
fmicb-13-816608 May 13, 2022 Time: 15:35 # 1

TECHNOLOGY AND CODE
published: 19 May 2022

doi: 10.3389/fmicb.2022.816608

Edited by:
Allison Hansen,

University of California, Riverside,
United States

Reviewed by:
Takema Fukatsu,

National Institute of Advanced
Industrial Science and Technology

(AIST), Japan
Daniel Pers,

Vanderbilt University, United States

*Correspondence:
Edward B. James

edward.james@miami.edu
Alex C. C. Wilson

acwilson@miami.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Microbial Symbioses,
a section of the journal

Frontiers in Microbiology

Received: 16 November 2021
Accepted: 31 March 2022

Published: 19 May 2022

Citation:
James EB, Pan X, Schwartz O

and Wilson ACC (2022) SymbiQuant:
A Machine Learning Object Detection

Tool for Polyploid Independent
Estimates of Endosymbiont

Population Size.
Front. Microbiol. 13:816608.

doi: 10.3389/fmicb.2022.816608

SymbiQuant: A Machine Learning
Object Detection Tool for Polyploid
Independent Estimates of
Endosymbiont Population Size
Edward B. James1*†, Xu Pan2†, Odelia Schwartz2 and Alex C. C. Wilson1*

1 Department of Biology, University of Miami, Coral Gables, FL, United States, 2 Computational Neuroscience Lab,
Department of Computer Science, University of Miami, Coral Gables, FL, United States

Quantifying the size of endosymbiont populations is challenging because
endosymbionts are typically difficult or impossible to culture and commonly polyploid.
Current approaches to estimating endosymbiont population sizes include quantitative
PCR (qPCR) targeting endosymbiont genomic DNA and flow-cytometry. While qPCR
captures genome copy number data, it does not capture the number of bacterial
cells in polyploid endosymbiont populations. In contrast, flow cytometry can capture
accurate estimates of whole host-level endosymbiont population size, but it is not
readily able to capture data at the level of endosymbiotic host cells. To complement
these existing approaches for estimating endosymbiont population size, we designed
and implemented an object detection/segmentation tool for counting the number of
endosymbiont cells in micrographs of host tissues. The tool, called SymbiQuant, which
makes use of recent advances in deep neural networks includes a graphic user interface
that allows for human curation of tool output. We trained SymbiQuant for use in the
model aphid/Buchnera endosymbiosis and studied Buchnera population dynamics and
phenotype over aphid postembryonic development. We show that SymbiQuant returns
accurate counts of endosymbionts, and readily captures Buchnera phenotype. By
replacing our training data with data composed of annotated microscopy images from
other models of endosymbiosis, SymbiQuant has the potential for broad application.
Our tool, which is available on GitHub, adds to the repertoire of methods researchers
can use to study endosymbiosis at the organismal, genome, and now endosymbiotic
host tissue or cell levels.

Keywords: endosymbiont quantification, symbiosis, aphid, Buchnera, neural network, computer vision

INTRODUCTION

To understand the evolution and ecology of eukaryotic hosts and their microbial partners it is
necessary to study the population dynamics of both host and symbiont. The eukaryotic cell itself is
a product of a symbiosis between an α-proteobacteria and an archaea (Cox et al., 2008; Koonin,
2015; Zaremba-Niedzwiedzka et al., 2017). Notably, symbiotic interactions between eukaryotes
and microbial partners, both beneficial and deleterious, continue to impact eukaryotic, and
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microbial evolution (Engelstädter and Telschow, 2009; Rockwell
et al., 2014; Radzvilavicius and Blackstone, 2015; Moelling and
Broecker, 2019). Some symbiotic partnerships are pairwise like
that of the Hawaiian bobtail squid, Euprymna scolopes, with
the bioluminescent bacteria, Vibro fisheri (Nyholm and McFall-
Ngai, 2021). In contrast, other symbiotic partnerships are more
dynamic involving a single eukaryotic host interacting with a
complex microbial community such as that found in the rumen
of a cow (Weimer, 2015).

The size of symbiont populations can dramatically impact the
fitness of symbiotic partners (Bronstein, 1994). Some mutualisms
feature complex molecular mechanisms that regulate population
size; for example in the squid/Vibrio symbiosis, Vibrio have
evolved multiple quorum-sensing systems that regulate the
expression and translation of bioluminescence genes (Verma
and Miyashiro, 2013). Or in symbioses that are parasitic or
pathogenic it is typical to observe density dependent relationships
between host and symbiont (Knell et al., 1998; Råberg et al.,
2007). For example, the gram-positive bacterium Staphylococcus
aureus has two modes of infection in humans; sessile, where
S. aureus produce adhesins that maintain localized infections,
and flotile, where S. aureus stop producing adhesins, and start
producing lytic enzymes and virulence factors that promote
systemic infection (Yarwood and Schlievert, 2003). The change
in infection mode from sessile to flotile is governed by quorum
sensing mechanisms such that S. aureus population density
dictates the strength of the pathogenic relationship between
S. aureus and humans (Novick, 2003). Given that symbiont
population size can dramatically affect the nature of a symbiosis
it is necessary to study the population dynamics of hosts and their
symbionts to understand the ecology and evolution of symbiosis.
Unfortunately counting microbial symbionts is often challenging
because the symbionts are both microscopic and unculturable.

To date several approaches to counting and estimating the
population size of microbial symbionts have been developed. The
most common method has involved application of quantitative-
PCR (qPCR) (Simoncini et al., 2001; Kaech and Vorburger, 2020;
Bodenhausen et al., 2021). A limitation of qPCR quantification
is that it measures the number of endosymbiont genome copies,
rather than the number of endosymbiont cells (Neiers et al.,
2021). Microbial endosymbionts are frequently highly polyploid
and levels of polyploidy are known to vary across different
conditions (Komaki and Ishikawa, 2000; Mergaert et al., 2006;
Woyke et al., 2010). Therefore, population estimates based on
genome copy number can be confounded by mismatches between
the number of genomes and the number of bacterial cells in
endosymbiont populations. That said, genome copy numbers can
be useful because they provide information for understanding the
evolution and function of endosymbionts (Viñuelas et al., 2011;
Van Leuven et al., 2014; Engl et al., 2018). A second common
approach to counting symbionts and estimating symbiont
population size has involved use of microscopy coupled with
manual counts of symbionts (e.g., Mira and Moran, 2002)
or even application of basic image analysis tools such as
thresholding and particle counting (Serbus et al., 2015). While
microscopy based approaches are not confounded by variable
ploidy, analysis of large datasets is infeasible with respect to

manual counting, and automated approaches like thresholding
and particle counting only work in systems where symbionts are
not tightly clustered and overlapping (see e.g., Serbus et al., 2015).
Disappointingly, thresholding, and particle counting approaches
do not work when applied to the tissues of symbiotic organs
in which microbial populations are tightly packed (Douglas,
1989). A third approach has used flow cytometry to count
endosymbionts (Simonet et al., 2016; Takahashi, 2016). Flow
cytometry techniques directly count endosymbiont cells and
allow for the generation of large insect-level datasets (Simonet
et al., 2016). However, current approaches involve dissociating
endosymbionts from their endosymbiotic tissue, which means
for some systems it is not possible to capture important data at
the level of the host cell. Given the strengths and shortcomings
of the available approaches for estimating microbial symbiont
population size we set out to add a new approach to the toolkit
for quantification of endosymbiont populations.

