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Thermophilic proteins have important application value in biotechnology and industrial
processes. The correct identification of thermophilic proteins provides important
information for the application of these proteins in engineering. The identification method
of thermophilic proteins based on biochemistry is laborious, time-consuming, and high
cost. Therefore, there is an urgent need for a fast and accurate method to identify
thermophilic proteins. Considering this urgency, we constructed a reliable benchmark
dataset containing 1,368 thermophilic and 1,443 non-thermophilic proteins. A multi-
layer perceptron (MLP) model based on a multi-feature fusion strategy was proposed to
discriminate thermophilic proteins from non-thermophilic proteins. On independent data
set, the proposed model could achieve an accuracy of 96.26%, which demonstrates
that the model has a good application prospect. In order to use the model conveniently,
a user-friendly software package called iThermo was established and can be freely
accessed at http://lin-group.cn/server/iThermo/index.html. The high accuracy of the
model and the practicability of the developed software package indicate that this study
can accelerate the discovery and engineering application of thermally stable proteins.

Keywords: thermophilic proteins, protein feature extraction, feature selection, neural network, iThermo

INTRODUCTION

In the field of industrial and biotechnology development, researchers usually increase the
temperature to shorten the enzymatic reaction time (Tang et al., 2017). However, the increase
in temperature leads to the denaturation of protein, resulting in the loss of protein activity.
Maintaining the activity of protein under increasing temperature conditions is a hot topic in
the current engineering field. It is well known that temperature is crucial to cellular life. It has
been reported that some organisms can live in a high-temperature environment. In general,
the organisms that survive at an optimal growth temperature (OGT) below 50◦C are regarded
as mesophilic organisms, and the organisms that can survive at the OGT of 50◦C or above
are called thermophilic organisms (Gromiha and Suresh, 2008). Thermophiles can produce
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thermally stable proteins and even effectively resist high
temperatures of up to 120◦C (Fan et al., 2016; Tang et al.,
2017). Therefore, the study of proteins produced by thermophilic
organisms is significant for the development of enzyme
engineering (Huang and Gong, 2020; Wang et al., 2020; Alim
et al., 2021; Suresh et al., 2021; Zou et al., 2021).

There have been many studies on thermophilic proteins. It is
found that the thermal stability of proteins is related to amino
acid distribution in proteins (Fukuchi and Nishikawa, 2001; Zhou
et al., 2008). In addition to amino acid distribution, dipeptide
composition (DC) contributes effectively to protein thermal
stability (Ding et al., 2004; Zhang and Fang, 2007; Nakariyakul
et al., 2012). In addition, previous studies have reported that
the factors affecting the thermal stability of proteins also include
hydrophobicity (Saraboji et al., 2005; Miyazaki et al., 2006;
Gromiha et al., 2013), hydrogen bonding (Bleicher et al., 2011),
residues and inter-residue contacts (Gromiha, 2001; Meruelo
et al., 2012), helical polar surfaces (Jayaraman et al., 2006), side-
chain interactions (Kumar et al., 2000), and salt bridges (Sadeghi
et al., 2006; Ge et al., 2008).

Based on these characteristics, some computational models
have been developed to predict thermophilic proteins (Wang
et al., 2020). Gromiha and Suresh (2008) developed a neural
network-based model. They reported 89 and 91% accuracy using
5-fold cross-validation and independent dataset, respectively.
Lin and Chen (2011) built the most reliable benchmark
dataset at that time, including 915 thermophilic proteins and
793 non-thermophilic proteins. Using amino acid composition
(AAC) and dipeptide composition as inputs of support vector
machine (SVM), the accuracy for thermophilic proteins and
non-thermophilic proteins was 93.8 and 92.7%, respectively.
Then, the genetic algorithm combined with SVM was applied
to the prediction problem (Wang et al., 2011; Lv et al.,
2020c). Nakariyakul et al. (2012) established a computational
model on the same dataset constructed by Lin and Chen
(2011). Their model achieved an accuracy of 93.3% in
jackknife cross-validation. In recent years, combined with AAC,
evolutionary information, and acid dissociation constant, Fan
et al. (2016) built a prediction model with an accuracy of
93.5%. Tang et al. (2017) proposed a two-steps discrimination
method using the same dataset and achieved an accuracy
of 94.44% in 5-fold cross-validation. A voting algorithm for
thermophilic proteins prediction has achieved an accuracy
of 93.03% (Li J. et al., 2019). Feng et al. (2020) developed
a reduced AAC-based model and obtained an accuracy of
98.2%. Guo et al. (2020) used the feature dimension reduction
technique to identify thermophilic protein and reported an
accuracy of 96.02%.

