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Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability

in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial

resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic

dichotomy, thus leaving important questions regarding the microbial response to

changing conditions unanswered. Here, we use machine learning and differential

abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic

Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by

the relative abundance of higher taxa and (2) influence the distribution of individual

Operational Taxonomic Units. We find that some of the most abundant classes of

microorganisms can be used to classify samples according to oxygen concentration.

At the level of Operational Taxonomic Units, however, representatives of common

classes are not differentially abundant from high-oxic to low-oxic conditions. This

weakened response to changing oxygen concentration suggests that the abundance

and prevalence of highly abundant OTUs may be better explained by other variables than

oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the

benthos, and that the microbiome then becomes more heterogeneous as oxygen drops

below 25 µM. Our analytical approach takes into account the oft-ignored compositional

nature of relative abundance data, and provides a framework for extracting biologically

meaningful associations from datasets spanning multiple sedimentary cores.
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1. INTRODUCTION

Oxygen has a profound influence on microbial life and its
associated activity (Glud, 2008; Teske, 2012; Orsi, 2018; Hoshino
et al., 2020). Its mere presence is lethal to some microbes,
whereas for others the oxygen tension exerts a critical control on
their metabolism by influencing enzyme kinetics (Lu and Imlay,
2021). To aerobes, oxygen is the most energetically favourable
electron acceptor (Froelich et al., 1979; Orsi, 2018), but it has
been shown that common benthic microbial lineages exhibit
growth patterns consistent with highly varying acceptance and
usage of oxygen (Coskun et al., 2019). To anaerobes, conversely,
oxygen is toxic and many defence mechanisms have evolved
since oxygen first became abundant on Earth around 2.5 billion
years ago (Lu and Imlay, 2021). As such, the presence or
absence of oxygen has a strong impact on microbial community
composition and structure in any given environment (Zhao et al.,
2019; Hoshino et al., 2020). However, the microbial response to
the oxygen gradient and the transition zone between oxic and
anoxic conditions is not well studied.

Deep-sea sediments constitute very stable environments with
well-defined oxygen profiles and host a vast microbial biosphere
(Kallmeyer et al., 2012; Parkes et al., 2014; D’Hondt et al., 2015;
Jørgensen and Marshall, 2016; Orsi, 2018). These sediments are,
therefore, ideal environments to study the effect of changing
oxygen concentration on microbial communities. Numerous
studies have already aimed at providing an overview of the
microbial inventory of deep-sea sediments, both in terms of
biomass (e.g., Kallmeyer et al. 2012; Parkes et al. 2014) and
taxonomic diversity (e.g., Hoshino et al. 2020; Zinger et al.
2011; Hoshino and Inagaki 2019) by analysing marker genes
such as the 16S rRNA gene. Coherent and sustained sampling
efforts of both microbial and geochemical data, combined with
cost-efficient high throughput sequencing, as well as increased
computational power have resulted in recent studies using data
from multiple sediment cores, improving the understanding of
the spatial distribution of microbial communities, as well as the
relationship with their immediate geochemical environment at
both regional and global scales. Examples of such regional studies
include hadal trenches in the West-Pacific (Peoples et al., 2019;
Hiraoka et al., 2020), the Mid-Atlantic (Vuillemin et al., 2019,
2020), the South-Atlantic Polar Front (Varliero et al., 2019), the
Dorado Outcrop in the East-Pacific (Zinke et al., 2018), the South
China Sea (Zhang et al., 2021), and the Norwegian-Greenland
Sea (Jørgensen et al., 2012; Zhao et al., 2020) to name but a few.
On the global scale, a recent report by Hoshino et al. (2020) has
resulted in a globally spanning overview of microbial diversity
in varying marine sediments with hitherto unprecedented detail.
Their findings are in line with other studies that suggest that
organic carbon content and the presence or absence of oxygen
are key factors for explaining variability within sedimentary
microbial populations in subsurface sediment (Jørgensen and
Marshall, 2016; Orsi, 2018).

Consistent and sustained sampling efforts notwithstanding,
studying changes in microbial communities as a function of
geochemical variability in sediments is still faced with a number

of challenges, many of these are related to inadequate context
data and low spatial sampling resolution, ultimately limiting the
possibility of using advanced data mining strategies to draw
unambiguous conclusions based on abundance and prevalence
patterns. Given adequate data, a variety of machine learning
techniques allow new ways of exploring microbial interactions
and map microbial response to environmental variables, both of
which are key components of sedimentary microbiome studies
(Qu et al., 2019; Goodswen et al., 2021; Marcos-Zambrano
et al., 2021). Moreover, the compositional nature of OTU tables
renders common correlation methods invalid because these fail
to consider the varying row sums of each sample (Aitchison,
1982; Lovell et al., 2015; Gloor et al., 2017; Luz Calle, 2019).
Compositionally sound techniques per definition acknowledge
the arbitrary row sums imposed by various stages of sequence
processing (Gloor et al., 2017). The abundance of individual
OTUs or taxa is consequently expressed as proportions instead
of read counts, and changes in abundance with respect to other
OTUs or context variables is referred to as differential abundance
(Lovell et al., 2015; Erb and Notredame, 2016; Gloor et al.,
2017; Quinn et al., 2017). However, neither machine learning
nor differential abundance techniques are commonly applied in
sedimentary microbiome studies.

