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Whole-genome sequence databases continue to grow. Collection times between samples 
are also growing, providing both a challenge for comparing recently collected sequence 
data to historical samples and an opportunity for evolutionary analyses that can be used 
to refine match criteria. We measured evolutionary rates for 22 Salmonella enterica 
serotypes. Based upon these measurements, we propose using an evolutionary rate of 
1.97 single-nucleotide polymorphisms (SNPs) per year when determining whether genome 
sequences match.
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BACKGROUND

Whole-genome sequence (WGS) databases exist for many important bacterial pathogens1 and 
the analysis of such data is routine during surveillance and outbreak investigations (Allard 
et  al., 2016). WGS data is commonly used to identify matching isolates. (i.e., isolates that 
arose from a recent source of contamination; Pightling et  al., 2018). Determination of isolate 
matches usually relies on estimates of genomic distances and tree topologies; generally, these 
determinations do not incorporate collection times of isolates (Pightling et  al., 2018; Wang 
et  al., 2018). Omitting this temporal information is satisfactory when the time spans between 
collection dates are small, but evolutionary changes could lead to incorrectly inferring mismatches 
when the time spans are large. That is, isolates collected only a year apart are expected to 
have fewer genomic differences than isolates that were collected 10 years apart; applying the 
same genomic distance match criteria to each pair may not be appropriate. Thus, it is necessary 
to develop match criteria that incorporate the time spans separating collection times. Here, 
we  present the estimated evolutionary rates of bacteria representing 22 Salmonella enterica 
serotypes that were collected from US food manufacturers and show how those rates can 
be incorporated into distance analyses that are used to assess matches between S. enterica genomes.

1�ncbi.nlm.nih.gov/pathogens/organisms/
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FIGURE 1  |  Phylogeny and evolutionary rate measurements of 29 Salmonella enterica serotypes. Values on branches of the phylogenetic tree indicate the numbers 
of taxa that comprise each clade. Green labels indicate that ≥ 100 taxa were available for evolutionary analyses, while purple labels show clades with < 100 taxa that 
were not analyzed. Clades that have ≥ 100 taxa but did not exhibit clock-like behavior are labeled with black. Results of BEAST analyses are indicated in the graph 
with black dots. Bars indicate 95% HPD values. Gray shading shows the averages of the serotypes.
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MATERIALS AND METHODS

Dataset
We identified 15,580 S. enterica genome sequences that: (1) 
originated in the United  States from 2014 to 2019, (2) were 
generated on Illumina platforms, and (3) were submitted to 
the National Center for Biotechnology Information’s Pathogen 
Detection (NCBI’s) portal2 by the U.S. Food and Drug 
Administration’s Center for Food Safety and Applied Nutrition 
(Supplementary Table  1).

2�ncbi.nlm.nih.gov/pathogens

Phylogenetic Analysis
We assembled 15,580 S. enterica genome sequences with SPAdes 
v3.13.0 (Bankevich et al., 2012) and used SeqSero v1.0.1 (Zhang 
et  al., 2015) to predict their serotypes. We  selected 11,701 taxa 
for further analysis that represent the 29 serotypes with at least 
100 isolates (Supplementary Table 2). We defined open reading 
frames with PROKKA v1.12 (Seemann, 2014) and used BLAST 
v2.7.1+ (Altschul et  al., 1990) to find 1,152 loci that comprise 
an extended multi-locus sequence typing (MLST) scheme 
(Pettengill et al., 2016). Sequence data were aligned with MAFFT 
v7.305b (mafft -adjustdirection infile > outfile; Katoh and Standley, 
2013). Parsimony informative single-nucleotide polymorphisms 
(SNPs) were identified and concatenated into a single alignment 
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with FASconCAT-G v1.04 (FASconCAT-G_v1.04.pl. -o -j -s; 
Kuck and Longo, 2014). The supermatrix was phylogenetically 
analyzed with FastTree v2.1.11 SSE3 (FastTreeMP -fastest -nt 
-gtr < FcC_supermatrix.fas > tree; Price et  al., 2009, 2010). The 
resulting tree was edited with FigTree v1.4.4.3

