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Gut microbiota play a significant role for animals to adapt to the changing environment. 
Host species and habitats are key drivers in shaping the diversity and composition of the 
microbiota, but the determinants of composition of the sympatric host gut microbiome 
remain poorly understood within an ecosystem. In this study, we examined the effects of 
habitats of different succession stages and host species on the diversity and composition 
of fecal gut microbiota in four sympatric rodent species (Apodemus draco, Leopoldamys 
edwardsi, Niviventer confucianus, and Niviventer fulvescens) in a subtropical forest. 
We found, as compared to the differences between species, habitat types showed a 
much larger effect on the gut microbiota of rodents. Alpha diversity of the microbial 
community of A. draco, N. fulvescens, and N. confucianus was highest in farmland, 
followed by primary forest and shrubland, and lowest in secondary forest. Beta diversity 
of the three rodent species showed significant different among habitats. The alpha diversity 
of gut microbiota of L. edwardsi was significantly higher than those of A. draco and  
N. confucianus, and its beta diversity showed significant difference from A. draco. Our 
results suggested that gut microbiota were important for animals in responding to diet 
changes in different habitats under human disturbances.
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INTRODUCTION

Mammalian digestive systems harbor a complex microbial community, which is essential for 
their hosts to digest food, maintain health, and adapt to the changing environments (Clemente 
et al., 2012). Changes in gut microbiota are found to be closely related to metabolic dysfunction 
and diseases of humans, including cancer, diabetes, obesity, and cardiovascular disease (Li 
et  al., 2016). Many factors, such as phylogeny, environment, and diet, could influence the 
diversity and composition of gut microbiota (Maynard et  al., 2012; Tremaroli and Bäckhed, 
2012). Elucidating the ecological and evolutionary processes in shaping the composition of 
host-associated microbial communities remains a major challenge (Costello et  al., 2012; Foster 
et  al., 2017).

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.811990﻿&domain=pdf&date_stamp=2022-02-07
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.811990
https://creativecommons.org/licenses/by/4.0/
mailto:zhangzb@ioz.ac.cn
https://doi.org/10.3389/fmicb.2022.811990
https://www.frontiersin.org/articles/10.3389/fmicb.2022.811990/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.811990/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.811990/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.811990/full


Teng et al. Habitats vs. Host Species

Frontiers in Microbiology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 811990

Gut microbial communities generally cluster by host family 
of animals (Ley et  al., 2008; Phillips et  al., 2012; Groussin 
et  al., 2017). Phylogeny of host animals can be  a strong 
predictor of gut microbiota, which has been confirmed in a 
diverse range of taxa, including insects, birds, and mammals 
(Ochman et  al., 2010; Nishida and Ochman, 2018; Amato 
et al., 2019; Knowles et al., 2019). Associations between multiple 
genomic regions and abundance of different microbial taxa 
have been identified in mice when fed with a controlled diet 
(Benson et  al., 2010; McKnite et  al., 2012) and in humans 
(Li et  al., 2012; Smeekens et  al., 2014). Mouse knockout 
experiments have identified genes involved in metabolism, 
immunity, and behavior that affect the gut microbiota (Spor 
et  al., 2011).

Many previous studies have demonstrated that both short-
term diet changes and long-term dietary shifts could strongly 
alter the composition of gut microbiota (Ley et  al., 2008; 
Carmody et  al., 2015; Li et  al., 2019). Dietary changes of 
animals are common in different seasons and habitats, which 
may affect their gut microbiota. For example, Sun et  al. (2016) 
found that the gut microbiota composition of the Tibetan 
macaque (Macaca thibetana) showed a significant response to 
the seasonal fluctuations of food resources. The diversity and 
composition of the microbial community of the black howler 
monkey (Alouatta pigra) varied with habitat degradation (Amato 
et  al., 2013).

Although effects of both host species and habitat change 
on microbes have been fully investigated across large-scale 
environment gradients (Amato et  al., 2019; Knowles et  al., 
2019; Youngblut et  al., 2019; Huang et  al., 2021), their distinct 
roles in an ecosystem for regulating gut microbiota of sympatric 
species are rarely explored. Sympatric species may share both 
distinct and similar food items in an ecosystem, which is 
determined by food availability or diversity in different habitats 
and their inherited digesting ability on specific food items. 
Gut microbiota are recognized as the second genomes of hosts 
and play a very significant role for animals to adapt to changing 
environments as symbionts. Food diversity and availability often 
change greatly in different habitats, which would have a greater 
impact on gut microbiota of sympatric species.