Although much work has been done to predict thermophilic
proteins, the availability of a reliable benchmark dataset, the
development of an accurate model based on multi-feature fusion,
and the construction of a software package still need to be
further improved. Therefore, this study constructed the most
reliable benchmark dataset. Subsequently, an accurate model was
developed based on this dataset. Based on the model, a software
package was established. The following sections will introduce
these processes in detail.

MATERIALS AND METHODS

The fundamental framework of the present research work
includes the following five steps: (1) benchmark dataset
construction, (2) feature extraction, (3) feature selection, (4)
feature fusion, (5) model training, and (6) software package
establishment. The flow chart of the framework is illustrated in
Figure 1.

Dataset
The cornerstone of a robust and reliable model is to generate
a reliable and strict benchmark dataset. In previous literature,
scholars used 50◦C as a cutoff to construct a benchmark dataset.
However, this criterion did not seem objective because proteins
might be stable even above the OGT of microorganisms. For
instance, a protein produced by microorganisms living at 45◦C
is likely not to denature at 60◦C. According to the 50◦C cutoff
criterion, this protein is included in the negative dataset, but it
should be included in the positive dataset as it is still stable above
the 50◦C. To eradicate this effect as much as possible, we used
Lin and Chen’s (2011) strict and objective standard to generate a
benchmark dataset. According to Lin and Chen’s (2011) criterion,
the proteins in the microorganism with OGT> 60◦C and<30◦C
were regarded as thermophilic and non-thermophilic proteins,
respectively. Of course, even after using Lin and Chen’s (2011)
criterion, the effect mentioned still exists but not as strongly
as when compared to the 50◦C cutoff criterion. All protein
sequences were extracted from a universal protein resource
(UniProt). Subsequently, the following steps were used to ensure
the quality of protein data: (I) the proteins which have been
manually reviewed remained; (II) proteins containing ambiguous
residues were excluded; (III) sequences which are a fragment
of other proteins were excluded; (IV) proteins which infer
from prediction or homology were excluded; (V) to remove
redundancy and homology bias, CD-HIT program (Huang et al.,
2010) was used by setting a cutoff of sequence identity to
30%. As a result, the final benchmark dataset contained 1,443
non-thermophilic and 1,366 thermophilic proteins. Our final
dataset contains only a few thousand proteins because the growth
temperature of some microorganisms is known (Li G. et al.,
2019) and UniProt contains few confirmed proteins. We only
included experimental data. Moreover, noise and redundancy
were removed, which also caused a reduction in the number
of proteins. For training model, the dataset was divided into
80:20 ratios; model was trained on 80% dataset and validated
on 20% dataset.

Feature Extraction
Protein sequences were transformed into numerical vectors to
identify thermophilic proteins by machine learning methods
(Liu et al., 2019, 2020; Li et al., 2021; Zhang et al., 2021a,b).
To accomplish this task, we used the iFeature program (Chen
et al., 2018) to generate seven kinds of protein features, namely
amino acid composition (AAC), traditional pseudo amino
acid composition (tPseAAC), amphiphilic pseudo amino acid
composition (aPseAAC), the composition of k-spaced amino
acid pairs (CKSAAP), dipeptide composition (DC), dipeptide
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deviation from the expected mean (DDE), and composition,
transition, and distribution (CTD). These features will be
described in detail in the following sections.

Amino Acid Composition
Amino acid composition (Bhasin and Raghava, 2004; Lv Z. et al.,
2021) refers to the occurrence frequencies of 20 amino acid
residues in a protein sequence and is defined as:

f (t) =
N(t)

N
, t ∈ {A,C,D, . . . ,Y} (1)

where f(t) represents the frequency of t amino acid, N(t) indicates
the total number of t amino acids in a protein sequence of
length N.

