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Salmonella is a major cause of food-borne infections in Europe, and the majority of human 
infections are caused by only a few serotypes, among them are Salmonella enterica subsp. 
enterica serotype Enteritidis (hereafter Salmonella Enteritidis), Salmonella Typhimurium, 
and the monophasic variant of S. Typhimurium. The reason for this is not fully understood, 
but could include virulence factors as well as increased ability to transfer via the external 
environment. Formation of biofilm is considered an adaptation strategy used by bacteria 
to overcome environmental stresses. In order to assess the capability of different Salmonella 
serotypes to produce biofilm and establish whether this is affected by pH and salinity, 88 
Salmonella isolates collected from animal, food, and human sources and belonging to 15 
serotypes, including those most frequently responsible for human infections, were tested. 
Strains were grown in tryptic soy broth (TSB), TSB with 4% NaCl pH 4.5, TSB with 10% 
NaCl pH 4.5, TSB with 4% NaCl pH 7, or TSB with 10% NaCl pH 7, and biofilm production 
was assessed after 24 h at 37°C using crystal violet staining. A linear mixed effect model 
was applied to compare results from the different experimental conditions. Among the 
tested serotypes, S. Dublin showed the greatest ability to form biofilm even at pH 4.5, 
which inhibited biofilm production in the other tested serotypes. Salmonella Senftenberg 
and the monophasic variant of S. Typhimurium showed the highest biofilm production in 
TSB with 10% NaCl pH 7. In general, pH had a high influence on the ability to form biofilm, 
and most of the tested strains were not able to produce biofilm at pH 4.5. In contrast, 
salinity only had a limited influence on biofilm production. In general, serotypes causing 
the highest number of human infections showed a limited ability to produce biofilm in the 
tested conditions, indicating that biofilm formation is not a crucial factor in the success 
of these clones.
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INTRODUCTION

Salmonella are Gram-negative bacteria that cause illnesses in 
humans, ranging from self-limiting gastroenteritis to severe 
fever and bacteremia in both developed and developing countries 
(Bell and Kyriakides, 2009). According to the latest EFSA report 
on zoonosis, a total of 87,923 confirmed cases of salmonellosis 
were reported in 2019 in the European Union, thus confirming 
Salmonella spp. as the second most commonly reported zoonoses 
(EFSA and ECDC, 2021a). More than 2,600 Salmonella serotypes 
have been identified (Grimont and Weill, 2007); however, 74% 
of the 87,923 confirmed human cases are caused by just five 
serotypes, namely, Salmonella enterica subsp. enterica serotype 
Enteritidis (Salmonella Enteritidis), Salmonella Typhimurium, 
and its monophasic variant, Salmonella Infantis and Salmonella 
Newport (EFSA and ECDC, 2021a). The reason why these 
serotypes are so commonly isolated from human infections is 
not fully understood, but can include both virulence factors 
and factors that enable them to persist in and transfer through 
the food chain more efficiently than other serotypes. Poultry 
meats and eggs are among the primary food vehicles causing 
salmonellosis foodborne outbreaks (EFSA and ECDC, 2021a; 
Guillier et  al., 2021); thus, control measures are implemented 
in poultry sector and current strategies in Europe focus on 
specific serotypes. For example, the serotypes mentioned above, 
with the exception of S. Newport, are targets for Salmonella 
control in poultry populations, according to the EU Regulation 
(EC) 2160/2003. So are other serotypes, such as Salmonella 
Hadar and Salmonella Virchow although these serotypes are 
rarely isolated from human salmonellosis, with only 469 reported 
cases for S. Virchow and 297 reported cases for S. Hadar in 
2019 in the EU (ECDC, n.d.). Based on epidemiological evidences 
collected in Italy, Leati et  al. (2021) suggested that other 
serotypes, such as Salmonella Derby and Salmonella Napoli, 
should be  considered for control at primary production level, 
due to their frequent isolation in human infections. In addition, 
it has increasingly been reported that specific clones of different 
serotypes, rather than the serotype as such, are responsible 
for emergent spread in both humans and the food chain (Coipan 
et  al., 2020; García-Soto et  al., 2020; Mastrorilli et  al., 2020; 
EFSA and ECDC, 2021b). Often, these clones are characterized 
by the acquisition of large conjugative plasmids providing 
resistance features and virulence-associated properties (Franco 
et  al., 2015; Alba et  al., 2020; García-Soto et  al., 2020). Thus, 
the current control measures, relying upon seroype-linked 
strategies, could miss highly pathogenic Salmonella strains as 
well as call for action even though the serotype involved seems 
to have low ability to either transfer to or cause infection 
in humans.