Evolutionary Rate Measurements
We estimated evolutionary rates for 22 lineages that are comprised 
of at least 100 taxa. We  generated lineage-specific phylogenetic 
analyses using the CFSAN SNP Pipeline (Davis et  al., 2015). 
We  then investigated lineages within those trees with TempEst 
v1.5.3 (Rambaut et  al., 2016) to determine which exhibit clock-
like behavior and to remove long-branches. Those lineages with 
clock-like behavior were analyzed further. We generated alignments 
of assemblies for each clock-like lineage with SKA v1.0, using 
default settings, and identified regions of recombination with 
Gubbins v1.4.5 (-first-tree-builder fasttree -tree-builder fasttree 
-first-model JC -model GTRCAT; Croucher et al., 2015). Regions 
of recombination were masked and the resulting alignments 
were analyzed with BEAST v2.6.2, using default settings (Bouckaert 
et  al., 2019). We  used the General time reversible (GTR) 
nucleotide substitution (Tavaré, 1986) model with both the Strict 
and Relaxed (Drummond et al., 2006) Log Normal clock models 
and the Coalescent Constant (Drummond et  al., 2005) 
demographic model for 108 generations, sampling every 5,000 
generations. BEAST outputs were visualized with Tracer v1.7.1 
(Rambaut et  al., 2018). BEAST runs with effective sampling 
sizes of at least 200 were analyzed further. For four lineages, 
both the Strict and Relaxed models had effective sampling sizes 
of at least 200. In these cases, nested sampling was used to 
select the best-fitting models (Bouckaert et  al., 2019). The 
numbers of SNPs per year were calculated by multiplying the 
rates estimated with BEAST and the numbers of unmasked 
sites in the alignments. The slowest rates are reported for those 
serotypes in which multiple lineages were analyzed.

3�http://tree.bio.ed.ac.uk/software/figtree

RESULTS AND DISCUSSION

We identified the most common S. enterica serotypes that 
were isolated from food and environmental samples in the 
United  States and submitted to the NCBI by the US Food 
and Drug Administration from 2014 to 2019. We  then 
phylogenetically analyzed the WGS data (Figure 1). Interestingly, 
we  found that 24.2% (7/29) of the serotypes examined are 
polyphyletic (Cerro, Derby, Give, Oranienberg, Saintpaul, 
Senftenberg, and Thompson), which has been documented 
elsewhere (Timme et  al., 2013) and further supports that 
serotypes are not always reliable for estimating genomic similarity 
(Wattiau et  al., 2011).

We estimated evolutionary rates for 22 lineages (Figure  1, 
green labels and Supplementary Table 3). The average evolutionary 
rate measured is 1.97 single-nucleotide polymorphisms (SNPs) 
per year (Figure  1, dark gray shading), with an average highest 
posterior density (HPD) interval of 0.48-4.61 SNPs/year 
(Figure  1,  light gray shading). The slowest evolutionary rate is 
0.18 SNPs/year for S. Schwarzengrund (HPD 0-0.53), while the 
fastest is 5.10 SNPs/year for S. Altona (HPD 2.41-7.72). However, 
since most of the rates measured fall within the average HPD 
interval, disparities between lineages are less likely to represent 
true evolutionary differences than to reflect the variability inherent 
in rate estimates. Thus, we  propose that the average of 1.97 
SNPs/year be  used for determining whether genomes match, 
while being mindful that evolutionary rates for lineages are likely 
to vary, depending upon the conditions that they are exposed to.

These results can be used when establishing matches between 
S. enterica genome sequences. For instance, evolutionary rates 
can be  applied to genome sequence data that were collected 
at different times. As a test case, we  used the evolutionary 
rates observed here to adjust SNP distances for a real-life 
genome sequence data-set (Figure  2A). Salmonella enterica 
were isolated from samples that were taken from the 
environment of a food processing facility and products that 
originated from that facility.  The samples were collected over 

A B C

FIGURE 2  |  Phylogenetic and pairwise SNP analysis of Salmonella enterica collected from the same facility over time. A phylogeny (A) and pairwise SNP distance matrix 
(B) was generated with the CFSAN SNP pipeline. Distances were adjusted manually to reflect the time spans separating collections at the rate of 1.97 SNPs/year (C).
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a time span of 8 years. Salmonella  enterica that were collected 
in 2010 are estimated to be 16-22 SNPs distant from S. enterica 
collected from the same firm in 2018 (Figure  2B, orange 
and red squares). These SNP distances may obscure the true 
relationships between genomes, being beyond the range that 
may often be  considered when assessing matches. However, 
adjusting SNP distances by the average evolutionary rate 
of  1.97 SNPs/year (i.e., initial SNP distance-[1.97 SNPs/
year*(collection date difference in years)] = adjusted SNP 
distance, with a minimum of 0 SNPs) yields a range of 0-6 SNPs 
(Figure 2C, yellow and green squares), which more accurately 
reflects their shared origin.

CONCLUSION

As genome sequence databases continue to grow, evolutionary 
analyses are increasingly important for assessing matches between 
isolates that are separated by ever greater gaps in time. By 
applying an evolutionary rate of 1.97 SNPs per year, the time 
spans separating sample collections can be  accounted for. The 
rate proposed here provides general guidance but should not 
be  used in a strict manner, since conditions in individual 
cases or lineages may vary. This approach will help to elucidate 
relationships between bacteria, even as changes accumulate, 
and to reduce bias that may be  introduced when comparing 
WGS data.
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