Forest fragmentation caused by human activities has been 
identified as the most important factor leading to the decline 
and loss of global species diversity (Noss et  al., 1994; Bogaert 
et al., 2011). Forest fragmentation leads to differences in available 
plant species and a reduction in plant diversity (Benítez-Malvido 
and Martínez-Ramos, 2003). Plant communities provide habitats 
and food sources for various animals; therefore, the effects of 
forest fragmentation on plant communities may also cause 
changes in animal communities (da Fonseca and Robinson, 
1990; Shenko et al., 2012). Many studies have observed changes 
in species composition due to natural succession in re-growing 
areas (Lohbeck et  al., 2013; Whitehead et  al., 2014; Martínez-
Ramos et  al., 2016). Our previous studies have found that the 
species richness and abundance of seeds and rodents varied 
greatly with stand age (Yang et al., 2018), but their consequences 
of forest succession in shaping the gut microbiota of rodent 
species have not been investigated.

Here, by using 16S ribosomal RNA gene sequencing, 
we  explored the impacts of host species and habitats with 
dietary change caused by forest fragmentation on the diversity 
and composition of fecal gut microbiota of four sympatric 
rodent species (Apodemus draco, Leopoldamys edwardsi, Niviventer 
confucianus, and Niviventer fulvescens) in a subtropical forest. 
The four rodent species share very similar food items (Yang 
et  al., 2018) in four habitats, we  selected along a gradient of 
forest succession in the Dujiangyan region, Sichuan Province, 
China. We  want to test the following three hypotheses: (1) 
The diversity and composition of gut microbiota should differ 
among different species of rodents; (2) The diversity of gut 
microbiota of rodents should be  higher in primary or old 
forests with more diversified seeds than in young forests; and 
(3) Habitats would explain more variance of gut microbiota 
than host species because the sympatric rodent species share 
similar foods in the study region.

MATERIALS AND METHODS

Study Site
The study was performed in the Banruosi Experimental Forest 
(altitude, 600–1,000 m) of Dujiangyan city (31°04′N-31°05′N, 
103°42′E-103°42′E), Sichuan Province, China. The site lies in 
the middle of the subtropical zone, with a mean annual 
temperature of 15.2°C and annual precipitation of 1,200–
1,800 mm. In the study site, the common rodent species include 
South China filed mice (A. draco, AD), Edward’s long-tailed 
rats (L. edwardsi, LE), Chestnut rats (N. fulvescens, NF), and 
Chinese white-bellied rats (N. confucianus, NC). These rodent 
species mainly feed on similar tree seeds, such as nuts and 
acorns (Yang et  al., 2018).

Our study was conducted in 12 forest patches in the 
study site in the autumn of 2020. Most of the forests were 
cleared in the 1980–2005s, and subsequently, forest fragments 
were allowed to regrow on hilltops while flatter areas were 
maintained for cultivation or roads by local people. These 
forest patches were classified into four categories based on 
stand age and the degree of human disturbance: (1) Farmland 
(F), in which was mainly planted with Cryptomeria fortune, 
a popular local crop plant, (2) Primary forest (P), which 
has been preserved for 100 years because of the protection 
from the Banruosi Temple, (3) Shrubland (SH), and (4) 
Secondary forest (SE). Both shrubland and secondary forest 
had undergone extensive logging and destruction in the 
1980–2005s and represented early or middle succession stages, 
respectively. Each of the four kinds of habitats had three 
replicate patches.

Rodent Trapping and Sampling
We used wire live traps (30 cm × 13 cm × 12 cm), baited with 
fresh chestnuts to trap small rodents in the study site. We set 
a 4 × 10 trapping grid with an interval of 10 m in each plot 
by following Yang et  al. (2018). Traps were placed at 15:00–
17:00 h in the afternoon and were checked at 7:30–9:30 h 
in the next morning. Captured rodents were transported to 
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field laboratory for identification of species and classification 
of sex. We  also recorded body mass and reproductive status 
(females pregnant, lactating, or not; males with testes 
descended or not). Captured rodents were sacrificed by 
cervical dislocation and then dissected. The caecum was 
removed to collect fecal content, then kept frozen at −20°C 
for 6–10 days, and stored at −80°C in the laboratory until 
DNA extraction.