Traditional Pseudo Amino Acid Composition
Traditional pseudo amino acid composition was used to describe
residues correlation based on their physicochemical properties
(Chou, 2001). The descriptor uses the 20+λ dimensional vectors
to represent the protein sequence. The 20 and λ dimensions
denote the amino acid composition and sequence correlation
factor, respectively.

For any protein P, its tPseAAC can be represented as:

P = [A1,A2,A3, . . . ,A20,A20+1, . . . ,A20+λ]
T (2)

where the 20+λ dimension elements can be formulated as:

pu =


fu∑20

µ−1 fu+ω
∑λ

k−1 τk
, 1≤ µ ≤ 20

ωτu−20∑20
µ−1 fu+ω

∑λ
k−1 τk

, 21 ≤ µ ≤ 20+ λ
(3)

where Pu and w denote the feature vector and weight factor,
respectively. Here, we set w to 0.05 for saving computational time.
The fu shows the amino acids occurrence frequency in a protein
P. τk represents the k-tire sequence correlation factor which is
given below by formula:

τk =
1

L− k

L−k∑
i=1

Ji,i+k, (k < L) (4)

Ji,i+k =
1
3
{[H1(Ri)−H1(Ri+k)]

2
+[H2(Ri)−H2(Ri+k)]

2

+[M(Ri)−M(Ri+k)]
2
} (5)

where H1(Ri) is the hydrophobicity value, H2(Ri) is the
hydrophilicity value, and M (Ri) is the side chain mass of the
amino acid residue Ri. For detailed descriptions about tPseAAC,
please refer to the literature (Chou, 2001).

Amphiphilic Pseudo Amino Acid Composition
This descriptor incorporates a partial sequence-order effect to the
amino acids based on hydrophobicity and hydrophilicity (Chou,
2005). According to aPseAAC, a protein is represented as follows:

P =[A1,A2,A3, ...,A20,A20+1, ...,A20+λ, ...,A20+2λ] (6)

where the first 20-dimension elements represent the AAC, and
the remaining dimensions represent the sequence correlation

factor similar to tPseAAC. For further details about aPseAAC,
please refer to the literature (Chou, 2005).

Composition of k-Spaced Amino Acid Pairs
The CKSAAP describes the frequencies of paired amino acids
separated by any amino acid with the symbol k. The value of k
may vary from 0 to 5 (Chen et al., 2007). CKSAAP for (k = 0) was
formulated as:

F0=

(
FAA

N0
,

FAC

N0
,

FAD

N0
, ...,

FYY

N0

)
400

(7)

where F0 represents the CKSAAP for (k = 0), F represents the
frequency of zero spaced paired amino acids, and N0 represents
total zero spaced amino acid pairs.

Dipeptide Composition
Dipeptide composition is the frequencies of dipeptides in a
protein sequence and is defined as:

Dc(g, h) =
N(g, h)
N − 1

(8)

where Dc(g,h) denotes the frequency of dipeptide (g,h),
while N(g,h) denotes the number of times dipeptide (g,h)
present in the protein sequence containing total dipeptides N
(Saravanan and Gautham, 2015).

Dipeptide Deviation From Expected Means
Dipeptide deviation from expected means proposed by
Saravanan and Gautham (2015), involves the combination
of dipeptide composition (DC), theoretical mean (Tm), and
theoretical variance (Tv), which was defined as:

DDE(g, h) =
Dc(g, h)− Tm(g, h)√

Tv(g, h)
(9)

where,
Tm(g, h) =

Cg

CN
×

Ch

CN
(10)

where Cg indicates the total codons code for amino acid g, and
Ch indicates the total codons code for amino acid h. CN is the
number of codons except for the stop codons.

The theoretical variance Tv is defined as:

Tv(g, h) =
Tm(g, h) (1− Tm(g, h))

N − 1
(11)

where N denotes the length of the sequence.

Composition, Transition, and Distribution
According to the characteristics of amino acids, 20 amino acids
can be categorized as polar, neutral, and hydrophobic. According
to the definition of CTD, composition (C) is the percent
occurrence of polar, neutral, and hydrophobic residues; transition
(T) indicates the frequency in transition; and distribution (D) is
the position of the first 25, 50, 75, and 100% amino acid of each
group.