Here, we use Support VectorMachines (SVM) and differential
abundance in order to investigate the response of common
microbial taxa to the depletion of oxygen and onset of anoxia in
marine sediments. Our dataset comprises 184 sediment samples
from 11 consistently sampled and sequenced sediment cores
collected along the Arctic Mid-Ocean Ridge (AMOR) in the
Norwegian-Greenland Sea between 2010 and 2017. The sediment
samples follow the oxygen gradient from >150 µM to anoxia. In
order to alleviate and overcome loss of sensitivity due to under-
sampling and allow for statistically valid testing, we adhere to
CoDA principles (Gloor et al., 2017; Luz Calle, 2019). We show
broad-scale prevalence and abundance patterns of cosmopolitan
taxa suggested to constitute a core seafloor microbiome (Zinger
et al., 2011; Bienhold et al., 2016) and show that many microbial
classes predict the oxygen concentration of sediment samples
substantially above null accuracy, indicating a persistent, intimate
connection with declining oxygen concentration down-core. Our
findings also suggest that a relatively homogeneous microbiome
is recruited to the benthos from the overlying waters and only
becomes more heterogeneous as oxygen drops into the 10–
25 µM interval. This localises the onset of the oxic-anoxic
transition zone, one of several geochemical transition zones
relevant to down-core community assembly processes (Orsi,
2018). By mapping differential abundance of individual OTUs
along the oxygen gradient we find marked differences in how
closely the most abundant microbial classes adhere to the
oxygen concentration gradient. Despite their strong ability to
classify samples according to oxygen concentration intervals,
highly abundant representatives of classes like Nitrososphaeria
are nevertheless not differentially abundant across the oxygen
gradient, suggesting that other variables like nitrate are required
to fully explain their abundance and prevalence patterns in sub-
surface sediments.
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FIGURE 1 | Coring locations for all sediment cores used in this study. Cores labelled in red were discarded during post-processing and decontamination.

GS14_GC08 and GS17_GC04, as well as GS15_GC01 and GS17_GC02 were retrieved too close for their points to be discernible on this map. The map was created

using GeoMapApp (v.3.6.10; https://geomapapp.org). Coring location for all 11 sediment cores used in the analyses of this study. Numbers from 1-11 refers to core

name; 1: GS16_GC05, 2: GS16_GC06, 3: GS14_GC09, 4: GS15_GC01, 5: GS17_GC02, 6: GS14_GC12, 7: GS16_GC04, 8: GS14_GC08, 9: GS17_GC04, 10:

GS17_GC05, 11: GS14_GC02. Note that site 4 and 5 are from approximately same location, so are 8 and 9. The map was created using GeoMapApp (v.3.6.10;

https://geomapapp.org).

2. MATERIALS AND METHODS

2.1. Coring Locations and Sediment
Sampling
The initial dataset comprised data from 415 samples obtained
from 16 individual sediment cores collected along the Arctic
Mid-Ocean Ridge (AMOR) system from 2010 to 2017 during
annual summer cruises to the Norwegian-Greenland Sea with
R/V G.O. Sars. However, five cores were discarded due poor
geochemical resolution, leaving 11 cores for downstream analyses
(Figure 1). The sediment cores cover a geographic distance
of 483 nautical miles from the Jan Mayen fracture zone
in the south to the northern parts of the Knipovich ridge
and span water depths from 1,036 to 3,493 meters below
sea surface.

Onboard, cores were immediately split in halves and sub-
samples for molecular microbial analyses were taken at regular
depth intervals with sterile syringes from the middle section
of each core (see the Supplementary Material for a complete
sample overview). The samples were stored at −80◦C until later
onshore analyses.

Dissolved oxygen concentration was measured immediately
after core-splitting using a needle-type fibre-optic oxygen
microsensor connected to a MICROX TX3 single channel
oxygen meter with a lower detection limit of 3.0 µM,
which was calibrated according to the manufacturer’s
protocols (optodes, PreSens, Regensburg, Germany).
Optodes were inserted manually into the sediments.

For a complete overview of measurement depths, see
Supplementary Material.

2.2. DNA Extraction, PCR Amplicon Sample
Preparation and Sequencing
DNA extraction, sample preparation and sequencing for
all samples follow the protocol previously described in
(Zhao et al., 2020). In brief, following DNA extraction,
DNA extracts were amplified in duplicate using the 519f
(5′–CAGCMGCCGCGGTAA) forward and 805r (5′–
GACTACHVGGGTATCTAATCC) reverse primers, covering the
V4 of the prokaryotic 16S rRNA gene. Resulting amplicons were
cleaned and pooled equimolarly before final sample preparation
and sequencing using the Ion Torrent Personal GenomeMachine
(PGM) platform technology (Life Technologies). Sequencing
was performed in eight separate batches. All batches were
controlled for contamination using at least one extraction
blank, and there were 15 blanks in total for the entire dataset
(Supplementary Table S1).

2.3. Sequence Processing and
Post-processing
Sequences were processed using VSEARCH (v.2.15.1; Rognes
et al. 2016). First, Cutadapt (v.3.0; Martin 2011) was used
to remove primers. Sequences were trimmed to 220 bp and
then quality filtered allowing max 2 errors before dereplication.
Sequences were then pooled, and dereplicated again before
denovo and reference chimera detection. Following the first
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round of chimera detection, sequences were reverse-mapped
to original fasta files before clustering at 97% similarity. Then
followed another round of denovo and reference chimera
detection. The full processing script is available along with all
code necessary to reproduce the findings and results in this
study (cf. Data Availability Statement). We assigned taxonomic
classification to the identified OTUs using BLASTn (v.2.8.1;
Zhang et al. 2000) and the LCA classifier from CREST (v.3;
Lanzén et al. 2012) , using version 128 of the Silva database (v.128;
Quast et al. 2012) tailored towards environmental sequences.

In sequence post-processing, we first discarded all singletons
before removing possible contaminants using decontam with
negative control prevalence (v.1.6.0; Davis et al. 2018). All
OTUs classified to genus level were then checked against a
recently published list of laboratory contaminants (Eisenhofer
et al., 2019). Any genus present on the list was removed
from the dataset. Finally, GS14_GC14 was removed from
the dataset after a preliminary visual inspection showed that
samples from its sequencing run (CB3) clustered together
rather than according to gradient variables, likely due to
hydrothermal influence.