16S rRNA Gene Sequencing and Data 
Analysis
Total genome DNA of microbiota within the cecal contents 
was extracted using the cetyltrimethylammonium bromide 
(CTAB) method, the purity and concentration of DNA were 
determined by Gel electrophoresis and diluted to 1 ng/μl by 
sterile water. Then, 16S rRNA genes were amplified using 
specific primers with adapter sequences. Primers were set 
corresponding to the forward primer 341F 
(5′-CCTAYGGGRBGCASCAG-3′) and reverse primer 806R 
(5′-GGA CTACNNGGGTATCTAAT-3′), targeting the V3–V4 
hypervariable 16S rRNA gene region. Sequencing libraries were 
generated using Illumina TruSeq DNA PCR-Free Library 
Preparation Kit (Illumina, United States), and index codes were 
added. All libraries were sequenced on an Illumina NovaSeq 
platform and then 250 bp paired-end reads were generated.

Bioinformatics Processing
All analyses of the 16S rRNA gene sequences were performed 
using QIIME1.9.1 (Caporaso et  al., 2010), USEARCH 10.0 
(Edgar, 2010), and in-house scripts. We  merged paired-end 
sequences using the method from FLASH (Magoč and Salzberg, 
2011). Merged sequences were filtered by QIIME quality filters. 
After quality control, sequence data were processed through 
the denoising analysis pipeline UNOISE3 to infer amplicon 
sequence variants (ASVs). Chimeric sequences were identified 
and removed using USEARCH. Based on the high confidence 
16S representative sequences, a feature table was generated by 
USEARCH. The taxonomy of the representative sequences was 
classified with the RDP (Cole et al., 2008) classifier. We calculated 
the alpha diversity with the ASV richness, Shannon index, 
and ACE index.

Statistical Analyses
Statistical analyses were performed using R version 4.0.3  
(R Core Team, 2020). The differences in three alpha diversity 
indices among groups were assessed by one-way ANOVA 
with Tukey’s post-hoc test. Significant differences in beta 
diversity between different groups were evaluated by 
permutational multivariate ANOVA (PERMANOVA), which 
employed the adonis function in the R package vegan with 
999 permutations. The difference in beta diversity based on 
three metrics (Bray–Curtis dissimilarity, weighted and 
unweighted UniFrac distances) at the ASV level was assessed 
by the constrained principal coordinate analysis (CPCoA). 
Differences in relative abundances of taxonomic units among 
groups were tested by using Tukey’s post-hoc test. The linear 

discriminant analysis (LDA) Effect Size (LEfSe) method was 
used to assess differences in microbial communities using 
an LDA score threshold of 2 (Segata et  al., 2011).

RESULTS

Interspecific Variation of Gut Microbiota in 
Rodents
A total of 159 rodents were caught in 12 forest patches in 
the study site from September to October 2020, including A. 
draco (n = 70), N. fulvescens (n = 41), N. confucianus (n = 40), 
and L. edwardsi (n = 8; Supplementary Table S1). We  only 
selected four dominant species (A. draco, N. fulvescens, N. 
confucianus, and L. edwardsi) for analysis due to the insufficient 
number of other species.

Alpha diversity analysis indicated that there were significant 
differences in richness, Shannon index, and ACE index between 
rodent species (Figure  1A; Supplementary Figure S1). The 
three diversity indices of L. edwardsi were significantly larger 
than in A. draco (richness, p = 0.002; ACE, p = 0.008; and 
Shannon, p = 0.018) and N. confucianus (richness, p = 0.017; 
ACE, p = 0.042; and Shannon, p = 0.026). Beta diversity analysis 
using PERMANOVA revealed that there was a significant 
difference in gut microbiota community between A. draco and 
L. edwardsi (adonis permutation test, F = 1.700, p = 0.007; 
Figure  1B).