C(r) =
N(r)

N
, r∈ {polar, neutral, hydrophobic} (12)
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FIGURE 1 | Flow chart of a framework for predicting thermophilic proteins.

where N(r) and N indicate the number of amino acids of type
r and sequence length, respectively (Tomii and Kanehisa, 1996;
Dubchak et al., 1999).

Feature Selection
Redundant features and noise affect the prediction performance
of the model. In order to get the best prediction performance, it is
necessary to remove redundant features and noise using feature
selection methods (Tang et al., 2020; Zhang Z. M. et al., 2020;
Dao et al., 2021c). In this study, the analysis of variance (ANOVA;
Tang et al., 2018) was applied for feature ranking, and a sequential
backward selection strategy was used to pick out optimal features.
The following section will introduce the method briefly.

Analysis of variance (ANOVA) can be used to select the
best feature subsets based on F-value. F-value is the ratio of
the variance between the sample types and the variance within
the samples. A feature’s greater F-value implies that the feature
can contribute more to discriminating between positive and
negative samples.

F-value for a feature m can be calculated as:

F(m) =
s2

b(m)
s2w(m)

(13)

where s2
b is the variance between the features and s2

w is the
variance with each feature’s sample. These variances can be
represented as:

s2
b(m) =

K∑
i=1

ni

(∑ni
j=1 fij(m)

ni
−

∑K
i=1

∑ni
j=1 fij(m)∑K

i=1 n = i

)2 /
df b (14)

s2
w(m) =

K∑
i=1

ni∑
j=1

(
fij(m)−

∑K
i=1

∑ni
j=1 fij(m)∑K

i=1 ni

)2 /
df w (15)

where K denotes the total features, N denotes the total samples,
fij(m) denotes the m-th feature of the j-th sample in the i-th
group, and ni denotes sample in the i-th group. The degree of
freedom for between features dfb and within features dfw was K-1
and N-1, respectively. Detailed descriptions about ANOVA can
be referred to as reference (Tang et al., 2018).

Classification
For classification, we examined a number of classifiers, including
Support Vector Machine (SVM; Tang et al., 2017), K Nearest
Neighbor (KNN; Zuo et al., 2013; Zulfiqar et al., 2021a),
Random Forest (RF), and Multi-layer Perceptron (MLP) for
training the model. The following sections will introduce these
classifiers briefly.
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Support Vector Machine
Support vector machine maps the features in multi-dimensional
space and defines the optimal hyperplane to separate the two
classes using a kernel function. Different kernels functions can be
used in SVM. Because of the non-linearity of data, we used radial
basis function (RBF), which can be represented for vectors a and
b by formula as:

K(a, b) = exp (−γ ||a− b||2) (16)

where γ denotes the training parameter. The tradeoff between
a lower training error and large margins is controlled by a
regularization factor C. In the present study, the value of γ and C
was set to 0.0001 and 900, respectively. For further details about
SVM, see (Joachims, 1998).

Random Forest
Random forest is based on ensemble methodology to predict the
final results. It involves various decision trees, each containing a
decision node, leaf node, and root node. A leaf node is the output
of each decision tree. The final output is based on the majority
voting system (Lv et al., 2020a). If we have attributes2 of a vector
x and decision tree based on these attributes is h(x, 2), then the
random forest can be defined as:

f ={h(x,2k)}, k = 1, 2, ..., k (17)

In the present study, the hyperparameters maximum depth,
minimum sample split, and n_estimators were set 100, 10, and
500, respectively. For a detailed algorithm of random forest, refer
to reference (Breiman, 2001).

K Nearest Neighbors
K nearest neighbor is the most commonly used classifier. It
represents the feature vectors as points in feature space and
calculates the distance between these points. The final decision
is made based on the distance between these points. KNN
commonly uses the Euclidean distance as the distance metric.

The Euclidean distance is given below:

dist(M,N) =

√√√√ n∑
i=1

ci(mi−ni)
2 (18)

where M and N are two feature vectors while m shows feature
space dimensionality (Uddin et al., 2019). The present study
applied the KNN classifier using hyper parameters n-neighbor,
P, and leaf-size as 6, 1, and 2, respectively.