Here we present and test SymbiQuant, a high throughput tool
for estimating microbial population size based on endosymbiont
cell counts from microscopy images (Figure 1). To realize our
approach our interdisciplinary team of biologists and computer
scientists leveraged a neural network object-detection tool to
process microscopy images of host symbiotic tissues. Briefly,
we generated microscopy images of host symbiotic tissues that
we passed to a modified Mask Region-based Convolutional
Neural Network (Mask R-CNN) trained to identify and count
our focal endosymbiont. In order to improve object prediction,
it was necessary to build front and backends to the pipeline
that allowed at the front end for the reduction of image
complexity, and that allowed at the back end for human curation
to facilitate resolution of type I and II errors. SymbiQuant
can be trained to count endosymbionts in diverse symbiotic
systems through development of system-specific training sets.
Here, we demonstrate application of SymbiQuant in the model
aphid/Buchnera endosymbiosis through analysis of Buchnera
population dynamics across aphid post-embryonic development.
The aphid/Buchnera symbiosis, like that of many intracellular
symbioses is ancient (McCutcheon et al., 2019). Buchnera
have been vertically transmitted from mother to progeny for
150 million years (Dohlen and Moran, 2000). For most of
an aphid’s life Buchnera are housed inside specialized aphid
cells called bacteriocytes, that aggregate with another cell type
called sheath cells to form a bilobed organ, the bacteriome.
Using SymbiQuant we studied Buchnera populations in intact
bacteriocyte cells from the aphid Acyrthosiphon pisum at the
second, third and fourth larval instar, and four time points
during adulthood.

METHODS

Aphid Rearing and Sampling
Acyrthosiphon pisum line LSR1 was raised on Vicia faba at 20◦C
under a 16-h light/8-h dark cycle. Following the time points of
Simonet et al. (2016) we generated age structured cohorts of
aphids by placing 3–5 asexual adult females on a single potted
V. fabae for 24-h before removing the adults and collecting
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FIGURE 1 | Network architecture of SymbiQuant. At the frontend input images are sectioned into overlapping tiles. The Buchnera detection/segmentation network
which is based on Mask R-CNN is run on separate tiles, which are then recombined into final outputs. A Graphic User Interface allows user validation of type I and II
errors.

progeny at day 3 (2nd instar), day 5 (3rd instar), day 7 (4th instar),
and days 9, 13, 16, and 23 (adult). By day 23 the reproductive
output and health of LSR1 aphids were in decline.

Bacteriocyte Preparation and Imaging
Bacteriocytes from multiple asexual females were dissected in
a single well of a 9-well Pyrex spot plate into ice cold 0.2%
triton in 1× PBS (PTx) using dissection forceps and a 00-
gauge minuten pin embedded and glued into the end of a
wooden chopstick. Briefly, we gripped aphids around their
prothorax using the dissection forceps to submerge them and
then cut open the abdomen using the minuten pin tool.
We released all the internal tissues and embryos by gently
shaking the body of the aphid before removing the body
from the dissection dish. In order to image sufficient numbers
of isolated, intact bacteriocytes it was necessary to dissect
multiple individuals into a single spot plate well. For 2nd
instar aphids, we dissected 20–50 individuals, for 3rd and
4th instars, we dissected 20 individuals, and for adults we
dissected 15 individuals.

Next we performed the dissociation, fixing and staining of
dissected tissues at room temperature in the dissection well
covered by an opaque box, on an orbital shaker at 60 rpm.
All washes and buffer changes were done slowly under a
dissecting microscope using a pasteur pipette which had been
rinsed in PTx prior to use to remove any glass dust. In
order to perform the washes very carefully it was necessary
to seal the rubber bulb to the glass pipette using parafilm. To
maximize the number of bacteriocyte cells recovered, all steps
were carried out in the same spot plate well. To dissociate
bacteriocyte cells and facilitate the imaging of individual

bacteriocytes we first performed a 20 min ice cold 0.025%
trypsin incubation, followed by two 15 min washes in ice cold
PTx, and one 15 min wash in ice cold 1.8% paraformaldehyde
in PTx. To fix tissues we incubated tissues in ice cold 3.6%
paraformaldehyde in PTx for 25 min, followed by three 15 min
washes in ice cold PTx. To stain DNA and actin we incubated
tissues in ice cold 1 µg/ml DAPI and 0.5 µg/ml phalloidin-
TRITC in PTx for 90 min, followed by three 15 min washes
in ice cold PTx.

Following staining we carefully sorted bacteriocytes from
embryos, guts and other tissues. First we used forceps to remove
embryos and guts. Next we used the forceps tip to create a gentle
current in the wash buffer to sort bacteriocytes from fat body and
other small cellular debris. Bacteriocytes were transferred in a line
down the middle of a clean glass slide using a wide bore p200
pipette tip, set at 50 µl. We next distributed 25 µl of vectashield
antifade mounting media (Vector Laboratories) down each side
of the bacteriocytes before sealing them under a No. 1.5, 24 ×
50 mm glass coverslip using nail varnish.

Cells were imaged using a Leica TCS SP5 confocal microscope
in the University Miami, Department of Biology Confocal
Microscopy Facility. Data for each cell was captured as a
single slice through the cell (0.005µm thick) at the point
at which the nucleus was visually evaluated to be the
widest. The DAPI stain facilitated identification of the cell
nucleus and Buchnera, while actin labeled by phalloidin-TRITC
facilitated discrimination of heavily vacuolated bacteriocytes
from ruptured cells. Ruptured bacteriocyte cells were excluded
from our dataset. We imaged 74 bacteriocyte cells for the
training and validation of the tool, and a further 126 to
demonstrate SymbiQuant use.
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Preparation of Confocal Images for
Model Training, Testing, and Validation
For each confocal image we exported the DAPI channel in .png
file format with 2,048 × 2,048 or 1,024 × 1,024 pixels—note
that lossy file formats should be avoided at this stage because
they introduce unnecessary data compression and loss. Note also
that images must be larger than 512 × 512 pixels for our tool
to work. We outlined all intact Buchnera cells in the .png files
using labelme (Wada, 2016). To complement our dataset, we
performed the same annotation on cropped bacteriocyte images
previously taken by Price et al. (2014) and Feng et al. (2019).
Next we transformed the labelme output .json files into COCO
format using labelme2coco (Zhang, 2019). To fit the images into
RAM and GPU memory for training the network we cropped the
74 bacteriocyte cell images (.png files) and their corresponding
annotation files (COCO format .json file) into non-overlapping
512 × 512 pixel tiles—every image tile had a paired annotation
tile corresponding to the same image coordinates. In total we
generated 674 non-overlapping image tiles that we randomly split
into a training set of 614 tiles representing 40,153 Buchnera,
and a validation set of 60 tiles representing 3,957 Buchnera.
Additionally, to test the final model’s performance, we prepared a
test set of 14 annotated full-cell images that were split into 350
tiles, 50 for each point of development representing a total of
13,725 Buchnera.

Development of Mask Region-Based
Convolutional Neural Network Buchnera
Recognition Algorithm
Recent CNN-based algorithms, such as Mask Region-based
Convolutional Neural Network (Mask R-CNN), have achieved
success in real-life object detection and segmentation (He et al.,
2020; Minaee et al., 2021). Given that Buchnera at the cellular
level are dense, small and more regular than objects in natural
images, we modified Mask R-CNN to better fit our needs. The
modifications include development of a customized learning
rate scheduler, customization of object anchor size and shape,
modification of feature map resolutions, and data augmentation.
We implemented the network using the Detectron2 library1 with
a Pytorch backend2. Processing high resolution images such
as those generated by confocal microscopy, requires high-end
GPUs. To lower the GPU requirement, we developed a tiling
pipeline, which crops images into smaller tiles for training and
prediction and stitches tiles back together after the network has
run through all the tiles. We used ResNet50 as a backbone, passed
feature maps through the Feature Pyramid Network (FPN), and
then on to the Region Proposal Network (RPN) (He et al.,
2016, 2020; Lin et al., 2017). After passing regions of interest to
a convolutional upsampling head, we removed regions of low
likelihood using a set of detection criteria as described below.