Biofilms, defined as consortiums of multiple bacterial cells, 
embedded in a self-produced extracellular polymeric matrix and 
attached to a surface (Hall-Stoodley et  al., 2004; Bjarnsholt, 
2013), have both been considered to enhance virulence of 
Salmonella spp. (Borges et  al., 2018; Moraes et  al., 2018) and 
to increase persistence in nonhost environments, especially food 
processing environments (Steenackers et  al., 2012). The ability 
of Salmonella strains to form biofilm is considered a key strategy 

for their survival, and it has been linked to an increased occurrence 
in outbreaks (Steenackers et  al., 2012; O’Leary et  al., 2015; 
Moraes et al., 2018) and to increased tolerance to antimicrobials, 
disinfectants, and other environmental stresses (Bridier et  al., 
2011; Esbelin et  al., 2018; Cadena et  al., 2019; Tassinari et  al., 
2019). Similarly to other microbial behaviors, the ability to form 
biofilm is influenced by intrinsic and extrinsic factors, including 
temperature, pH, water activity (aw), and nutrient availability 
(Alvarez-Ordóñez et  al., 2019; Lianou et  al., 2020), but also 
microbial species, serotypes, and lineages (Díez-García et  al., 
2012; MacKenzie et  al., 2017; Lee et  al., 2019). Studies have 
attempted to correlate biofilm phenotype to Salmonella serotype 
and environmental persistence, but results were conflicting 
(MacKenzie et al., 2017), especially when strain variability within 
serotypes was taken into account (Lianou and Koutsoumanis, 
2012; Lee et  al., 2019), and currently it is unknown whether 
the serotypes frequently associated with human infections differ 
from other Salmonella serotypes in their ability to produce 
biofilms. Thus, the main objective of the present study was to 
compare the biofilm production capability of Salmonella serotypes 
isolated with different frequencies from human infections and 
assess whether biofilm formation was affected by osmolarity 
(NaCl concentration) and pH.

MATERIALS AND METHODS

Strain Selection
A total of 88 Salmonella isolates, maintained at the Istituto 
Zooprofilattico Sperimentale delle Venezie, were selected to study 
their ability to form biofilm. The strains belonged to 15 different 
serotypes, namely, Salmonella Derby, Salmonella Dublin, Salmonella 
Enteritidis, Salmonella Hadar, Salmonella Infantis, Salmonella 
Kentucky, Salmonella Livingstone, Salmonella Mbandaka, 
Salmonella Montevideo, monophasic variant of S. Typhimurium 
(MVST), S. Newport, Salmonella Rissen, Salmonella Senftenberg, 
Salmonella Thompson, and S. Typhimurium. For each serotype, 
two strains were included from each of the sources animals, 
food, and humans, with the exception of S. Dublin and 
S. Mbandaka, for which only one human isolate was retrieved. 
Therefore, six strains were tested for each serotype, except 
S. Dublin and S. Mbandaka. A detailed description of isolates 
is reported in Supplementary Table S1. The strains were stored 
at −80°C in cryobank tubes with preservative medium (Copan 
Diagnostics, CA, United States) and were tested for purity before 
use. For inoculation, each strain was transferred from the stock 
cultures into tryptic soy broth (TSB) and incubated overnight 
at 37°C. The grown cultures were used for inoculation into 
different media for subsequent quantification of biofilm production.

Experimental Conditions and Biofilm 
Assay
The ability of the selected strains to form biofilm was 
measured in TSB without and with 4 and 10% w/v NaCl 
and at pH values 4.5 and 7. The NaCl concentrations 
corresponded to water activity (aw) of 0.976 and below 0.959 
(Lianou and Koutsoumanis, 2012). In vitro evaluation of 
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biofilm production was performed according to Stepanović 
et  al. (2007), using a colorimetric microtiter plate method 
that measures the optical density of biofilm mass after 
staining with crystal violet. Specifically, overnight cultures 
grown at 37°C in TSB and subsequently diluted by adding 
TSB to a final OD600 of 0.2 (corresponding to approximately 
1 × 108 CFU/ml). Around 20 μl of each isolate was inoculated 
in 180 μl of broth in microtiter plates with flat bottom 
(Greiner Bio-One). For each isolate, six replicates were 
inoculated in every tested condition, and 12 negative controls, 
i.e., uninoculated broth, were included in each plate. The 
plates were incubated for 24 h at 37°C. After the incubation 
period, the content of the wells was discard by means of 
a vacuum pump and washed twice with 200 μl of distilled 
water to remove nonadherent bacterial cells. The adherent 
cells were fixed with 200 μl of methanol (VWR Chemicals) 
in each well for 20 min. The microtiter plates were then 
emptied and air-dried for at least 1 h at room temperature, 
and 200 μl of 2% crystal violet (DELCON) was added per 
well to stain the biofilm mass for 15 min. Stain in excess 
was removed by filling the plates under tap water and 
empting by inversion; after tapping on adsorbent paper, 
plates were dried under the hood overnight. To solubilize 
the crystal violet bound to the biofilm, 200 μl of absolute 
ethanol (Carlo Erba Reagents) was added in each well. Plates 
were kept in agitation (180 rpm) for 15 min at room 
temperature before reading on a Tecan Sunrise (Tecan) 
spectrophotometer. Optical density (OD) was read at 570 nm.