Multi-Layer Perceptron
Deep learning is also a popular method in bioinformatics (Dao
et al., 2021a,b; Lv H. et al., 2021; Wang et al., 2021; Zulfiqar et al.,
2022). MLP is a feed-forward neural network containing input,
hidden, and output layers for receiving input data, processing
data, and performing final prediction, respectively. It trains
the network using a supervised learning technique known as
backpropagation. The following equation describes the output
result of each trained neuron.

f (α) = f (
∑
i = 1

wi xi+b) (19)

where xi indicates the input values of the firing neuron, wi
are their weights, f represents the activation function, and b
presents the activation threshold of the neuron. For a detailed
MLP algorithm, refer to the reference (Taud and Mas, 2018).
In the present study, rectified linear activation unit (ReLU) was
used as an activation function in the hidden layer; for the outer
layer activation function, a sigmoid was used. Input, hidden,
and output layers containing 83, 100, and 1 neuron, respectively,
were used to train the model. The detail of hyperparameters is
presented in Table 1.

Performance Evaluation
In order to evaluate the overall model performance, the following
parameters were used (Lv et al., 2020b,d; Shao et al., 2021).

Sn =
TP

TP + FN
(20)

Sp =
TN

TN + FP
(21)

Acc =
TP + TN

TP + FP + TN + FN
(22)

MCC =
TP × TN − FP × FN

√
(TP + FN)(TN + FN)(TP + FP)(TN + FP)

(23)

where Sn, Sp, Acc, and MCC denote sensitivity, specificity,
accuracy, and Matthews’s correlation coefficient. Thermophilic
proteins classified as thermophilic were denoted TP
(true positive), Non-thermophilic proteins classified as
non-thermophilic were denoted TN (true negative), Non-
thermophilic proteins classified as thermophilic were denoted
by FP (false positive), and thermophilic proteins classified as
non-thermophilic were denoted by FN (false negative).

RESULTS AND DISCUSSION

Performance Evaluation
For performance evaluation, seven descriptors including AAC,
tPseAAC, aPseAAC, DC, DDE, CKSAAP, and CTD were used
to create numerical vectors from protein sequences. In order
to use these numerical vectors, MLP-based models were trained
to evaluate their performances. Results showed that the AUC

TABLE 1 | Best hyperparameters for MLP classifier.

Hyperparameters Value

Batch size 60

Epochs 1200

Learning rate 0.001

Momentum 0.8

Decay 1e−8

Nesterov True

Verbose 1
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are 0.9723, 0.9551, 0.9519, 0.8812, 0.9081, 0.9081, and 0.9786
for AAC, tPseAAC, aPseAAC, DC, DDE, CKSAAP, and CTD,
respectively (as shown in Table 2). In order to remove the
redundant features and improve the prediction performance of
the model, a feature selection method should be used to pick out
the optimal features from each descriptor. In this work, ANOVA
was used to rank features for selecting the best feature subsets
from the seven types of descriptors. Table 2 also recorded the
performance of each descriptor after feature selection. It showed
that AAC, tPseAAC, aPseAAC, DC, DDE, CKSAAP, and CTD
produced the best AUC of 0.9735, 0.9580, 0.9610, 0.9143, 0.9165,
0.8349, and 0.9644, respectively. Obviously, the performance
of each descriptor increased after the feature selection except
the CTD descriptor; therefore, we considered all features of
CTD in our study.

The above results and analysis have demonstrated that each
descriptor has useful information to discriminate thermophilic
proteins from non-thermophilic proteins. We adopted a feature
fusion strategy to include the valuable information of all selected
features from each descriptor in model training. In feature
fusion, the selected optimal feature subsets of seven descriptors
were fused and inputted into the MLP classifier to distinguish
thermophilic proteins from non-thermophilic proteins. Table 2
shows that the AUC increased to 0.9864, suggesting that feature
fusion is very effective and has made an outstanding contribution
to improving the model’s prediction performance.