2.4. Sample Selection
Following post-processing and decontamination, we removed
all sequenced samples with fewer than 1,000 reads. This
threshold was set after inspecting plots of diversity (Shannon,
Simpson) against sample size; diversity was considerably
lower in samples with fewer than 1,000 reads, but there
was no discernible pattern between the two in samples
with more than 1,000 reads (Supplementary Figure S1). After
discarding shallow-sequenced samples, we removed all OTUs
represented with fewer than 100 reads. This threshold was
set pragmatically to avoid problems related to inconsistent
results when performing pairwise comparisons of very rare
OTUs (see section 2.6.2 below concerning the use of the
propd function). For example, an OTU could be assigned
as a member of group A when comparing group A and
B, B when comparing B and C, and C when comparing
A and C.

Because the focus of this study is to investigate the influence of
oxygen concentration and the transition into anoxic conditions
on microbial communities, we retained the uppermost three
samples from anoxic horizons in each core for analysis. The
beta diversity exhibited by the anoxic community relative to the
oxic community remained relatively constant when varying the
number of anoxic samples per core (Supplementary Figure S2),
allowing us to emphasise sample selection based on group size.
Hence, the selected set of anoxic samples ensures that we capture
the potential impact of anoxia while at the same time leaving
the total number of anoxic samples comparable to subsets of
oxic samples and thereby minimise group size bias. The final
dataset consisted of 4,565,880 reads comprising 4,424 OTUs in
184 samples from 11 different sediment cores, with sampling
horizons spanning from surface sediment to 190 cmbsf. The
dataset contains cores where oxygen penetration depth varies
between 10–116 cmbsf.

2.5. Categorisation of Oxic and Anoxic
Samples
In order to analyse the oxygen gradient in-depth, we needed to
acquire concentration values corresponding to each microbial
sample. However, most microbial samples did not have exact
depth-corresponding oxygen measurements. We, therefore, used
non-linear regression fitted with a mathematical expression
for exponential decay to interpolate oxygen concentration
at each microbial sampling horizon; this method was more
easily implemented and executed than other regression
methods while providing comparable results (data not shown).
Onboard oxygen measurements are usually discontinued
once the measured concentration falls below detection limit.
Extrapolation to microbial horizons in deeper layers, without
oxygen measurements, led to noisy results with concentrations
fluctuating between values above the oxygen sensor’s detection
limit (3 µM) to negative concentrations where zeros were
expected. Any sample with an interpolated concentration <5
µM was, therefore, set to 0. The resulting profiles may be seen
on Supplementary Figure S3.

We divided our dataset into seven different categories, each
spanning different oxygen intervals based on interpolated oxygen
concentration (Table 1). We are not aware of any biologically
justified division of sediment samples based on oxygen
concentration beyond the simple oxic-anoxic dichotomy and
note that microbial response to changing oxygen concentration
may differ between lineages, is not necessarily linear and in
general is not well constrained. The division is therefore based
on a pragmatic solution in which we let each category represent
samples spanning a given oxygen interval such that group sizes
are as even as possible in down-stream statistical analyses.
Specifically, samples belonging to each of the seven categories
were grouped to allow binary (two groups: high-/mid-oxic vs.
low-/anoxic), ternary (three groups: high-/mid-oxic vs. low-oxic
vs. anoxic) and quaternary (four groups: high-oxic vs. mid-oxic
vs. low-oxic vs. anoxic) classification (Table 1).

2.6. Statistical Analyses
OTU tables generated from sequencing data are compositional,
meaning that their row sums are arbitrarily imposed by various
stages of sample preparation and sequence processing (Gloor
et al., 2017; Luz Calle, 2019). Techniques based on principles
of Compositional Data Analysis (CoDA) incorporate statistical
tools that deal with this problem without resorting to the
controversial yet commonplace practice of rarefying samples
to the same sequencing depth (McMurdie and Holmes, 2014).
Moreover, CoDA principles discourage use of direct correlation
due to negative correlation bias and consequently increased
risk of spurious correlations in compositional data, particularly
within data subsets (van den Boogaart and Tolosana-Delgado,
2013). Instead, they advocate analysing log-ratio transformed
data, which both sidesteps the need for normalisation and relieves
the compositional nature of the data (Erb and Notredame, 2016).
Log-ratio transformations are sub-compositionally coherent,
meaning that analysing subsets of the transformed data will
not affect the relative distances within the analysed subset;

Frontiers in Microbiology | www.frontiersin.org 4 May 2022 | Volume 13 | Article 804575

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Møller et al. Oxic Response

TABLE 1 | Category assignment, number of samples, corresponding oxygen concentration intervals, and grouping used in binary, ternary, and quaternary classification

analyses.

Grouping

Category No. of samples O2 [µM] Binary Ternary Quaternary

1 9 >150 High-/mid-oxic High-/mid-oxic High-oxic

2 10 150–100

3 16 100–50

4 19 50–25

5 45 25–10 Mid-oxic

6 52 10–5 Low-/anoxic Low-oxic Low-oxic

7 32 <5 Anoxic Anoxic

permutation-invariance furthermore guarantees that the order
of the samples is irrelevant to analysis (Luz Calle, 2019). These
features make transformed data preferable to normalised data
for investigating abundance and prevalence patterns of specific
taxa, which is a core feature of most quantitatively oriented
microbiological studies.