The most abundant bacterial phylum of the four rodent 
species was Firmicutes (mean = 52.91%), Bacteroidetes 
(28.54%), Proteobacteria (11.20%), and Spirochaetes (5.69%). 
The main components of each species at the phylum level 
were visualized in Figure  2A. The pie chart showed that 
there were significant differences in the main phylum of 
the four species (Figure 2B). The proportion of Bacteroidetes 
in L. edwardsi was significantly higher than in A. draco (L. 
edwardsi vs. A. draco, p = 0.024), Proteobacteria in A. draco 
were significantly higher than in N. confucianus (A. draco 
vs. N. confucianus, p < 0.001), and Spirochaetes in N. 
confucianus and N. fulvescens was significantly higher than 
in A. draco (N. confucianus vs. A. draco, p < 0.001; N. fulvescens 
vs. A. draco, p = 0.01; Supplementary Figure S2). At the 
genus level, the gut microbiota of the four species were 
dominated by Lactobacillus (7.84%), Barnesiella (6.01%), 
Clostridium_XlVa (5.75%), Treponema (4.98%), Campylobacter 
(3.87%), Clostridium_IV (3.60%), Flavonifractor (3.35%), 
Helicobacter (2.42%), and Alistipes (2.20%; Figure  2C).

The LEfSe results revealed that there were significant 
differences in the compositions of the gut microbial community 
among four rodent species (Figure  2D). At the phylum level, 
Proteobacteria were enriched in A. draco, and Bacteroidetes 
was enriched in L. edwardsi, whereas Spirochaetes was enriched 
in N. confucianus. At the family level, Campylobacteraceae 
and Rikenellaceae were enriched in A. draco, Veillonellaceae 
was enriched in L. edwardsi, and Spirochaetaceae was enriched 
in N. confucianus, whereas Helicobacteraceae and Prevotellaceae 
were enriched in N. fulvescens. At the genus level, Campylobacter, 
Alistipes, and Acetatifactor were enriched in A. draco, and 
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Treponema and Cellulosilyticum were enriched in N. confucianus, 
whereas Helicobacter, Ruminococcus, and Intestinimonas were 
enriched in N. fulvescens.

Effect of Habitats on Gut Microbiota in 
Rodents
We only selected three species (A. draco, N. fulvescens, and 
N. confucianus) to analyze the effects of habitats on gut microbiota 
of rodents due to the insufficient number of L. edwardsi in 
each succession stage. Habitats showed a significant association 
with the alpha diversity of gut microbiota of the three rodent 
species. For the three rodent species, the Shannon index of 
gut microbiota had a consistent trend in different habitats, 
that is, the highest in farmland, followed by primary forest 
and shrubland, and the lowest in secondary forest; the Shannon 
index in farmland was significantly higher than that in secondary 
forest (A. draco, p = 0.039; N. fulvescens, p = 0.007; and N. 
confucianus, p = 0.011; Figure 3; Supplementary Table S2). The 
other two diversity indices (richness and ACE index) of the 
three rodent species also showed a similar trend to Shannon’s 
index at different succession stages (Supplementary Figure S3; 
Supplementary Table S2).

Beta diversity analysis using the CPCoA revealed that habitat 
type had a significant effect on the gut microbiota community 
of A. draco (F = 2.624, p = 0.001; 9.94% of variance explained; 
Figure 3B), N. fulvescens (F = 1.495, p = 0.002; 12.8% of variance 
explained; Figure 3D), and N. confucianus (F = 1.761, p = 0.001; 
14.4% of variance explained; Figure  3F). These results showed 
a significant association between forest succession stage and 
composition of gut microbiota of all rodent species.

The LEfSe results revealed that there were significant 
differences in the gut microbiota of A. draco among four 
habitat types. At the phylum level, Bacteroidetes was enriched 
in shrubland, Proteobacteria were enriched in secondary 

forest, and Spirochaetes and Candidatus_Saccharibacteria 
were enriched in primary forest. At the family level, 
Lachnospiraceae was enriched in farmland; 
Porphyromonadaceae and Carnobacteriaceae were enriched 
in shrubland; Campylobacteraceae, Enterobacteriaceae, and 
Streptococcaceae were enriched in the secondary forest; and 
Spirochaetaceae and Veillonellaceae were enriched in primary 
forest. At the genus level, Clostridium_XIVa and Oscillibacter 
were enriched in farmland; Barnesiella, Dolosigranulum, and 
Faecalibacterium were enriched in shrubland; Campylobacter, 
Escherichia_Shigella, and Lactococcus were enriched in the 
secondary forest; and Treponema was enriched in primary 
forest (Figure  4A).