We trained Mask R-CNN on our training and validation
sets for 40,000 iterations, using the stochastic gradient descent
optimizer with a warmup and cosine decay learning rate

1https://github.com/facebookresearch/detectron2
2https://pytorch.org/

FIGURE 2 | Data augmentation was necessary to avoid overfitting Mask
R-CNN on our training set. (A) Training and validation loss without data
augmentation. (B) Training and validation loss with data augmentation. Total
loss is the sum of bounding box regression loss, ROI head classification loss,
mask loss, region proposal network classification loss, and region proposal
network localization loss. Training set loss was measured over 20 randomly
selected training set tiles every 20 iterations. Validation set loss was measured
over all 60 validation set tiles every 500 iterations.

scheduler (implemented from Detectron2) to maximize
improvements throughout training. To avoid overfitting
the Buchnera prediction algorithm to our training set, we
augmented our training set before training by randomly
scaling brightness (0.6–1.8), contrast (0.6–1.8), scale (0.5–
1), and performing random horizontal and vertical flips
(code in https://github.com/WilsonLabMiami/SymbiQuant,
“augmentation.py”). Data augmentation was necessary for
achieving alignment of training and validation set loss — loss
alignment indicates that the algorithm has not been overfitted
(Figure 2). Next, we designed a Buchnera recognition network
by adapting the default Mask R-CNN. Briefly, ResNet50 feature
maps generated at each of the 2nd, 3rd, 4th, and 5th residual
blocks were passed to the FPN, which combined them into four
new hierarchical feature maps with 16 × 16, 32 × 32, 64 × 64,
and 128 × 128 resolutions. Next, these new feature maps were
passed to the RPN which identified anchors putatively containing
Buchnera by consensus across multiple scales. Note that we did
not use the feature map generated at the 6th residual block as
occurs using the default settings of ResNet50 because Buchnera
are small, dense, and regular in shape relative to other objects
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in the COCO dataset. In addition, because Buchnera have a
toroidal shape in DAPI-stained confocal images, we constrained
the FPN to search for regions with an aspect ratio of 1 (i.e., a
square). Within the RPN, the anchor sizes were set to 32 × 32
pixels, 64 × 64 pixels, 128 × 128 pixels, and another at 128 ×
128 pixels. Default anchors at 16 × 16 pixels and 256 × 256
pixels were not used because they were too small, or too large for
Buchnera prediction. Buchnera predicted across all four feature
map resolutions were marked as regions of interest with higher
confidence than those predicted across only three resolutions,
and so on. For each 512 × 512 tile up to 1,000 regions of
interest could be identified to serve as anchors for the return
of a Buchnera mask and bounding box; the number 1,000 was
chosen because it is much larger than the number of Buchnera
found in any 512× 512 tile where the mean number of Buchnera
identified by manual annotation was 66.7.

We assessed neural network performance to empirically
establish high confidence predictions. Computer vision neural
network performance is typically assessed by computation of
recall and precision metrics, where recall = the number of
true positives divided by the number of manually annotated
objects, and precision = the number of true positives divided
by the total number of predictions. The harmonic mean of
precision and recall gives the F1 score. A high F1 score reveals
the network is making accurate predictions, while a low F1
score reveals inaccurate predictions. Specifically, to assess our
trained network’s performance and empirically establish the
model threshold we used a test set of 14 manually annotated
bacteriocyte images, two from each age point. The test set of
images was unseen and had not informed the training process.
We computed three metrics: (1) A precision-recall curve, (2) an
average precision score (AP), and (3) a F1 score. To do this we
first had to compute prediction scores and assign predictions as
true or false positives. Prediction scores ranged between 0.01 and
1, where a score of 0.01 equates to no similarity to Buchnera in
the training set and a score of 1 equates to high similarity to
Buchnera in the training set. Predictions were defined as “true
positives” if they had an Intersection over Union (IoU) > 0.5
with a manually annotated Buchnera, and “false positives” if
they did not have an IoU > 0.5 with any manually annotated
Buchnera. To generate the precision-recall curve we used the test
set that contains 14 images described in the previous subsection.
We ordered the predictions scores from smallest to largest and
separated them into 100 bins, each containing the same number
of predictions. The maximum prediction score for each bin
defines a threshold value. For each threshold value we calculated
recall, precision, and F1 score. To calculate the AP score we
plotted the precision-recall curve (AP = area under the precision-
recall curve) (Figure 3).

Lastly, the RPN passed anchors with a prediction score
higher than 0.5 to a 4-layer convolutional upsampling head (256
channels) that predicted a mask, and a 2-layer fully connected
head (1,024 neurons) that returned bounding box coordinates.

SymbiQuant
In order to utilize the MASK R-CNN Buchnera recognition
algorithm on high resolution whole cell confocal images it was
necessary to develop a frontend that split images into tiles, a

FIGURE 3 | SymbiQuant accurately predicts Buchnera in confocal
microscope images. (A) Precision-Recall Curve for SymbiQuant. The average
precision score (AP) is the shaded area under the curve. We extrapolated to
recall = 0, precision = 1. We did not extrapolate to recall = 1, precision = 0 as
our model is unable to achieve recall = 1. (B) Precision, Recall, and F1 (the
harmonic mean of precision and recall) for SymbiQuant’s Buchnera dataset,
across all thresholds. Dashed black line shows the 0.5 threshold cutoff used
in this study, dashed gray line shows the threshold that maximizes the F1
score—0.366).

backend that merged tiles back together, and a graphic user
interface (GUI) that allowed for human curation (Figure 1). We
call the assembled pipeline, SymbiQuant.

At the frontend, the input 2,048 × 2,048 pixel images were
cropped to overlapping 5 × 5 tiles for analysis. The tiles were
each 512 × 512 pixels, with an 85 pixel overlap between tiles.
Each tile was then run through the MASK R-CNN Buchnera
recognition algorithm.

At the backend, following analysis of the 25 tiles that
comprised an image, we stitched the tiles back together. Predicted
Buchnera that were smaller than 10% of the median size, and
larger than five times the median size were removed as false
positives. To avoid double counting within the 85-pixel-wide-
areas-of-overlap we randomly dropped one of any two predicted
Buchnera with an intersection over union (IoU) larger than 0.5
(code in project github).
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To allow the removal of false positives and annotation of
false negatives, we developed a GUI that overlays predicted
Buchnera masks on the original input images (see manual and
code in project github). The GUI outputs a “result” file that
contains the coordinates of every Buchnera mask identified in
its associated bacteriocyte image. See “Buchnera_metrics.py” in
the project github for an example of how to use these result files
in data analysis.