All analyses were performed directly on collections of OTUs
grouped according to phylum, class and order levels. However,
we only report analyses on class level because the order level had
a relatively high fraction of unassigned sequence reads (35.9%)
which left much of the dataset unexamined (compared with
6.3% unassigned sequences on class level). Several of the most
abundant classes are contained within the same phyla (e.g.,
Proteobacteria) but possess very differing metabolisms, which
prompted us to focus on class rather than phylum level to
best capture these differences. Correlations are reported using
Spearman’s ρ.

2.6.1. Classification Using Support Vector Machines
One can assume that a tight, direct link between any taxonomic
group and the oxygen gradient will be reflected in the
group’s ability to classify samples according to their oxygen
concentration above random chance. Classification accuracy was
determined using Support Vector Machines (SVM) (Cortes and
Vapnik, 1995). SVM is a supervised, training-based method that
uses distance functions (aka kernels; similar to distance functions
in ordination analyses) to maximise the difference between factor
levels (classification). Its computational speed and versatility
makes it a suitable method for this study. Each analysis was
run n = 128 iterations, and then another n = 128 iterations
with the dependent variable randomly shuffled to obtain a
comparable null result. Each iteration used a different, random
subset comprising 25% of the samples for testing (Figure 2A).

All classification analyses were performed using a Radial Basis
Function (RBF) kernel made for multi-factor classification (i.e.,
classification problems with more than two possible outcomes).
Optimization parameters C and γ were determined using ten-
fold cross-validation. Initial testing revealed sensitivity to uneven
group sizes in the response variable, so we only performed
analyses on assemblages of oxygen categories without a dominant
(defined as comprising>60% of all samples) group. Accuracy was
consequently calculated on oxygen categories grouped according
to the three different setups listed in Table 1 to allow binary,
ternary and quaternary classification (Figure 2B). In order to

address the model’s sensitivity to overfitting (i.e., redundancy
among independent variables; Hawkins 2004), we ordered OTUs
within each class by decreasing read count and created models
for the first 10 OTUs before increasing numbers in increments of
20 until all OTUs were used.

2.6.2. Differential OTU Abundance
We used differential abundance to quantify the extent to which
individual OTUs respond to the oxygen gradient in AMOR
sediment. We made pairwise comparisons of all OTUs and
oxygen concentration categories (cf. Table 1). The differential
abundance function requires non-zero data input, so prior to
analysis, we applied zero-imputation. The differential abundance
method uses the Variances of Log-Ratios (VLR) of individual
OTU abundances to compare all OTU pairs in the dataset.
The method checks whether the VLR is larger between than
within two subsets of samples corresponding to some binary
condition, e.g., oxic or anoxic conditions. If the variance is larger
between thanwithin each subset, at least oneOTU is differentially
abundant compared to the other with respect to the condition in
question. We let the passing criterion for differential abundance
be a disjointed proportionality (θd) less than 0.50, meaning that
the between-group VLR was at least twice as large as within-
group VLR for the OTU pair in question (Erb et al., 2017). After
removing pairs with a calculated false discovery rate >0.0005,
we then retained only the 25% feature pairs with the lowest
disjointed proportionality within each category. OTUs that were
never present in any pair were then binned to higher taxonomic
level (Figure 2C).

2.6.3. Analysis Tools and Packages
All post-processing, statistical treatment and analysis was
performed in the R statistical programming environment
(v.3.6.3; R Core Team 2020) using the RStudio environment
(v.1.1.463; RStudio Team 2016). Plots were generated using
the ggplot2 (v.3.3.3; Wickham 2011) and egg (v.0.4.5; Auguie
2019) packages. Zero-imputation was applied using a slightly
modified in-house version of the cmultRepl function in
the package zCompositions (v.1.3.3.1; Palarea-Albaladejo and
Martin-Fernandez 2015). Centred log-ratio transformation was
done using the clr function in the package compositions (v.2.01;
van den Boogaart et al. 2021). Classification was performed using
kernlab (v.0.9.29, Karatzoglou et al. 2004) as wrapped by the
caret package (v.6.0-85; Kuhn 2008). Differential abundance was
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FIGURE 2 | Statistical workflow. (A) The OTU table is subset and prepared depending on the method used. Subsetting for SVM is shown in blue, subsetting for

differential abundance in red. (B) Model input for SVM is constructed using OTUs from within a single taxonomic group plus oxygen as the dependent factor variable

for estimation of accuracy, i.e., the ability to classify a sample correctly. (C) Differential abundance is quantified as the variance of the log ratio (VLR) between all OTU

pairs and across all oxygen category pairs (e.g., cats. 1 vs. 7, cf. Table 1). For a given pair of OTUs, if their VLR is low within categories but high between, then at

least one of them is differentially abundant with regards to the other along the oxygen gradient spanned by the two categories. However, instead of looking at the

differential abundance of OTUs, we focus on OTUs that are never differentially abundant, indicating that their variance does not change sufficiently in relation to any

other OTU across the category pairs of interest. A high fraction non-differentially abundant reads suggests a weak response to changes in oxygen concentration.

calculated using the propd function from the proper package
(v.4.2.6; Quinn et al. 2017).

3. RESULTS AND DISCUSSION

3.1. Classification of Oxygen
Concentration From OTU Abundance and
Prevalence Patterns
Among the 34 phyla, 189 classes, 196 orders and 355
families identified in our post-processed dataset, we find
that across all investigated depths, the top ten abundant
classes along the Arctic Mid-Ocean Ridge (AMOR) are
Alphaproteobacteria (18.0%), Nitrososphaeria (11.2%), the S085
(10.1%), Planctomycetacia (9.0%), Gammaproteobacteria (8.1%),
Phycisphaerae (4.5%), Deltaproteobacteria (4.5%), MD2896-
B214 (3.8%), Chloroflexi Subdivision 5 (SAR202) (2.9%), and
Pacearchaeota (2.5%), reflecting global abundance patterns
in deep-sea sediments (Orcutt et al., 2011; Zinger et al.,
2011; Parkes et al., 2014; Zinke et al., 2018; Cui et al.,
2019; Varliero et al., 2019; Vuillemin et al., 2019; Hiraoka
et al., 2020; Hoshino et al., 2020; Schauberger et al., 2021).