Performance Comparison on Different
Algorithms
In order to demonstrate that the MLP classifier has better
prediction performance, we also investigated the performance of
other machine learning methods, including SVM, Random forest,
and KNN. These methods were trained and tested using the same
fused features. The results are recorded in Figure 2. As shown

TABLE 2 | Performance of descriptors before and after feature selection and in
feature fusion.

Descriptors SN SP AAC MCC AUC

Before feature
selection

ACC 0.9304 0.9308 0.9306 0.8626 0.9723

tPseAAC 0.9011 0.8793 0.8899 0.7914 0.9551

aPseAAC 0.8901 0.8720 0.8808 0.7714 0.9519

DC 0.7546 0.8720 0.8149 0.5963 0.8812

DDE 0.8022 0.8374 0.8203 0.6319 0.9081

CKSAAP 0.7912 0.5398 0.6619 0.3855 0.7365

CTD 0.9377 0.9100 0.9235 0.8612 0.9786

After feature
selection

ACC 0.9524 0.9239 0.9377 0.8902 0.9735

tPseAAC 0.8938 0.8962 0.8950 0.7943 0.9580

aPseAAC 0.8971 0.8824 0.8895 0.7863 0.9610

DC 0.8859 0.8754 0.8416 0.6620 0.9143

DDE 0.7802 0.8651 0.8238 0.6430 0.9165

CKSAAP 0.7070 0.8374 0.7740 0.5156 0.8349

CTD 0.9167 0.9135 0.9150 0.8330 0.9644

Feature fusion 0.9634 0.9619 0.9626 0.9269 0.9864

FIGURE 2 | Performance comparison of MLP classifier with other classifiers.

in Figure 2, the performance of MLP classifiers was better than
other classifiers. Therefore, we considered using a MLP-based
model to establish a software package.

Comparison to Other Models
Many models have been proposed for thermophilic protein
identification (Gromiha and Suresh, 2008; Lin and Chen, 2011;
Wang et al., 2011; Nakariyakul et al., 2012; Fan et al., 2016; Tang
et al., 2017; Li J. et al., 2019; Feng et al., 2020; Guo et al., 2020).
All proposed models were established based on machine learning
methods and were evaluated by cross-validation. However,
our model was examined on independent data. Moreover, the
benchmark dataset used in the present study was rigorous and
objective. Moreover, most of these published works did not
establish available tools that are not only non-practical but also
prevent us from making a fair comparison. The only available
web-server for the identification of thermophilic proteins was
established by Lin and Chen (2011). We performed a comparison
with the web server using the same validation dataset. Their
model (Lin and Chen, 2011) displayed 95.30% accuracy, while
our model produced an accuracy of 96.26%.

Feature Analysis
Our model produces good prediction performance and
shows that the characteristics used can effectively characterize
thermophilic proteins. Thus, we performed an analysis on
features based on their contribution to model performance.
In order to find feature contribution, we used permutation
feature importance. The contribution of features to the
performance of the model is represented in Supplementary
Table 1. The following section will analyze the feature of each
descriptor briefly.

The composition and arrangement of amino acids determine
the unique function of a protein. At present, the research on
thermophilic proteins uses the composition characteristics of
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amino acids. The current study involves a detailed analysis
of AAC. We found that the frequencies of alanine (A),
lysine (K), valine (V), isoleucine (I), glutamine (Q), aspartic
acid (D), tyrosine (Y), serine (S), glutamic acid (E), and
threonine (T) were significantly different between the two
classes. It is speculated that these amino acids have crucial
information in providing either thermophilicity or non-
thermophilicity to proteins. Tyrosine contributed the most to
model performance among these amino acids and showed
the weight 0.0249 ± 0.0080. Moreover, lysine, glutamic
acid, glutamine, and aspartic acid also contributed well to
model performance and showed the weights 0.0033 ± 0.0026,
0.0041 ± 0.0017, 0.0036 ± 0.0049, and 0.0162 ± 0.0036,
respectively. Glutamate, lysine, tyrosine, glutamic acid, and
aspartic acid residues were more common in thermophilic
proteins than non-thermophilic proteins. Thermophilic proteins
contain highly charged amino acids, which contribute to the
thermal stability of proteins. Lysine, glutamine, aspartic acid,
and glutamic acid residues belong to charged amino acids,

while tyrosine belongs to polar amino acids. These amino acids
participate in forming salt bridges and hydrogen bonds, which
provide thermal stability to proteins. These results are consistent
with previous studies (Liu et al., 2011; Wang et al., 2011;
Panja et al., 2020).