The LEfSe results revealed that there were significant 
differences in the gut microbiota of N. fulvescens among 
four habitat types. At the phylum level, Candidatus_
Saccharibacteria and Tenericutes were enriched in secondary 
forest. At the family level, Lachnospiraceae was enriched 
in farmland; Streptococcaceae, Erysipelotrichaceae, and 
Mycoplasmataceae were enriched in the secondary forest; 
and Eubacteriaceae, Desulfovibrionaceae, Prevotellaceae, and 
Veillonellaceae were enriched in primary forest. At the genus 
level, Oscillibacter and Butyrivibrio were enriched in farmland; 
Clostriduum_XIVa and Faecalibacterium were enriched in 
shrubland; Lactococcus, Turicibacter, and Mycoplasma were 
enriched in the secondary forest; and Eubacterium, 
Desulfovibrio, and Paraprevotella were enriched in primary 
forest (Figure  4B).

The LEfSe results revealed that there were significant 
differences in the gut microbiota of N. confucianus among 
four habitat types. At the phylum level, Bacteroidetes was 
enriched in shrubland, Firmicutes was enriched in secondary 
forest, and Spirochaetes was enriched in primary forest. At 
the family level, Lachnospiraceae and Rikenellaceae were enriched 

A B

FIGURE 1 | Variation of gut microbial diversity of caecum fecal samples between four rodent species. (A) Alpha diversity (Shannon index). Different letters represent 
statistical significance (p < 0.05). (B) Beta diversity comparisons of the gut microbiota of caecum fecal samples between the four rodent species. The first two axes 
are shown with constrained principal coordinate analysis (CPCoA) based on the Bray–Curtis dissimilarity matrix at the amplicon sequence variant (ASV) level. AD, 
Apodemus draco. LE, Leopoldamys edwardsi. NC, Niviventer confucianus. NF, Niviventer fulvescens.
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in farmland; Prevotellaceae, Carnobacteriaceae, and 
Desulfovibrionaceae were enriched in shrubland; four families 
(Lactobacillaceae, Enterobacteriaceae, Streptococcaceae, and 
Erysipelotrichaceae) were enriched in the secondary forest; and 
Spirochaetaceae was enriched in primary forest. At the genus 
level, five genera (Clostridium_XIVa, Alistipes, Flavonifractor, 
Cellulosilyticum, and Oscillibacter) were enriched in farmland; 
five genera (Ruminococcus, Paraprevotella, Dolosigranulum, 
Desulfovibrio, and Faecalibacterium) were enriched in shrubland; 
four genera (Lactobacillus, Escherichia_Shigella, Lactococcus, and 
Turicibacter) were enriched in the secondary forest; and 
Treponema and Roseburia were enriched in primary forest 
(Figure  4C).

Effect of Host Species and Habitats on Gut 
Microbiota in Rodents
Constrained principal coordinates analysis showed the gut 
microbiota of rodents relatively clear sample cluster by habitats, 
but less so by host species (Figure 5). Results of PERMANOVAs 
testing also showed that the effect of habitats on gut microbiota 
in rodents was more explanatory than that between sympatric 

species (Table  1). These results indicated that habitats under 
different forest succession showed more impacts than host 
species in shaping gut microbial communities of sympatric 
rodent species.

DISCUSSION

It is known that host species and habitats could significantly 
affect the gut microbiota of small mammals across a broad 
scope of taxa and environmental gradients, but it is unclear 
how the gut microbiota of sympatric species responds to 
habitat changes caused by forest fragmentation. In this study, 
we  found both host species and habitat type contributed to 
the variance of gut microbiota of rodents. However, the 
difference of gut microbiota between four sympatric rodent 
species was relatively small, while the difference between four 
habitats was much larger, suggesting that habitats with dietary 
change may be  more important in shaping the microbiota 
community of sympatric rodents. Three rodent species  
(A. draco, N. fulvescens, and N. confucianus) showed significant 
difference in beta diversity of gut microbiota between habitats, 

A B

DC

FIGURE 2 | Variation of gut microbial composition between four rodent species. (A) Abundance represented as the proportions of ASVs classified at the phylum 
rank. (B) Pie chart of four main phyla in four rodent species. (C) Abundance represented as the proportions of ASVs classified at the genus rank. (D) Differential 
bacterial taxa selected by linear discriminant analysis (LDA) Effect Size (LEfSe) analysis with LDA score >2 in gut microbiota community of four species.
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and their alpha diversities were highest in farmland, followed 
by primary forest and shrubland, and lowest in secondary 
forest. L. edwardsi showed significant higher alpha diversity 
of gut microbiota than those of A. draco and N. confucianus, 
and significant difference of beta diversity with A. draco. These 
differences may be  related to differences in food diversity 
between species or habitats.