Demonstration of SymbiQuant Use and
Image Analysis
To demonstrate application and test performance of SymbiQuant
across aphid post-embryonic development we imaged 16–22
individual bacteriocyte cells from each of seven time points
that spanned the 2nd juvenile instar through adults in early
senescence. To isolate sufficient intact bacteriocytes for statistical
analysis we needed to perform between two and four imaging
runs at each time point; typically more imaging runs were

needed at the earlier time points. To analyze these images we
ran SymbiQuant with GUI correction on each image, recording
the number of Buchnera in a bacteriocyte and the area of each
Buchnera cell (µm2). Additionally for each image we used the
measure function in FIJI (Schindelin et al., 2012) to record the
whole cell area (µm2) using the phalloidin-TRITC channel, and
the nuclear area (µm2) using the DAPI channel. Lastly, we
used “set scale” in FIJI to record the pixel:micron ratio of each
image to convert from Buchnera pixel area to µm2 (Schindelin
et al., 2012). Using these data for each image we calculated:
(1) cytoplasm area (µm2) = whole cell area−nuclear area, (2)
Buchnera density (Buchnera.µm−2) = number of Buchnera /
cytoplasm area, (3) Buchnera cell area ((µm2) = Buchnera cell
area in pixels2 ∗ (pixel:micron ratio)2, (4) Buchnera diameter
(µm) =

√
(Buchnera cell area / π), and (5) fraction of cell

cytoplasm occupied by Buchnera (%) = (area of each Buchnera
cell−area where Buchnera overlap with each other) / cytoplasm
area. To analyze Buchnera cell areas we trimmed data with an
absolute z-score greater than 3.

FIGURE 4 | Input and output images of SymbiQuant. The top row shows DAPI channels of aphid bacteriocytes (A1,B1,C1). The second row shows SymbiQuant
output overlaid on the input image to show detected Buchnera (A2,B2,C2). The third row shows the indicated zoomed section from the input (A3,B3,C3) and output
(A4,B4,C4) images. Columns represent aphids at different age points, Day 3/second instar (A), day 5/third instar (B), and day 13/adult (C). All Scale bars are 10 µm.
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Statistics
We analyzed all metrics for outliers, defining an outlier as
a data point with an absolute z-score > 3. A single day
9 bacteriocyte was unusually large, and so we excluded this
cell in the analysis of the following metrics: (i) Buchnera
per bacteriocyte, (ii) percentage cytoplasm area occupied by
Buchnera, (iii) Buchnera per µm2 cytoplasm, (iv) bacteriocyte
nucleus area and (v) bacteriocyte area. Next, for each time point,
we identified outliers in our Buchnera area dataset using the
same z-score filter. We identified 10 Buchnera outliers at the
second instar (0.08% of second instar dataset), 17 at the third
instar (0.14% of third instar dataset), 344 at the fourth instar
(1.7% of fourth instar dataset), 240 at day 9 adult (1.6% of
day 9 dataset), 75 at day 13 adult (0.6% of day 13 dataset),
271 at day 16 adult (1.9% of day 16 dataset), and 552 at day
23 adult (4.9% of day 23 dataset). All outliers were removed
from the datasets.

To compare metrics across aphid timepoints we checked
for equal variance across samples using Levene’s test, and
performed either an ANOVA with Tukey post hoc grouping for
parametric data (percentage cytoplasm occupied by Buchnera),
or a Kruskal-Wallis test with Dunn post hoc analysis for non-
parametric data with Benjamini/Hochburg correction (all other
metrics). We used Spearman correlations to investigate the
relationship between aphid age and (i) bacteriocyte nucleus area,
and (ii) Buchnera per µm2 of cytoplasm. To test for increasing
variance in metrics with aphid age, we calculated the absolute
difference from the mean for every datapoint in each of the
four adult aphid timepoints (day 9–23). Differences in absolute
values between timepoints were interrogated with Kruskal-Wallis
tests with Dunn post hoc analysis for non-parametric data
with Benjamini/Hochberg correction. To test for increase or
decrease in metrics throughout adulthood, we performed linear
regressions across the last four timepoints and recorded the

FIGURE 5 | The number of Buchnera per bacteriocyte varies with aphid life
stage. Letters indicate Dunn post hoc grouping with Benjamini/Hochberg
correction. Red diamonds indicate means, black dots indicate individual data
points.

slope with 95% confidence intervals [slope ± (1.96 × standard
deviation)]. All statistical analyses were performed in python3
using “statsmodels_posthoc” and “scipy” packages.

FIGURE 6 | The shapes of both Buchnera and bacteriocytes change in
consistent ways through aphid development. (A) Bacteriocyte nucleus area
measured in FIJI. (B) Bacteriocyte cell area measured in FIJI. Sample sizes
represent the number of full bacteriocyte images at each time point. (C)
Buchnera cell areas measured by SymbiQuant. (D) Buchnera diameter,
calculated from the area measured by SymbiQuant, with horizontal dashed
line showing pooled mean diameter. In all violin plots red diamonds indicate
means. When present, black dots indicate individual data points. Sample
sizes are listed above each plot. Letters indicate Dunn post hoc grouping with
Benjamini/Hochberg correction.
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RESULTS

SymbiQuant Identifies Buchnera With
High Accuracy
To facilitate high-throughput quantification of Buchnera
populations in images of intact bacteriocyte cells we developed
a machine vision tool (Figure 4). Our tool predicts Buchnera
with both high precision and high accuracy (Figure 3A). For our
recognition algorithm the probability that any one prediction
from the network is a true positive as measured by precision
was 0.885. While the fraction of real objects predicted by our
model as measured by recall was 0.809. For our recognition
algorithm, the average precision score (AP), a metric that
captures precision and recall across all thresholds, was 0.886
(Figure 3A). While SymbiQuant is accurate, it does not achieve
100% recall or precision (Figure 3B). For this reason, in building
the SymbiQuant pipeline, we included a GUI to enable human
curation of model output.

Buchnera Cell and Population Size
Change Across Aphid Post-embryonic
Development
With SymbiQuant we measured the size of Buchnera populations
inside single bacteriocytes. We found that Buchnera populations
reach their maximum size immediately before host reproductive
maturity (Figure 5). The number of Buchnera per bacteriocyte
significantly increases between the third and fourth instar
of development. At adulthood, the number of Buchnera per
bacteriocyte decreases to levels statistically indistinguishable
from those found at or before the third instar. Coincident
with the 3rd to 4th instar increase in Buchnera population
size, the mean size of Buchnera cells also significantly increases
(Figures 6C,D). While Buchnera population size at adulthood
decreases to levels statistically indistinguishable from those found
at or before the third instar, Buchnera cell size does not return to
pre-reproductive sizes.

Bacteriocyte Cells Increase in Size and
Nuclear Area Across Aphid
Post-embryonic Development
We imaged individual bacteriocytes as a single slice through the
cell where the nucleus was visually evaluated to be the widest.
For each bacteriocyte cell we measured the area of the cell
and the area of the nucleus (Figures 6A,B). Bacteriocytes grow
significantly between the third and fourth instar, and throughout
adulthood variance in bacteriocyte cell size increases (Figure 6B).
We found that as adult aphids age bacteriocytes increased in
average area (r2 = 0.345, p = 0.004, slope = 359.4 ± 273.0) and
became more variable in size (Kruskal-Wallis H = 1105.5, p = 2.35
× 10−239). We observed similar patterns across adulthood in
the area (r2 = 0.419, p = 0.000419, slope = 359.4 ± 30.1) and
variability in size (Kruskal-Wallis H = 37.424, p = 3.74× 10−8) of
the bacteriocyte nucleus. Bacteriocyte nuclei also increase in size
across aphid post-embryonic development (Spearman’s ρ = 0.631,
p = 2.84× 10−15).