Valine and isoleucine showed good ability for thermophilic
protein identification. In permutation feature importance,
valine and isoleucine showed the weights 0.0201 ± 0.0056
and 0.0101 ± 0.0028, respectively. Isoleucine and valine
are hydrophobic amino acids. It has been reported that
hydrophobicity contributes to the thermal stability of proteins,
as during protein folding, hydrophobic amino acids get buried
inside the protein to form a hydrophobic core; this hydrophobic
core contributes to the thermal stability of proteins (Baldwin,
2007; Gromiha and Suresh, 2008).

Amino acid alanine, threonine, and serine indicated an
important role in model performance and showed the weights
0.0087 ± 0.0018, 0.0122 ± 0.0045, and 0.0031 ± 0.0039,
respectively. Figure 3 illustrates the contribution of AAC features

FIGURE 3 | Contribution of features of all descriptors to model performance.
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to model performance. Non-thermophilic proteins contain
more alanine, threonine, and serine residues than thermophilic
proteins, consistent with a previous study by Cambillau and
Claverie (2000). Alanine carries less charge, while threonine and
serine are neutral amino acids, so these amino acids are rarely
involved in forming hydrogen bonds and salt bridges, indicating
that the proteins enriched with these amino acids can be prone to
thermal denaturation (Lin and Chen, 2011).

Amino acid composition is an excellent descriptor to
discriminate thermophilic proteins from non-thermophilic
proteins. Previous studies have also confirmed the contribution
of AAC to protein classification tasks (Gromiha and Suresh,
2008; Mahmoudi et al., 2016). Although AAC plays a good role
in protein classification, it also lacks sequence information. The
traditional tPseAAC and aPseAAC (Chou, 2001, 2005) are good
options for the lack of sequence information in AAC. Wang et al.
(2011) and Chen et al. (2016) also confirmed the critical role of
these descriptors in protein classification.

Both tPseAAC and aPseAAC are used to describe the
sequence information of amino acid residues in protein
sequence. In tPseAAC, Xc1.K, Xc1.E, Xc1.D, Xc1.Q, Xc1.T,
Xc1.A, Xc1.G, and Xc1.S were valuable features with the weights
of 0.0045 ± 0.0019, 0.0041 ± 0.0017, 0.0040 ± 0.0029,
0.0036 ± 0.0049, 0.0035 ± 0.0015, 0.0030 ± 0.0029,
0.0026 ± 0.0027, and 0.0018 ± 0.0026, respectively (Figure 3).
The features Pc1.Q, Pc1.E, Pc1.I, Pc1.T, Pc1.A, Pc1.S, Pc1.G, and
Pc1.K in aPseAAC presented important contribution to model
performance. They showed the weights 0.0086 ± 0.0030,
0.0081 ± 0.0046, 0.0060 ± 0.0057, 0.0047 ± 0.0030,
0.0047 ± 0.0026, 0.0042 ± 0.0030, 0.0034 ± 0.0023, and
0.0018 ± 0.0014, respectively (Figure 3). Our in-depth analysis
showed that hydrophobic amino acid and polar amino acid
based features were more frequent in thermophilic protein, while
uncharged and neutral amino acid based features were more
frequent in non-thermophilic proteins.

