almost 6% differently from the
previous year, with an increase of 3.5%; however, this is far
from sufficient to ensure the necessary impetus for growth
of the gross domestic product worldwide (Organization for
Economic Cooperation and Development [OECD], 2021). With
the advancement of large-scale vaccination, the manufacturing
sector is gradually growing as trade and the reopening of
borders progress, promoting an increase in job creation
(Organization for Economic Cooperation and Development
[OECD], 2021). In contrast, there is caution about the arrival
of enough vaccines for enterprises of low-income individuals,
especially in underdeveloped or developing countries, enabling
a further weakening of economic growth, with acute increase
in poverty and potentially in financing problems because the
global economic and social impact of keeping borders closed
outweighs the costs of making vaccines, tests, and health
supplies more widely available for these countries (Khan et al.,
2020; Organization for Economic Cooperation and Development
[OECD], 2021).

With the increase in the unemployment rate, governments
and central banks should intervene with increased spending
and lower interest rates to increase consumer demand and
investment, respectively (International Labour Organization
[ILO], 2020). Even so, estimating the economic costs of a global
disease at this time is still uncertain, since the pandemic has
spiraling effects on the national and global economy, which
means that any economic shock in a country will quickly spread
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to other countries due to the commercial and financial links
associated with globalization (International Labour Organization
[ILO], 2020).

Low- and middle-income countries remain vulnerable to the
pandemic, in addition to suffering dramatic social and economic
consequences. In this scenario, ensuring the emergence and
success of the adoption of new forms of economic development
and governance models would not only help to reduce the
socioeconomic discrepancies affected by the pandemic, but also
the risk associated with vulnerable populations. These social
changes must be the result of a reflection that enables the
generation of new behaviors, and reflections and actions on
the socioeconomic aspects of the pandemic. However, this issue
raised by COVID-19’s control policies appears to have received
little attention in the relevant economic literature. And with that,
the outbreak aggravated existing vulnerabilities, injustices, and
distrust in society.

FINAL CONSIDERATIONS

This study presents an overview of the current context of
COVID-19, offering a summary of the effects on health
and socioeconomic status, viral characteristics, transmission,
therapeutic options, vaccine prospects, immune response, and
available diagnostic tools. It is possible that only when the
pandemic ends will we be able to more accurately assess
the economic and social consequences of this catastrophic

event and that only then will we be able to extract sufficient
knowledge to fight future epidemics, especially in matters of
global public health.
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