Their relative abundances, as well as those of all phyla
and orders exceeding 1% relative abundance are shown on
Supplementary Figures S4–S6.

If the concentration of oxygen indeed influences the
abundance and prevalence patterns of the microbial community,
and furthermore specific classes, then we should be able to
use said patterns to predict oxygen concentration better than
random chance. The speed, sensitivity and versatility of SVM
makes it an appropriate tool to investigate if such predictions
can be made. We focus on the 10 most abundant classes
because the most common taxa are expected to exhibit the most
sensitive response to key environmental variables (ter Steege
et al., 2013; de Vargas et al., 2015; Hannisdal et al., 2017)
and first measure how accurately the OTUs comprising each
class classify oxygen concentration according to four intervals:
high-oxic: >25 µM, mid-oxic: 10–25 µM, low-oxic 5–10 µM,
and anoxic <5 µM (Table 1, Figure 3). Chloroflexi Subdivision
5 (SAR202), Alphaproteobacteria and Deltaproteobacteria all
achieve median classification rates (the percentage of correctly
assigned samples) above 76% (Supplementary Table S3). The
lowest median classification rate for any investigated class is 54%,
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FIGURE 3 | Accuracy of the top 10 abundant classes in quaternary classification analysis (Table 1). Analyses were repeated n = 128 times. Boxes denote the 25–75

percentiles, whiskers roughly the 95% confidence interval (Wickham, 2011). Blue boxes denote results where the dependent variable has been shuffled to signify

results expected by random chance, red boxes with no randomisation. Relative abundance decreases upwards.

which is still significantly higher than the 26.1% expected by
random chance (Figure 3).

Between-core differences in oxygen penetration depth (10–
116 cmbsf), as well as the much stronger correlation of per-
sample classification accuracy with oxygen category (ρ=-0.43,
p<10-9) than with depth (ρ = −0.46, p = 0.00032), as well
as direct comparison of classification rates using detrended
OTU data (see Supplementary Methods for details), suggest
that classification rates are not strongly confounded by sediment
depth. Our results show that the composition of taxonomic
groups common in AMOR sediments follow changes in oxygen
concentration beyond the simple oxic-anoxic binary (Figure 4).

Optimal classification is typically achieved using only
a fraction of the OTUs comprising each class. Adding
additional OTUs after reaching the optimum, however, does not
notably change classification rates (Supplementary Figure S7),
a phenomenon known as overfitting (Hawkins, 2004). Median
classification rate at the optimum is not significantly correlated
with the relative abundance (Spearman, p = 0.99), suggesting
that there is no relationship between relative abundance and
classification rate for the top 10 abundant classes. Moreover,
maximising the classification rate is not connected to the size
of the fraction of OTUs within each class needed to do so
(Spearman, p = 0.86). Thus, even though the conditions in
the deep-sea benthos have been suggested to favour certain
taxonomic groups over others and thus skewing the population
seeded from the overlying waters (Walsh et al., 2016), the lack
of a clear correlation between abundance and classification rates,

unsurprisingly, suggests that oxygen alone cannot be invoked to
explain this skew.

Due to uncertainty in the interpolated oxygen profiles, all
values below 5 µM were set to 0 (cf. section 2.5). However, the
detection limit for the oxygen measurement apparatus is 3 µM,
so in order to test whether the fraction of misclassified anoxic
samples could be explained by the selected threshold, we ran
the analyses shown on Figure 3 again for 16 iterations on the
same dataset changing only the threshold for labelling a sample
as anoxic from 5 to 3 µM. Consequently, 10 samples were moved
from category 7 (n = 32 to 22) to category 6 (n = 52 to 62). If
the lowered threshold resulted in more “true” division of samples
into categories, this should have been visible as a higher fraction
of samples correctly classified as anoxic, but instead classification
accuracy decreased considerably (Supplementary Figure S8).

Classification accuracy (how often a specific sediment sample
is assigned correctly) is strongly correlated with oxygen category
(ρ = −0.43, p < 10-9). Dividing samples according to the 7
categories introduced in Table 1, we find that mean accuracy
decreases significantly from categories 1–4 to 5 and 6 and then
to 7 (p < 3×10-6). While approximately 63% of the samples in
categories 1–4 (>25 µM) are correctly classified at least 90% of
the time, mean accuracy for anoxic (category 7) samples is 67%
(Figure 4D). In order for the category 1–4 samples to achieve
such high accuracy across multiple classes and sample grouping
(i.e., binary, ternary, quaternary) the taxonomic composition
of their microbial communities must be internally stable and
relatively homogeneous. No specific core or coring location along
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FIGURE 4 | Sample-wise accuracy. All analyses report average accuracy over n = 128 iterations. Results are shown for (A) binary, (B) ternary, and (C) quaternary

classification problems. The height of each box denotes the oxygen categories comprising each group in the classification problem. In the ternary and quaternary

classification problems, median accuracy tends to decrease as oxygen depletes. (D) The average accuracy for each sample over all three classification problems

shown on (A–C) are grouped by oxygen category. A higher fraction of samples with oxygen concentration >25µM, corresponding to categories 1–4, are classified

correctly than 5–7, all of which suffer from a tail of seldom-correctly classified samples, indicating that communities inhabiting sediments with <25µM oxygen

concentration are comparatively more heterogeneous and, therefore, harder to delineate statistically.