Interspecific Variation on Gut Microbiota 
Between Rodent Species
Gut microbiota are likely shaped by diverse host factors, such 
as behavioral (i.e., social contact patterns), heritable  
(e.g., evolutionary history and genetics), and environmental 
(e.g., diet and geography; Kasper, 2014; Perofsky et  al., 2019; 
Li et  al., 2021; Wan et  al., 2021). In this study, our results 

A B

C D

E F

FIGURE 3 | Variation of gut microbial diversity of three rodent species in four different habitats. Alpha diversity (Shannon index) of bacterial communities of 
Apodemus draco (A), Niviventer fulvescens (C), and Niviventer confucianus (E) across four kinds of habitats. Different letters represent statistical significance 
(p < 0.05). Beta diversity comparisons of the gut microbiota of A. draco (B), N. fulvescens (D), and N. confucianus (F) in four habitat types. The first two axes are 
shown with constrained CPCoA based on the Bray–Curtis dissimilarity matrix at the ASV level.
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showed that the diversity of gut microbiota in L. edwardsi 
was significantly different from those of A. draco and  
N. confucianus, while the interspecific differences of the other 
three rodent species were not significant, which support our 
first hypothesis. This is likely because the body size of  
L. edwardsi is the largest one (Mean ± SE, 309.19 ± 43.65 g), which 
could hoard and eat seeds of most tree species including large- 
and small-sized seeds and seeds with both hard- and soft-seed 
coats, while the body size of the other species was relatively 
small (A. draco, 28.87 ± 0.85 g; N. confucianus, 83.10 ± 3.21 g; 
and N. fulvescens, 69.84 ± 2.86 g) and could only eat small-sized 

or soft-coated seeds (Chang and Zhang, 2014; Yang et  al., 
2018). This well explained the observation that alpha diversity 
of L. edwardsi was significantly larger than A. draco and  
N. confucianus. All four rodent species prefer to feed on seeds 
of Quercus serrata with higher tannin content (Yang et  al., 
2018). Lactobacillus, the bacteria that can produce tannin-
degrading enzymes (Osawa et  al., 2006), may account for a 
high proportion of the four rodents (Figure  2C).

We found that the composition of gut microbiota of  
A. draco, L. edwardsi, N. confucianus, and N. fulvescens was 
significantly different at different taxonomic levels (Figure 2), 

A B

C

FIGURE 4 | Different bacterial taxa selected by LEfSe analysis with LDA score > 2 in gut microbiota community. Differential bacterial taxa of Apodemus draco (A), 
Niviventer fulvescens (B), and Niviventer confucianus (C) in four habitat types.
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which support our first hypothesis. At the phylum level, 
the gut microbiota of the four rodents were dominated by 
Firmicutes and Bacteroidetes, which were consistent with 
other herbivores, such as pikas (Li et  al., 2018), horses 
(Costa et al., 2012), and rabbits (Velasco-Galilea et al., 2018). 
The abundance of Proteobacteria in A. draco tended to 
be  higher than that of L. edwardsi, N. confucianus, and  
N. fulvescens. High-fat and high-fructose diet in mice have 
been proven to cause a rise in Proteobacteria (Jeong et  al., 
2019; Vasques-Monteiro et  al., 2021). It is known that  
A. draco prefers to eat high-fat seeds, such as oil teas, which 
contains high fat (Gu et  al., 2021).