Bacteriocyte Intracellular Environment Is
Dynamic
To assess endosymbiotic conditions within bacteriocytes we
recorded, for each bacteriocyte, Buchnera population density
(Buchnera a µm−2), and the fraction of bacteriocyte cytoplasm
occupied by Buchnera (% area). We found that Buchnera density
decreased with aphid age (Spearman’s ρ = –0.669, p = 1.54 ×
10−17) (Figure 7B) and that the area of cytoplasm occupied
by Buchnera significantly decreased between day 9 and day 13
(Figure 7A) (ANOVA F = 7.79, p = 4.55 × 10−7). Notably, the
significant decline in cytoplasmic space occupied by Buchnera
was coincident with the time point at which empty vacuoles
began to be found in bacteriocytes (Figure 4C).

DISCUSSION

SymbiQuant Allows Novel Phenotyping
of Endosymbiont Populations
SymbiQuant facilitates high-throughput study of endosymbiont
populations in the context of their endosymbiotic tissue,
allowing users to quantify changes in endosymbiont phenotype
(size), and population dynamics across time or experimental
treatment. Coupled with measurement of bacteriocyte cell and
nuclei size using FIJI, SymbiQuant facilitates quantification
of endosymbiont density metrics (Figure 7). In aphids,
SymbiQuant adds novel bacteriocyte cell-level metrics to our
current understanding of the aphid/Buchnera symbiosis based

FIGURE 7 | Endosymbiotic conditions vary dynamically throughout aphid life
stage. (A) Percentage of bacteriocyte cytoplasm area occupied by Buchnera.
Letters indicate Tukey post hoc grouping. (B) Density of Buchnera within
aphid bacteriocytes in Buchnera per cytoplasm µm2. Letters indicate Dunn
post hoc grouping with Benjamini/Hochberg correction. In all violin plots, red
diamonds indicate means, black dots indicate individual data points.
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on insect-level methods like flow cytometry and genome-level
methods like qPCR (Vogel and Moran, 2013; Simonet et al.,
2016). By including a GUI to validate algorithm predictions we
achieve expert-level high throughput bacteriocyte and Buchnera
phenotyping, while saving a great deal of time compared to purely
manual labeling.

Use of SymbiQuant in concert with current methods will
enable new insights into the biology of symbiotic systems. It has
previously been shown that genome copy number and population
size are uncoupled in the aphid/Buchnera symbiosis (Komaki
and Ishikawa, 2000), a pattern that holds true in other symbiotic
systems (Mergaert et al., 2006; Woyke et al., 2010). SymbiQuant
used alongside traditional qPCR approaches will allow for
exploration of the relationship between Buchnera genome copy
number and changes in biotic and abiotic conditions. For
example it will be possible to ask how Buchnera genome copy
number changes in response to nutritional input or how it
varies across development. In combination with flow cytometry
approaches, SymbiQuant can add cell-level information to
complement insect-level data, allowing researchers to address
questions about endosymbiotic systems at multiple levels of
biological organization.

Achieving a Synthetic Understanding of
Buchnera Population Dynamics Across
Embryonic Development
Previously, using flow-cytometry Simonet et al. (2016)
tracked changes in Buchnera populations over post-embryonic
development in A. pisum line LL01. Here, using SymbiQuant

and sampling at the same time points as Simonet et al. (2016), we
tracked changes in Buchnera populations over post-embryonic
development in A. pisum line LSR1. Both studies found that
Buchnera population size increased significantly between the 3rd
and 4th instar. Flow-cytometry, which quantifies Buchnera at
the level of whole insect or whole tissue, revealed that Buchnera
population size continued to increase into early adulthood,
a result that we did not find at a bacteriocyte cellular-level
(summarized in Figure 8). This disconnect between the whole
insect level and bacteriocyte cell-level data suggests that Buchnera
population size increases into young adulthood as a result of
an increase in the number of bacteriocytes, and not an increase
in the density of endosymbionts per host cell. Both studies also
found that Buchnera density per bacteriocyte decreased over
adulthood, with our observation of the presence of Buchnera-
devoid vacuoles in bacteriocytes from day 13 onward being
consistent with the timing of the bacteriocyte cell death process
described in A. pisum LL01 by Simonet et al. (2018). In contrast,
other patterns appear to differ between the two studies, for
example, while Simonet et al. (2016) found that bacteriocytes
significantly decreased in size in adults between day 16 and
day 23, we did not observe a decrease in bacteriocyte cell size
(Figure 6B). We reason that this difference between the two
studies either reflects natural variation in the host and symbiont
genotypes of aphid lines LL01 and LSR1, or could be attributed
to other variables like differences in nutrition (Pers and Hansen,
2019). In addition to the work by Pers and Hansen demonstrating
that Buchnera genome copy varies based on host stress, it has
previously been shown that different A. pisum lines can have
dramatically different Buchnera titers at any given developmental

FIGURE 8 | Overview of bacteriocytes and Buchnera populations throughout aphid postembryonic development.
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stage, and different patterns of Buchnera population growth
through aphid life (Vogel and Moran, 2013; Chong and Moran,
2018).

Up to this point, quantification of Buchnera populations
has largely been achieved using qPCR (e.g., Dunbar et al.,
2007; Vogel and Moran, 2011; Chong and Moran, 2016;

Enders and Miller, 2016; Zhang et al., 2016; Qian et al., 2018;
Yao, 2019; Heyworth et al., 2020). Few studies have used
absolute quantification (e.g., Plague et al., 2003), instead most
have used relative quantification of a single copy Buchnera
gene to a single copy aphid gene. Application of relative
quantification assumes that the denominator is constant. Recent

FIGURE 9 | FISH gives endosymbiont-specific probes that work in complex symbiotic systems. Existing FISH data could serve as training datasets to implement
PIPE in other systems. (A,D) Show confocal microscopy of endosymbiotic tissue; an aphid bacteriocyte, and a cicada egg, respectively. (B,E,G) Show isolated
endosymbiont channels. (B) Shows signal from DAPI, staining endosymbiont genome DNA. (E,G) Show signal from endosymbiont-specific FISH probes. (C,F,H)
Show zoomed sections indicated by yellow boxes in (B,E,G), respectively. Endosymbionts in half of each panel have been labeled with labelme (Wada, 2016). (D–H)
Show images provided by M. Campbell and J. McCutcheon, prepared in Campbell et al. (2018). (D,E,G) Show a microscope image overlaid on a black background
for aesthetic purposes. Scale bars are 10 µm.
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work by Nozaki and Shigenobu (2021) shows that the ploidy
of bacteriocytes varies from 4 C to 512 C over A. pisum
postembryonic development, and further is not consistent among
bacteriocyte cells at any one time point in development. So,
not only is Buchnera ploidy variable (Komaki and Ishikawa,
2000), so too is the ploidy of aphid bacteriocyte cells. This new
discovery that both Buchnera and aphid cells show variable ploidy
means that it is not possible to make meaningful comparisons
between the work we present here and previous studies of the
population dynamics of Buchnera as described by qPCR. Going
forward it will be necessary for studies that make use of qPCR
to use an absolute quantification approach to estimate Buchnera
and aphid genome copy numbers. Further, we suggest that
such estimates be made from dissected bacteriocytes and not
whole insects. Application of absolute quantification approaches
applied to symbiotic tissues will facilitate meaningful comparison
of estimates of symbiont population size by genome copy counts
vs. those based on whole cell analysis (i.e., flow cytometry
and SymbiQuant).