Dipeptides are also an important feature to distinguish
thermophilic proteins from non-thermophilic proteins. Our
statistical analysis showed that the occurrence frequencies of
KE, LK, EE, EK, AA, LA, KI, IK, KK, and EI have a considerable
variance between the two classes of proteins. The ranking of
features also confirmed the role of these dipeptides in model
performance. Dipeptide KE, LK, EE, EK, AA, LA, KI, IK, KK,
and EI showed the weights 0.0113 ± 0.0029, 0.0086 ± 0.0045,
0.0072 ± 0.0019, 0.0070 ± 0.0040, 0.0069 ± 0.0043,
0.0058 ± 0.0010, 0.0043 ± 0.0013, 0.0040 ± 0.0017,
0.0029 ± 0.0026, and 0.0023 ± 0.0017, respectively (Figure 3).
Dipeptide KE, LK, EE, EK, KI, IK, KK, and EI have charged
at biological pH, showing a great trend of forming salt
bridges and hydrogen bonds, which contributes to the
thermal stability of proteins. AA and LA have poor charge
capability and were found more in non-thermophilic proteins
(Nakariyakul et al., 2012; Panja et al., 2020). Previous studies
have also confirmed the role of dipeptide composition in
identifying thermophilic proteins (Gromiha et al., 2005; Lin
and Chen, 2011). MLP model trained on these selected features
reveals that these features have good capability to distinguish
thermophilic proteins.

The dipeptide deviation from the expected mean also showed
meaningful information for the identification of thermophilic
proteins. Features including EE, AA, and KE deviation from
expected mean showed good ability to identify thermophilic
proteins (Table 2). The dipeptide deviation for EE, AA, and
KE showed the weights 0.0098 ± 0.0032, 0.0039 ± 0.0028, and
0.0025 ± 0.0012, respectively (Figure 3). Previous studies have
also reported the effective contribution of dipeptide deviating
from the expected mean in protein classification tasks (Saravanan
and Gautham, 2015; Ho Thanh Lam et al., 2020). In addition
to these dipeptide-related descriptors, we also considered the
composition of k-spaced amino acid pairs, representing the
paired amino acid frequency separated by any other amino acid.
It is a valuable descriptor and has been widely used in previous
studies for protein classification (Jang et al., 2020; Ju and Wang,
2020; Zhang L. et al., 2020; Zulfiqar et al., 2021b). In the present
study, E∗∗K, E∗∗∗K, A∗∗A, and A∗A were found to be containing
meaningful information for thermophilic protein identification
and showed the weight 0.0077 ± 0.0041, 0.0057 ± 0.0014,
0.0031± 0.0034, and 0.0028± 0.0015, respectively (Figure 3).

Composition, transition, and distribution involves the
composition, transition, and distribution of hydrophobic, polar,
and neutral residues. Like other descriptors, the hydrophobic
and polar residue-based features of CTD were more frequent
in thermophilic proteins while neutral residues-based features
were more frequent in non-thermophilic proteins. Permutation
feature importance of descriptor CTD is represented in
Supplementary Table 2. In previous studies, the CTD has
been extensively used for protein classification purposes. Wang
et al. (2011) and Zulfiqar et al. (2021b) also reported CTD as a
valuable descriptor for thermophilic protein identification. In
the present study, the CTD showed an excellent capability to
identify thermophilic proteins (Table 2). For CTD, all features
performed better than the selected features, so we used CTD
features without selection. MLP model trained on CTD features
performed good results (Table 2).

iTHERMO

In addition to proposing a validated model, it is essential
to establish a tool to promote the application of the model.
To meet this requirement, we established an application
software package, iThermo http://lin-group.cn/server/iThermo/
index.html. The software package can provide easy access to the
model. The software package can be used to make efficient and
accurate predictions for thermophilic proteins. It is anticipated
that this study will provide a good alternative to laborious,
expensive, and time-consuming laboratory practices.

CONCLUSION

Thermophilic proteins can withstand the harsh conditions
of elevated temperature. Thermophilic proteins have attracted
much attention in biotechnology and industrial applications.
High temperature leads to protein denaturation, so it is urgent
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to establish a reliable identification method of thermophilic
proteins. The identification of thermophilic proteins based on
biochemistry is time-consuming, laborious, and expensive. The
computational method-based thermophilic protein identification
can provide an attractive choice for rapid, cost-effective, and
straightforward identification of thermophilic proteins.

Considering this urgency, this study constructed a reliable
benchmark dataset and used this dataset to train an MLP
classifier. The model has good performance on an independent
dataset and can accurately identify thermophilic proteins with an
accuracy of 96.20%. In order to facilitate access to the model, a
software package was also established. The high performance of
the model and its availability as flexible packaging can provide a
good choice for thermophilic protein study.
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