AMOR stands out among this subset, indicating that recruitment
from Norwegian Sea Deep Water, which overlies most of AMOR
(Swift and Koltermann, 1988; Le Moine Bauer et al., 2018), is
regionally homogeneous. A similar conclusion was drawn by
Schauberger et al. (2021), who investigated Hadal trenches in
the Pacific and found that community dissimilarity was better
explained by geochemical gradients than by spatial distance
between coring sites.

In ternary classification (high-/mid-oxic: >10 µM, low-
oxic: 5–10 µM, anoxic: <5 µM), samples are disproportionally
classified as high-/mid-oxic (Figure 4B). This contrasts with
the quaternary grouping, where samples in the 10–25 µM
interval, i.e., category 5, form a separate group, and these
samples are disproportionally misclassified as low-oxic (5–10
µM) (Figure 4C). The change in classification patterns from
ternary to quaternary grouping suggests that category 5 samples
are taxonomically more heterogeneous than categories 1–4
(>25 µM) combined. Because oxygen penetration depth varies
between cores (10–116 cmbsf), sediment depth or age cannot
explain the observed changes. This finding, therefore, indicates
that taxonomic changes associated with the transition to anoxia

starts within this concentration interval, setting an empirically
informed threshold for the first of several geochemical transition
zones that shape community assembly in sub-surface sediment
(Orsi, 2018; Zhao et al., 2019, 2020). It has previously been
argued that the assembly of a core subsurface microbial
community occurs at the transition between bioturbated and
non-bioturbated zones (Chen et al., 2017b; Petro et al., 2019),
and that ventilation brought about by bioturbation plays an
important part in governing microbial community assembly
and structure in bioturbated sediments (Deng et al., 2020).
In light of our results, we propose that the initial assembly
of a subsurface community starts somewhere between 10–25
µM oxygen concentration, irrespective of bioturbation intensity
and depth.

Figures 5B,C exemplify how the abundance pattern of a
representative of Chloroflexi Subdivision5 (SAR202) relates to
the oxygen gradient in a way that would cause disproportionate
classification as high-/mid-oxic in ternary classification but
ambiguity between the mid-, low- and anoxic categories in
quaternary classification. Our findings align with those of Chen
et al. (2017a) who, following a 100-day incubation experiment
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FIGURE 5 | Classification rates vs. differential abundance. (A) OTU_6 belongs to Nitrososphaeria, which is a very strong SVM classifier. It is, however, never

differentially abundant with regards to the oxygen gradient. This is because its large spread in relative abundance within categories 6 and 7 increases the within-group

VLR against any other OTU (i.e., high θd ). (B) OTU_821 (SAR202, Chloroflexi), on the other hand, exhibits a threshold response to declining oxygen concentration and

is clearly differentially abundant between categories 1 vs. 6 and 7 by the settings of this study. Within-group variability for categories 1 (high relative abundance), 6 and

7 (low relative abundance) are all low, indicating that OTU_821 will contribute to low within-group and high between-group VLR when paired with other OTUs (i.e., low

θd ). (C) GS16_GC04 exemplifies the two OTUs’ different behaviour with regards to the oxygen gradient, both of which nevertheless result in high classification rate

with SVM.

at <20 µM oxygen concentration found that the microbial
community, sampled from a tidal flat, was harbouring both
anaerobic and aerobic metabolisms, showing that microbial
communities do not abide strongly to the inferred redox profile
in transition zones. As oxygen depletes and anoxia spreads, new
micro-niches are established that enable growth of previously
inhibited microbes by locally mobilising terminal electron
acceptors like manganese and iron (Jørgensen, 1977; Coskun
et al., 2019). Furthermore, highly sensitive oxygen measurements
have recently resulted in the formation of a theoretical basis
for aerobic growth in environments with nanomolar oxygen
concentration (Zakem and Follows, 2017). Growth under these
conditions have also been demonstrated in the laboratory
(Stolper et al., 2010). A better understanding of the plethora of
niches that arise in the transition from oxic to anoxic sediments
might help better constrain the factors that limit or allow growth
of uncultivable microbial lineages, but more targeted research is
necessary to further pursue this topic.

Our results indicate that oxygen concentration is a very strong
explanatory variable for the majority of common microbial
classes present in subsurface sediments along AMOR. As such,
our findings reflect, but further nuance, those of Hoshino et al.
(2020), who show that the oxic-anoxic dichotomy correlates
significantly with the microbial taxonomic composition in deep-
sea sediments globally. The microbial classes most accurately
classifying samples by oxygen concentration interval, such as
Alphaproteobacteria and Nitrososphaeria (Figure 3), are also