SymbiQuant Is Readily Adapted for
Application in Other Endosymbiosis
We designed SymbiQuant to return descriptive and quantitative
data about endosymbiotic cells. Our group’s focal endosymbiosis
is that of aphids and Buchnera, but in building SymbiQuant
we worked to make it readily adaptable for application in
other endosymbiotic systems. SymbiQuant can be adapted
to annotate endosymbionts in any system in which it is
possible to capture high resolution images of symbiotic tissue.
Notably, by coupling image collection with taxon-specific
labeling, SymbiQuant can even be applied in systems that
include multiple endosymbionts (Figure 9). Previous work
in the cicada Tettigades chilensis which is host to two
endosymbionts (Candidatus Sulcia mulleri and Candidatus
Hodgkinia cicadicola) used small-subunit rRNA probes to target
each endosymbiont (Campbell et al., 2018). Using these probes
Campbell et al. (2018) captured images of cicada oocytes packed
with both Sulcia and Hodgkinia. In Figure 9 we show that
by separating the image channels for each probe it would
be possible to train SymbiQuant to “see” and count each
endosymbiont. We include in the project GitHub3 a detailed
description of how to train SymbiQuant for application in
other endosymbiosis.

When Adapting SymbiQuant for application in other
endosymbiotic systems, or when researchers use SymbiQuant
to analyze images collected from aphid bacteriocytes it is
important to develop a considered approach to the collection
of microscopy data. Here by imaging each bacteriocyte one
time at the point where the nucleus was widest we chose to
invest resources in sampling many bacteriocytes, and describing
the “average” bacteriocyte. In other studies, it may be more
useful take a z-stack through each bacteriocyte being sure
to start and end at consistent landmarks e.g., the “top” and
“bottom” of the nucleus. Such an approach would provide a

3 https://github.com/WilsonLabMiami/SymbiQuant

more comprehensive picture of each individual bacteriocyte but
will be more costly. Additionally, if two different endosymbionts
need to be analyzed from the same image as is shown in
Figures 9D,E,G, we recommend collecting the signal from
each endosymbiont in separate scans, using probes that
do not overlap in their signal. Lastly, SymbiQuant was
not designed to replace current approaches rather, coupled
with existing approaches for quantifying endosymbiont
populations it can provide additional insights into dynamics of
endosymbiotic relationships.

Region-Based Convolutional Neural
Networks Have Broad Application in
Biology
SymbiQuant adds to the use of region-based convolutional
neural networks (RCNNs) for high-throughput processing
of biological images. Recently, RCNNs have been
implemented to record the number and morphology
of stomata on leaves (Jayakody et al., 2021), to identify
deep sea fauna (Liu and Wang, 2021), and even to track
mouse movement (Geuther et al., 2019). We anticipate
an increase in the use of RCNNs for capture of biological
patterns and processes.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://figshare.com/
articles/online_resource/model_final_randomscale_0_5_1_
40000_pth/19583713 and https://github.com/WilsonLab
Miami/SymbiQuant.

AUTHOR CONTRIBUTIONS

EJ and AW conceived the project. EJ performed the lab work.
EJ and XP wrote and executed the computational work with
guidance from OS and AW. EJ and XP performed the data
analysis with input from AW. EJ, XP, and AW drafted the
manuscript. All authors read and contributed to revising the final
version of the manuscript.

FUNDING

This work was funded by NSF grant IOS-1354154 to AW.

ACKNOWLEDGMENTS

We would like to acknowledge Matthew Campbell and John
McCutcheon for providing confocal microscope images of
symbiotic cicada eggs, Gabriela Jimenez for assisting in figure
design, Liang Liang for early computer vision guidance,
and the SWArMZ group at the University of Miami for
editorial feedback.

Frontiers in Microbiology | www.frontiersin.org 11 May 2022 | Volume 13 | Article 816608

https://github.com/WilsonLabMiami/SymbiQuant
https://figshare.com/articles/online_resource/model_final_randomscale_0_5_1_40000_pth/19583713
https://figshare.com/articles/online_resource/model_final_randomscale_0_5_1_40000_pth/19583713
https://figshare.com/articles/online_resource/model_final_randomscale_0_5_1_40000_pth/19583713
https://github.com/WilsonLabMiami/SymbiQuant
https://github.com/WilsonLabMiami/SymbiQuant
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-816608 May 13, 2022 Time: 15:35 # 12

James et al. SymbiQuant—Tool to Phenotype Endosymbionts

REFERENCES
Bodenhausen, N., Deslandes-Hérold, G., Waelchli, J., Held, A., van der Heijden,

M. G. A., and Schlaeppi, K. (2021). Relative qPCR to quantify colonization
of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza 31, 137–148. doi:
10.1007/s00572-020-01014-1

Bronstein, J. L. (1994). Conditional outcomes in mutualistic interactions. Trends
Ecol. Evol. 9, 214–217. doi: 10.1016/0169-5347(94)90246-1

Campbell, M. A., Łukasik, P., Meyer, M. C., Buckner, M., Simon, C., Veloso,
C., et al. (2018). Changes in endosymbiont complexity drive host-level
compensatory adaptations in cicadas. MBio 9:e02104-18. doi: 10.1128/mBio.
02104-18

Chong, R. A., and Moran, N. A. (2016). Intraspecific genetic variation
in hosts affects regulation of obligate heritable symbionts. Proc.
Natl. Acad. Sci. U.S.A. 113, 13114–13119. doi: 10.1073/pnas.161074
9113

Chong, R. A., and Moran, N. A. (2018). Evolutionary loss and replacement of
buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908. doi:
10.1038/s41396-017-0024-6

Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., and Embley, T. M. (2008).
The archaebacterial origin of eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 105,
20356–20361. doi: 10.1073/pnas.0810647105

Dohlen, C. D. V. O. N., and Moran, N. A. (2000). Molecular data support a rapid
radiation of aphids in the cretaceous and multiple origins of host alternation.
Biol. J. Linn. Soc. Lond. 71, 689–717. doi: 10.1111/j.1095-8312.2000.tb01
286.x

Douglas, A. E. (1989). Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc.
64, 409–434. doi: 10.1111/j.1469-185x.1989.tb00682.x

Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R., and Moran, N. A. (2007). Aphid
thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS
Biol. 5:e96. doi: 10.1371/journal.pbio.0050096

Enders, L. S., and Miller, N. J. (2016). Stress-induced changes in abundance differ
among obligate and facultative endosymbionts of the soybean aphid. Ecol. Evol.
6, 818–829. doi: 10.1002/ece3.1908

Engelstädter, J., and Telschow, A. (2009). Cytoplasmic incompatibility and host
population structure. Heredity 103, 196–207. doi: 10.1038/hdy.2009.53

Engl, T., Eberl, N., Gorse, C., Krüger, T., Schmidt, T. H. P., Plarre, R., et al. (2018).
Ancient symbiosis confers desiccation resistance to stored grain pest beetles.
Mol. Ecol. 27, 2095–2108. doi: 10.1111/mec.14418

Feng, H., Edwards, N., Anderson, C. M. H., Althaus, M., Duncan, R. P., Hsu, Y.-C.,
et al. (2019). Trading amino acids at the aphid–buchnerasymbiotic interface.
Proc. Natl. Acad. Sci. U.S.A. 116, 16003–16011. doi: 10.1073/pnas.1906223116

Geuther, B. Q., Deats, S. P., Fox, K. J., Murray, S. A., Braun, R. E., White, J. K.,
et al. (2019). Robust mouse tracking in complex environments using neural
networks. Commun. Biol. 2:124. doi: 10.1038/s42003-019-0362-1

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2020). Mask R-CNN. IEEE Trans.
Pattern Anal. Mach. Intell. 42, 386–397.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in proceeding of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). doi: 10.1109/cvpr.2016.90