In addition, our results suggested that many of the species 
found in these rodents’ microbiome could be potentially zoonotic 
agents. High abundance of Proteobacteria which has been found 
in A. draco considered to be  associated with dysbiosis in hosts 
with metabolic or inflammatory disorders (Mukhopadhya et al., 
2012). The abundance of Spirochaetes in N. confucianus tended 
to be higher than that of L. edwardsi, A. draco, and N. fulvescens. 
The phylum Spirochaetes consists of a large group of motile 
bacteria that are widespread in the environment and are highly 
prevalent disease-causing agents. The Spirochaetes species cause 
many important diseases including syphilis and Lyme disease 
(Gupta et  al., 2013). At the genus level, Campylobacter and 
Alistipes were enriched in A. draco. Campylobacter has been 
recognized as an important human and mammalian pathogen, 
many of which are considered to be pathogens of gastroenteritis 
of etiology (Man et  al., 2010). Alistipes is a relatively new 
genus of bacteria, believed to be  closely related to ecological 
disorders (dysbiosis) and diseases (Parker et al., 2020). Treponema 

was enriched in N. confucianus. Some bacteria from Treponema 
are thought to be  related to mammalian diseases (Paster and 
Canale-Parola, 1985; McKenna et  al., 2008). Helicobacter was 
enriched in N. fulvescens. Helicobacter is believed to have 
pathogenic and pro-inflammatory effects (Xie et  al., 2020). 
Besides, A. draco, N. fulvescens, and N. confucianus are relatively 
abundant, which may explain they had more disease-related 
microbes because high density would increase the prevalence 
of pathogens (Keesing et  al., 2006).

Effect of Habitats on Gut Microbiota of 
Rodent Species
Multiple environmental factors, including diet, geography, 
and living conditions, can influence microbial communities. 
Diet is one of the most important environmental factors 
that affect the composition of gut microbiota (Muegge et al., 
2011; Carmody et  al., 2015; Li et  al., 2019). Previous studies 
on animals and humans have shown that diet strongly 
influences the composition of the gut microbiota (David 
et  al., 2014; Carmody et  al., 2015; Sonnenburg et  al., 2016). 
Studies of wildlife have also reported strong environmental 
impacts, including differences in seasons and habitats (Amato 
et  al., 2013; Maurice et  al., 2015; Ren et  al., 2017). In this 
study, we  found significant differences in the diversity and 
composition of the gut microbiota of A. draco, N. fulvescens, 
and N. confucianus in different habitats. For A. draco,  
N. fulvescens, and N. confucianus, we observed that Lactococcus 
in secondary forest, Faecalibacterium in shrubland, and 
Oscillibacter and Lachnospiraceae in farmland were higher 

FIGURE 5 | Constrained principal coordinates analysis plots showing how clustering of samples by habitats varies across three dissimilarity metrics that differ in 
their sensitivity to the phylogenetic relatedness and abundance of bacterial sequence variants. R2 values from permutational multivariate ANOVAs (PERMANOVAs) 
testing the effect of habitats are shown on each plot.

TABLE 1 | Results of PERMANOVAs testing for the effect of habitats and host species on gut microbiota in rodents, using three different dissimilarity metrics.

Dissimilarity metric Habitats Host species

F p R2 F p R2

Bray-Curtis 10.66 <0.001 0.18 2.81 <0.001 0.03
Weighted UniFrac 8.02 <0.001 0.14 4.53 <0.001 0.05
Unweighted UniFrac 6.99 <0.001 0.12 5.08 <0.001 0.06

PERMANOVAs were run using the adonis function in R package vegan, using 999 permutations.
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than in other habitats. This paper did not consider the role 
of seasonal factors, because we  only analyzed the data of 
one season (i.e., autumn), and the influence of seasonal 
factors on the gut microbiota of small mammals will 
be  considered in the subsequent study.

Biodiversity is an important aspect of ecosystem function 
and is essential to improve the resilience of macro-ecosystems. 
There is a view that, like all healthy ecosystems, the abundance 
of microbial species is a characteristic of the gut microbiota 
of healthy individuals (Heiman and Greenway, 2016). The 
high diversity of the gut microbiota may make the microbial 
ecosystem more resistant to external disturbances (Lozupone 
et  al., 2012). Conversely, the loss of microbial diversity is 
usually associated with several disease states (Ott et  al., 2004; 
Ley et  al., 2006). In our study, we  found that the alpha 
diversity of microbial community of rodents was highest in 
farmland, followed by primary forest and shrubland, and 
lowest in secondary forest, which does not support our second 
hypothesis (Figure  2; Supplementary Figure S3; 
Supplementary Table S2). Our previous study found that 
seed richness increased as the succession stage increased by 
analyzing the collected fallen seeds from early September to 
late December when seeds became mature (Yang et al., 2018). 
The primary (old) forest had an obvious more diversified 
seed species than the shrubland and secondary forest; thus, 
it is plausible that the high diversity of microbes was likely 
associated with the high diversity of seed species in different 
habitats. Notably, the microbial diversity of rodents in farmland 
is significantly higher than that in other forests, which is 
unexpected because the seed species in farmland should 
be  smaller. The plausible explanation is that the edge effects 
might have impacts on species diversity and composition, 
community dynamics, and ecosystem functions (Laurance 
et  al., 2007). The farmlands we  selected are relatively small 
patches and closely adjacent to the surrounding primary 
forests and cropland, which might have increased the 
food diversity.