the most abundant classes in our samples, be it oxic or
anoxic. Nevertheless, our results also show that there is no
significant relationship between strong classification rate and
relative abundance among the top 10 abundant classes in general.
However, because our analyses do not extend to the rare
biosphere, our results cannot be generalised to the microbial
population as a whole. Based on broad empirical evidence, it has
been suggested that the most abundant members of an ecosystem
should also be the best predictors of key environmental variables
(ter Steege et al., 2013; de Vargas et al., 2015; Hannisdal
et al., 2017). Following this logic, a subset consisting of highly
abundant OTUs, regardless of class, should outperform any
individual class consisting of both abundant and rare OTUs.
Classification rates for all OTUs exceeding 1% (n = 12),
0.3% (n = 53) and 0.1% (n = 118) relative abundance are
nevertheless all lower than that achieved by Alphaproteobacteria
(Supplementary Figure S9). This finding is surprising, and
suggests that the rare members of abundant classes, which
may exhibit narrow niche breadth for example in relation to
oxygen concentration (Lynch and Neufeld, 2015), may play a
key role in determining the overall ecological response to oxygen
depletion on a higher taxonomic level. The relative inability of
the most abundant OTUs to classify sediment samples according
to oxygen concentration furthermore suggests that a wider suite
of explanatory variables must be applied to fully contextualise
their abundance and prevalence patterns. Previous studies have
shown that community assembly in subsurface sediments is
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driven mainly by selective pressure favouring persisting lineages
able to survive increasing energy limitation (Petro et al., 2017;
Starnawski et al., 2017). Indeed, the strong dependency of
available organic carbon on both initial cell counts, as well as the
community structure in marine sediments has been repeatedly
highlighted (e.g., Jørgensen and Marshall 2016; Starnawski et al.
2017; Deng et al. 2020). Furthermore, recent studies have shown
in detail how the sources and composition of organic matter may
influence community composition in relatively young sediments
(Chen et al., 2017b; Deng et al., 2020). However, TOC profiles,
available for the majority of our cores, do not exhibit a strong
decline (Supplementary Figure S10), and only in three of 11
cores did organic carbon content correlate significantly with
depth (Spearman, p<0.05). This could be because our cores
are too short (<4 m) for any such trend to be clear, or
that the measured TOC at depth is no longer degradable and
hence constitutes a refractory pool beyond access for the deeper
microbial communities.

The results presented thus far show that even though overall
abundance patterns exhibited by the most common classes
are predictive of oxygen concentration, this ability does not
necessarily applies to individual OTUs. In order to investigate this
further we performed a differential abundance analysis.

3.2. Differential Abundance Along the
Oxygen Gradient
The degree to which the abundance patterns of OTUs follow the
oxygen gradient may be determined by differential abundance
analysis. Notably, OTUs that exhibit only a weak or inconsistent
response to the oxygen gradient should never be labelled
as differentially abundant. If an OTU is never differentially
abundant with regards to the oxygen gradient, then oxygen
is probably not the optimal gradient along which to map its
abundance and prevalence. Hence, differential abundance of
individual OTUs may be used as a means of validating the
classification results in the previous section. Here we show that
such a lack of differential abundance is common within certain
lineages and sketch explanations as to why this might be the case.

If two OTUs relate somewhat similarly and predictably to the
oxygen concentration of their surroundings, we can expect that
the ratio of abundance for these two OTUs will remain similar
across samples with similar oxygen concentration when local
variations for example in past depositional conditions cancel
out across many cores, which is the case for our dataset. In
other words: the variance of their ratios within this category of
samples will be low. If, however, the relation changes as oxygen
concentration decreases, we may expect that the variance in
their ratio between two sample categories, e.g., high and low
oxygen concentration, will be considerably higher than within
each category; that they are differentially abundant with respect
to each other between those sample categories. Since the above
description translates to any gradient that covaries with oxygen,
sample categories must be selected to be as meaningful to
oxygen as possible in order to filter away effects from covariates
like nitrate.

The differential abundance analysis quantifies the differential
abundance for all OTU pairs and for all categories of samples
(Figure 2C). The resulting metric, θd, is a measure of the ratio
between within- and between-category Variance of the Log-
Ratio (Erb et al., 2017; Quinn et al., 2017). Therefore, the
lower the θd, the stronger we may expect at least one of
the OTUs in the investigated pair to be associated with the
oxygen concentration of their surroundings. We thus expect θd
to decrease as the difference in oxygen concentration between
the two investigated categories becomes larger (Figure 5).
The ranking of sample-wise classification accuracy shown and
discussed above (section 3.1) indicates that the 10-25 µM
concentration interval constitutes a threshold across which the
majority of OTUs should be differentially abundant. Indeed,
more OTU pairs are differentially abundant between the very
highest (cat. 1) and lowest (cat. 6), as well as anoxic (cat.
7) samples, and their θd is considerably lower than for other
sample category pairs (Supplementary Figure S11). It should be
noted that while certain OTUs apparently are not differentially
abundant, this merely means that we cannot discard our null
hypothesis that these OTUs are not differentially abundant
along the oxygen gradient for this dataset and the settings of
our analyses.

However, while the vast majority of OTUs exhibit differential
abundance with respect to oxygen concentration changes along
AMOR sediments at least once, 167 OTUs (3.8% of all) are never
differentially abundant across either the 1–6 or 1–7 category
pairs, corresponding to highest (>150 µM) vs. lowest oxygen
concentration and anoxia (<10 µM), respectively. These OTUs
are highly abundant and diverse, accounting for 41% of all reads
and spanning 13 phyla and 32 classes. Nevertheless, certain
classes are over-represented. Figure 6 shows the proportion
of reads belonging to OTUs never labelled as differentially
abundant for the 10 most abundant classes. Notably, the
fractions of non-differentially abundant OTU reads affiliated
with the highly abundant and prevalent Nitrososphaeria and
Gammaproteobacteria are very high (Figure 6), as is the case for
their respective order Nitrosopumilales and family Woeseiaceae
(Supplementary Figure S12A,B). Figure 3 nevertheless shows
that both classes have high classification rates. This is not
a contradiction, but instead suggests that measurable oxygen
may not be the primary explanatory variable for these classes
(Figures 5, 7).

Woeseiaceae has been proposed as a core marine sediment
microbiome member and commonly ranks among the most
abundant families in reported studies where its presence could be
taxonomically resolved (Bienhold et al., 2016; Mußmann et al.,
2017). A recent review of its genomic repertoire indicated both
aerobic and anaerobic growth, as well as widespread metabolic
capabilities (Mußmann et al., 2017; Hoffmann et al., 2020).
Our results supports a versatile lifestyle and suggest that the
generalist role of Woeseiaceae renders oxygen concentration
alone insufficient to explain their apparently very complex
development in marine sediments and that more research is
needed to elucidate their functional diversity at even lower
taxonomic levels.
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FIGURE 6 | Fraction of non-responsive OTUs. Binning to class level of OTUs belonging to the 10 most abundant classes that are not differentially abundant between

high- and low-oxic/anoxic (cat. 1 vs. 6 and 7) conditions in AMOR sediments. MD2896-B214 has no non-differentially abundant OTUs and is, therefore, not shown. A

broad column suggests that OTUs accounting for most of the class’s reads are too variable within oxygen categories compared to between to be labelled as

differentially abundant.