Heyworth, E. R., Smee, M. R., and Ferrari, J. (2020). Aphid facultative symbionts
aid recovery of their obligate symbiont and their host after heat stress. Front.
Ecol. Evol. 8:56. doi: 10.3389/fevo.2020.00056

Jayakody, H., Petrie, P., de Boer, H. J., and Whitty, M. (2021). A generalised
approach for high-throughput instance segmentation of stomata in microscope
images. Plant Methods 17:27. doi: 10.1186/s13007-021-00727-4

Kaech, H., and Vorburger, C. (2020). Horizontal transmission of the heritable
protective endosymbiont depends on titre and haplotype. Front. Microbiol.
11:628755. doi: 10.3389/fmicb.2020.628755

Knell, R. J., Begon, M., and Thompson, D. J. (1998). Host-pathogen population
dynamics, basic reproductive rates and threshold densities. Oikos 81:299. doi:
10.2307/3547050

Komaki, K., and Ishikawa, H. (2000). Genomic copy number of intracellular
bacterial symbionts of aphids varies in response to developmental stage and
morph of their host. Insect. Biochem. Mol. Biol. 30, 253–258. doi: 10.1016/s0965-
1748(99)00125-3

Koonin, E. V. (2015). Origin of eukaryotes from within archaea, archaeal
eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos.
Trans. R. Soc. Lond. B Biol. Sci. 370, 20140333. doi: 10.1098/rstb.2014.0333

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection,” in Proceeding of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), doi:
10.1109/cvpr.2017.106

Liu, Y., and Wang, S. (2021). A quantitative detection algorithm based on improved
faster R-CNN for marine benthos. Ecol. Inform. 61:101228. doi: 10.1016/j.
ecoinf.2021.101228

McCutcheon, J. P., Boyd, B. M., and Dale, C. (2019). The life of an insect
endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495. doi:
10.1016/j.cub.2019.03.032

Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., et al.
(2006). Eukaryotic control on bacterial cell cycle and differentiation in the
Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. U.S.A. 103, 5230–5235.
doi: 10.1073/pnas.0600912103

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., and Terzopoulos,
D. (2021). Image segmentation using deep learning: a survey. IEEE Trans.
Pattern Anal. Mach. Intell. 1. doi: 10.1109/TPAMI.2021.3059968

Mira, A., and Moran, N. A. (2002). Estimating population size and transmission
bottlenecks in maternally transmitted endosymbiotic bacteria. Microbial. Ecol.
44, 137–143. doi: 10.1007/s00248-002-0012-9

Moelling, K., and Broecker, F. (2019). Viruses and evolution – viruses first? A
personal perspective. Front. Microbiol. 2019:523. doi: 10.3389/fmicb.2019.00523

Neiers, F., Saliou, J.-M., Briand, L., and Robichon, A. (2021). Adaptive variation of
endosymbiont density in aphid host controlled by environmental conditions.
ACS Omega 6, 17902–17914. doi: 10.1021/acsomega.1c01465

Novick, R. P. (2003). Autoinduction and signal transduction in the regulation of
staphylococcal virulence. Mol. Microbiol. 48, 1429–1449. doi: 10.1046/j.1365-
2958.2003.03526.x

Nozaki, T., and Shigenobu, S. (2021). Ploidy dynamics in aphid host cells harboring
bacterial symbionts. bioRxiv [preprint]. doi: 10.1101/2021.12.03.471054

Nyholm, S. V., and McFall-Ngai, M. J. (2021). A lasting symbiosis: how the
Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner.
Nat. Rev. Microbiol. 10, 666–679. doi: 10.1038/s41579-021-00567-y

Pers, D., and Hansen, A. K. (2019). The effects of different diets and
transgenerational stress on acyrthosiphon pisum development. Insects 10:260.
doi: 10.3390/insects10090260

Plague, G. R., Dale, C., and Moran, N. A. (2003). Low and homogenous copy
number of plasmid-borne symbiont genes affecting host nutrition in Buchnera
aphidicola of the aphid Uroleucon ambrosiae. Molecular Ecology. 12, 1095–
1100. doi: 10.1046/j.1365-294x.2003.01782.x

Price, D. R. G., Feng, H., Baker, J. D., Bavan, S., Luetje, C. W., and Wilson,
A. C. C. (2014). Aphid amino acid transporter regulates glutamine supply to
intracellular bacterial symbionts. Proc. Natl. Acad. Sci. U. S. A. 111, 320–325.
doi: 10.1073/pnas.1306068111

Qian, L., Jia, F., Jingxuan, S., Manqun, W., and Julian, C. (2018). Effect of the
Secondary Symbiont Hamiltonella defensa on Fitness and Relative Abundance
of Buchnera aphidicola of Wheat Aphid. Sitobion miscanthi. Front. Microbiol.
9, 582. doi: 10.3389/fmicb.2018.00582

Råberg, L., Sim, D., and Read, A. F. (2007). Disentangling genetic variation for
resistance and tolerance to infectious diseases in animals. Science 318, 812–814.
doi: 10.1126/science.1148526

Radzvilavicius, A. L., and Blackstone, N. W. (2015). Conflict and cooperation in
eukaryogenesis: implications for the timing of endosymbiosis and the evolution
of sex. J. R. Soc. Interface 12:20150584. doi: 10.1098/rsif.2015.0584

Rockwell, N. C., Lagarias, J. C., and Bhattacharya, D. (2014). Primary
endosymbiosis and the evolution of light and oxygen sensing in photosynthetic
eukaryotes. Front. Ecol. Evol. 2:66. doi: 10.3389/fevo.2014.00066

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat.
Methods 9, 676–682. doi: 10.1038/nmeth.2019

Serbus, L. R., White, P. M., Silva, J. P., Rabe, A., Teixeira, L., Albertson, R., et al.
(2015). The impact of host diet on wolbachia titer in drosophila. PLoS Pathog.
11:e1004777. doi: 10.1371/journal.ppat.1004777

Frontiers in Microbiology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 816608

https://doi.org/10.1007/s00572-020-01014-1
https://doi.org/10.1007/s00572-020-01014-1
https://doi.org/10.1016/0169-5347(94)90246-1
https://doi.org/10.1128/mBio.02104-18
https://doi.org/10.1128/mBio.02104-18
https://doi.org/10.1073/pnas.1610749113
https://doi.org/10.1073/pnas.1610749113
https://doi.org/10.1038/s41396-017-0024-6
https://doi.org/10.1038/s41396-017-0024-6
https://doi.org/10.1073/pnas.0810647105
https://doi.org/10.1111/j.1095-8312.2000.tb01286.x
https://doi.org/10.1111/j.1095-8312.2000.tb01286.x
https://doi.org/10.1111/j.1469-185x.1989.tb00682.x
https://doi.org/10.1371/journal.pbio.0050096
https://doi.org/10.1002/ece3.1908
https://doi.org/10.1038/hdy.2009.53
https://doi.org/10.1111/mec.14418
https://doi.org/10.1073/pnas.1906223116
https://doi.org/10.1038/s42003-019-0362-1
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.3389/fevo.2020.00056
https://doi.org/10.1186/s13007-021-00727-4
https://doi.org/10.3389/fmicb.2020.628755
https://doi.org/10.2307/3547050
https://doi.org/10.2307/3547050
https://doi.org/10.1016/s0965-1748(99)00125-3
https://doi.org/10.1016/s0965-1748(99)00125-3
https://doi.org/10.1098/rstb.2014.0333
https://doi.org/10.1109/cvpr.2017.106
https://doi.org/10.1109/cvpr.2017.106
https://doi.org/10.1016/j.ecoinf.2021.101228
https://doi.org/10.1016/j.ecoinf.2021.101228
https://doi.org/10.1016/j.cub.2019.03.032
https://doi.org/10.1016/j.cub.2019.03.032
https://doi.org/10.1073/pnas.0600912103
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1007/s00248-002-0012-9
https://doi.org/10.3389/fmicb.2019.00523
https://doi.org/10.1021/acsomega.1c01465
https://doi.org/10.1046/j.1365-2958.2003.03526.x
https://doi.org/10.1046/j.1365-2958.2003.03526.x
https://doi.org/10.1101/2021.12.03.471054
https://doi.org/10.1038/s41579-021-00567-y
https://doi.org/10.3390/insects10090260
https://doi.org/10.1046/j.1365-294x.2003.01782.x
https://doi.org/10.1073/pnas.1306068111
https://doi.org/10.3389/fmicb.2018.00582
https://doi.org/10.1126/science.1148526
https://doi.org/10.1098/rsif.2015.0584
https://doi.org/10.3389/fevo.2014.00066
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1371/journal.ppat.1004777
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-816608 May 13, 2022 Time: 15:35 # 13