We also found that the composition of gut microbiota 
of A. draco, N. fulvescens, and N. confucianus changed 
continuously with stand age. The abundance of Lactococcus 
in the microbial community of A. draco, N. fulvescens, and 
N. confucianus living in secondary forests was significantly 
higher than that of other forests. It was found that the 
probiotic Lactococcus, a Streptococcaceae family, was contained 
in the gut of obese mice higher than that of lean mice 
when studying the link between obesity and the gut microbiota 
(Jiao et  al., 2018). We  speculated that this may be  related 
to the different nutritional values and abundance of the 
main plant seeds distributed in different forests (Yang et  al., 
2018). Bacteria from Lactococcus can produce tannin-degrading 
enzymes (Mukherjee et  al., 2014). Seeds of Quercus serrata 
and Q. variabilis with high tannin content account for a 
high proportion in the secondary forest (Yang et  al., 2018). 
The abundance of Faecalibacterium in the microbial 
community of A. draco, N. fulvescens, and N. confucianus 
living in the shrubland was significantly higher than that 
of other forests. Faecalibacterium, as an important 

butyrate-producing bacteria, was seen to have higher 
abundances in all healthy subjects (Anand et  al., 2016). 
The abundance of Lachnospiraceae and Oscillibacter in the 
microbial community of A. draco, N. fulvescens, and N. 
confucianus living in the farmland was significantly higher 
than that of other forests. The level of Lachnospiraceae was 
correlated positively with leptin level and negatively with 
energy consumption (Méndez-Salazar et al., 2018). Oscillibacter 
is increased by high saturated fat, high-resistant starch, and 
carbohydrate weight loss diets in mice (Walker et  al., 2011; 
Lam et  al., 2012) and is considered to have pathogenic and 
pro-inflammatory effects (Xue et  al., 2020). In farmland, 
people or livestock may carry Oscillibacter and spread 
to rodents.

Effect of Host Species and Habitats on Gut 
Microbiota in Rodents
The relative importance of habitats and host species in 
shaping the gut microbiota has been a major topic of debate 
(Spor et  al., 2011; Carmody et  al., 2015; Rothschild et  al., 
2018; Knowles et  al., 2019). Within-species studies often 
report relatively weak phylogenetic signals compared to 
habitat effects (Carmody et al., 2015; Rothschild et al., 2018), 
whereas a cross-species comparisons have tended to emphasize 
host species, wherein gut microbiota similarity among species 
mirror the host species (Brucker and Bordenstein, 2012; 
Brooks et  al., 2016). Our results showed that gut microbiota 
of sympatric rodent species were shaped more strongly by 
habitats than host species (Figure  5; Table  1), supporting 
our third hypothesis and previous findings (Carmody et  al., 
2015; Rothschild et  al., 2018). Sympatric species living in 
the same environment will generally share similar food items, 
which may lead to a greater impact of habitats on the gut 
microbiota of sympatric rodent species than host 
species effects.

In summary, forest fragmentation can affect the abundance 
of plant seeds and animals, which may result in dietary 
shifts and then affect the diversity of gut microbiota of 
sympatric rodents. Our results showed that both habitats 
and host species had significant effects on the gut microbiota 
of sympatric rodents, but habitats explain more variance of 
gut microbiota of rodents than host species. Our results 
demonstrate that the process of forest succession caused by 
human activities plays an essential role in shaping the gut 
microbiota of sympatric rodents in fragmented habitats. 
Future research should focus on how dietary shifts result 
in changes in gut microbiota, and the significance of gut 
microbes in helping animals to adapt to the changing  
environments.
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