FIGURE 7 | Interpretation of results from SVM and differential abundance

analysis combined. Taxa that are never differentially abundant, corresponding

to a wide bar on Figure 6, are taken to not primarily follow the oxygen

gradient but instead possibly a corollary, regardless of SVM classification rates.

Taxa that are differentially abundant with respect to the oxygen gradient and

furthermore achieve high SVM classification rates, are expected to be strongly

dependent on oxygen.

Focusing on Nitrososphaeria, 71.4% of all reads, and 24 of
169 OTUs, assigned to Nitrosopumilales were not differentially
abundant. OTU_6, the most abundant OTU within the
Nitrosophaeria class, exemplifies this well (Figures 5A,C): Its

abundance decreases in anoxic samples, but it is still frequently
too abundant to confidently say that it is differentially abundant
with respect to the oxygen gradient. A blast alignment (Sina ACT)
search (V4 region) against the SILVA 138 database (Pruesse et al.,
2012) shows that all 24 OTUs not differentially abundant belong
to the Nitrosopumilaceae family. All known representatives of
this family are ammonia-oxidising archaea (AOA) converting
ammonium to nitrite using oxygen (Könneke et al., 2005;
Tully and Heidelberg, 2016; Orsi, 2018; Vuillemin et al., 2019),
and with representatives with a very strong affinity and low
threshold concentration for ammonium and oxygen (Martens-
Habbena et al., 2009; Walker et al., 2010). However, we find
that instead of oxygen, most reads ascribed to Nitrosopumilales
(75.3%) are differentially abundant along the length of the nitrate
gradient when performing the same differential abundance
analysis against categories of nitrate concentration; see details in
the Supplementary Methods. This finding could be due to the
presence of oxygen below the detection limit of our measurement
apparatus and rapid consumption of oxygen, but nevertheless
underpins Nitrosopumilales’ impact as nitrifiers along AMOR,
and also shows that oxygen may not be the best variable to track
presence and abundance for this order in deep-sea sediments.
Alternatively, it could suggest that this group is able to oxidise
ammonia under anoxic conditions, as recently shown for a
member of this family, which is capable of producing its own
oxygen (Kraft et al., 2022). The lack of differential abundance for
many Nitrosopumilales representatives between oxygen-rich and
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anoxic sediments, and their presence in deep anoxic sediments
(Kirkpatrick et al., 2019) as well as the aforementioned recent
evidence of oxygen production in one representative (Kraft et al.,
2022), furthermore underpins the complex relationship between
this order and geochemical transition zones where the sources of
required terminal electron acceptors may be hard to track.

High accuracy combined with a relatively low fraction of
non-differentially abundant reads, conversely, indicates that
oxygen concentration probably is the true primary explanatory
variable (Figure 7). This applies for instance to the SAR202 clade
under the Chloroflexi phylum, which is abundant in waters and
sediments worldwide (Durbin and Teske, 2011; Mehrshad et al.,
2018). Figure 5B shows the abundance of the most abundant
SAR202 OTU, which is differentially abundant and exhibits a
distinct drop in abundance as oxygen decreases below 25 µM.
In an extensive study of the Chloroflexi phylum, Vuillemin et al.
(2020) found that this clade was abundant in oxic sediments
but quickly disappeared under anoxic conditions, in line with
our findings. Through metagenomic and metatranscriptomic
analyses, they furthermore revealed strong potential for SAR202
representatives to access recalcitrant organic matter, which may
explain their abundance in oxic deep-sea sediments (Vuillemin
et al., 2020).

4. CONCLUSIONS

In this study, we demonstrate the pronounced effect of oxygen on
microbial community composition in Arctic deep-sea subsurface
sediments. Using Support Vector Machines, we show that
common microbial classes can be used to predict the oxygen
concentration of their immediate environment with an accuracy
far above that expected from random chance, thus quantifying
the relationship between common microbial classes and the
oxygen gradient in a manner that extends far beyond the
mere oxic-anoxic binary. However, if this relationship is caused
directly by the oxygen concentration or indirectly, e.g. through
linkage to respiration rates as a function of degradable organic
carbona availability, is unknown. We also show that a relatively
homogeneous microbiome is recruited to the benthos. However,
classification rate patterns show that the the composition of
the most abundant classes then becomes more heterogeneous
as oxygen drops below 25 µM, putting a biologically informed
threshold for the onset of the oxic-anoxic transition zone. There
is no significant correlation between relative abundance and
achieved classification rate among the common taxa. Moreover,
several highly abundant OTUs belonging to classes achieving
high classification accuracy are not differentially abundant from
high-oxic (>150 µM) to low-/anoxic (<10 µM) conditions. This
suggests that the abundance and prevalence of highly abundant

OTUs may be better explained by other variables than oxygen.
For example, we find that the distribution of Nitrosopumilales
is better explained by nitrate concentration, although possibly
so because oxygen remains present but undetectable in deeper
layers. The combined scale of our dataset and compositionally
sound methodology used enable us to provide an enriched
context for disentangling and interpreting the complex interplay
between microbial communities and the oxygen gradient in
deep-sea subsurface sediments. Our methods may be applied
to any well-defined environmental gradient that follows a
developing microbial community, regardless of ecosystem.
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