James et al. SymbiQuant—Tool to Phenotype Endosymbionts

Simoncini, L., Casiraghi, M., Bazzocchi, C., Sacchi, L., Bandi, C., and Genchi,
C. (2001). Real-time PCR for quantification of the bacterial endosymbionts
(wolbachia) of filarial nematodes. Parassitologia 43, 173–178.

Simonet, P., Duport, G., Gaget, K., Weiss-Gayet, M., Colella, S., Febvay, G., et al.
(2016). Direct flow cytometry measurements reveal a fine-tuning of symbiotic
cell dynamics according to the host developmental needs in aphid symbiosis.
Sci. Rep. 6:19967. doi: 10.1038/srep19967

Simonet, P., Gaget, K., Balmand, S., Ribeiro Lopes, M., Parisot, N., Buhler, K.,
et al. (2018). Bacteriocyte cell death in the pea aphid/ symbiotic system.
Proc. Natl. Acad. Sci. U.S.A. 115, E1819–E1828. doi: 10.1073/pnas.172023
7115

Takahashi, T. (2016). Simultaneous evaluation of life cycle dynamics between a host
paramecium and the endosymbionts of paramecium bursaria using capillary
flow cytometry. Sci. Rep. 6:31638. doi: 10.1038/srep31638

Van Leuven, J. T., Meister, R. C., Simon, C., and McCutcheon, J. P. (2014).
Sympatric speciation in a bacterial endosymbiont results in two genomes with
the functionality of one. Cell 158, 1270–1280. doi: 10.1016/j.cell.2014.07.047

Verma, S. C., and Miyashiro, T. (2013). Quorum sensing in the squid-vibrio
symbiosis. Int. J. Mol. Sci. 14, 16386–16401. doi: 10.3390/ijms140816386

Viñuelas, J., Febvay, G., Duport, G., Colella, S., Fayard, J.-M., Charles, H., et al.
(2011). Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid
to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum.
Mol. Microbiol. 81, 1271–1285. doi: 10.1111/j.1365-2958.2011.07760.x

Vogel, K. J., and Moran, N. A. (2011). Effect of host genotype on symbiont
titer in the aphid—buchnera symbiosis. Insects 2, 423–434. doi: 10.3390/
insects2030423

Vogel, K. J., and Moran, N. A. (2013). Functional and evolutionary analysis of
the genome of an obligate fungal symbiont. Genome Biol. Evol. 5, 891–904.
doi: 10.1093/gbe/evt054

Wada, K. (2016). labelme: Image Polygonal Annotation with Python. 2016. Available
online at: https://github.com/wkentaro/labelme (accessed February 24, 2020).

Weimer, P. J. (2015). Redundancy, resilience, and host specificity of the ruminal
microbiota: implications for engineering improved ruminal fermentations.
Front. Microbiol. 6:296. doi: 10.3389/fmicb.2015.00296

Woyke, T., Tighe, D., Mavromatis, K., Clum, A., Copeland, A., Schackwitz, W.,
et al. (2010). One bacterial cell, one complete genome. PLoS One 5:e10314.
doi: 10.1371/journal.pone.0010314

Yao, I. (2019). Seasonal changes in the density of the symbionts B uchnera and W
olbachia of the aphid T uberculatus macrotuberculatus on Q uercus dentata.
Entomol. Exp. Appl. 167, 261–268. doi: 10.1111/eea.12743

Yarwood, J. M., and Schlievert, P. M. (2003). Quorum sensing in Staphylococcus
infections. J. Clin. Invest. 112, 1620–1625. doi: 10.1172/jci200320442

Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L.,
Vancaester, E., et al. (2017). Asgard archaea illuminate the origin of eukaryotic
cellular complexity. Nature 541, 353–358. doi: 10.1038/nature21031

Zhang, C. (2019). labelme2coco. Available online at: https://github.com/Tony607/
labelme2coco (accessed April 6, 2021).

Zhang, Y.-C., Cao, W.-J., Zhong, L.-R., Godfray, H. C. J., and Liu, X.-D. (2016).
Host plant determines the population size of an obligate symbiont (Buchnera
aphidicola) in aphids. Appl. Environ. Microbiol. 82, 2336–2346. doi: 10.1128/
AEM.04131-15

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 James, Pan, Schwartz and Wilson. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 13 May 2022 | Volume 13 | Article 816608

https://doi.org/10.1038/srep19967
https://doi.org/10.1073/pnas.1720237115
https://doi.org/10.1073/pnas.1720237115
https://doi.org/10.1038/srep31638
https://doi.org/10.1016/j.cell.2014.07.047
https://doi.org/10.3390/ijms140816386
https://doi.org/10.1111/j.1365-2958.2011.07760.x
https://doi.org/10.3390/insects2030423
https://doi.org/10.3390/insects2030423
https://doi.org/10.1093/gbe/evt054
https://github.com/wkentaro/labelme
https://doi.org/10.3389/fmicb.2015.00296
https://doi.org/10.1371/journal.pone.0010314
https://doi.org/10.1111/eea.12743
https://doi.org/10.1172/jci200320442
https://doi.org/10.1038/nature21031
https://github.com/Tony607/labelme2coco
https://github.com/Tony607/labelme2coco
https://doi.org/10.1128/AEM.04131-15
https://doi.org/10.1128/AEM.04131-15
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	SymbiQuant: A Machine Learning Object Detection Tool for Polyploid Independent Estimates of Endosymbiont Population Size
	Introduction
	Methods
	Aphid Rearing and Sampling
	Bacteriocyte Preparation and Imaging
	Preparation of Confocal Images for Model Training, Testing, and Validation
	Development of Mask Region-Based Convolutional Neural Network Buchnera Recognition Algorithm
	SymbiQuant
	Demonstration of SymbiQuant Use and Image Analysis
	Statistics

	Results
	SymbiQuant Identifies Buchnera With High Accuracy
	Buchnera Cell and Population Size Change Across Aphid Post-embryonic Development
	Bacteriocyte Cells Increase in Size and Nuclear Area Across Aphid Post-embryonic Development
	Bacteriocyte Intracellular Environment Is Dynamic

	Discussion
	SymbiQuant Allows Novel Phenotyping of Endosymbiont Populations
	Achieving a Synthetic Understanding of Buchnera Population Dynamics Across Embryonic Development
	SymbiQuant Is Readily Adapted for Application in Other Endosymbiosis
	Region-Based Convolutional Neural Networks Have Broad Application in Biology

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