Statistical Analysis
Two approaches were used to analyze the OD measurements: 
a qualitative classification of the biofilm production and a 
quantitative analysis of the observed OD values.

In order to classify the isolates according to their ability 
to form biofilm, the average OD (ODa) of the six replicates 
was calculated for each tested strain and the negative controls. 
A cutoff OD (ODc) was defined as three SDs above the 
ODa of the negative control. Based on the OD  
produced by bacterial biofilms, strains were classified as 
“no biofilm producers”: ODa ≤ ODc; “weak biofilm 
producers”: ODc < ODa ≤ 2ODc; “moderate biofilm producers”: 
2ODc < ODa ≤ 4ODc; and “strong biofilm producers”: 
4ODc < ODa (Stepanović et  al., 2000). Descriptive statistical 
analysis was performed to summarize the OD data of each 
serotype in the different experimental conditions. Box plots 
were used to synthesize the data, providing the principal 
measures of central tendency and dispersion. To verify 
whether significant differences existed between the average 
OD values of the selected serotypes in the different 
experimental conditions, a linear mixed model was applied. 
The model takes into account the experimental design, 
considering a random effect for the nested replicates of 
each serotype tested in every condition. For this analysis, 
the ODa of negative controls calculated in each plate was 
subtracted from the OD of each isolate well in the same 
plate, in order to make the results between serotypes and 
among different experimental conditions comparable.  

The variables “serotypes,” “experimental condition,” and their 
interaction were included in the model as fixed factors. 
Further details about the model are available as 
Supplementary Material and Method.

To evaluate the significance of the overall effect of fixed 
factors specified in the model, Type III F test was applied. 
For each fixed factor of the mixed models, post hoc pairwise 
comparisons were performed to further clarify those differences. 
In the case of multiple tests, the Tukey adjusted p-values were 
provided. Values of p < 0.05 were considered significant. SAS 
9.4 software was used to perform the analysis (Cibin et  al., 
2017; Roccato et  al., 2018).

RESULTS

Regardless of the serotype, the majority of Salmonella isolates 
tested in TSB felt into the “weak biofilm producer” category 
(n = 61), some were “moderate biofilm producer” (n = 22), only 
one isolate was categorized as “no biofilm producer,” and four 
as “strong biofilm producers.” When salt was added to TSB, 
a greater number of isolates felt into the “moderate producer 
category” (n = 47 and n = 60 for 4 and 10% NaCl, respectively). 
Under these conditions, also the number of “strong biofilm 
producers” stains increased (n = 5 and n = 10 isolates for 4 and 
10% NaCl, respectively), while no isolate was categorized as 
no biofilm producer (Table  1).

Looking in detail at the changes in the stains’ ability to 
form biofilm (Supplementary Table S2), it is possible to note 
that 38 isolates showed a change in their ability to form biofilm 
in the experimental conditions at pH 7, while 14 isolates 
showed a change in their ability to form biofilm in the 
experimental conditions at pH 4.5. Moreover, in the experimental 
conditions at pH 7, a number of 30 stains (79%) showed an 
increase in the ability to form biofilm when exposed to 10% 
NaCl, and 12 strains (86%) showed an increase in the ability 
to form biofilm when exposed to 10% NaCl in the experimental 
conditions at pH 4.5.

No major differences were observed in biofilm forming 
ability depending on the source of isolation, as 94.7, 96.7, and 
99.3% of strains isolated from animals, food, and humans were 
categorized as biofilm producers.

The distribution of OD values for each experimental condition 
is reported in Supplementary Figure S1, while the OD value 

TABLE 1 | Frequency of Salmonella isolates (n = 88) per categories: “no biofilm 
producer,” “weak producer,” “moderate producer,” and “strong producer” when 
tested in different conditions.

TSB TSB pH 7 
4% NaCl

TSB pH 7 
10% NaCl

TSB pH 4.5 
4% NaCl

TSB pH 4.5 
10% NaCl

No producer 1 0 0 11 2
Weak producer 61 36 18 72 80
Moderate producer 22 47 60 3 4
Strong producer 4 5 10 2 2

Categories are defined as reported above, according to Stepanović et al. (2000).
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distribution for each serotype in the different conditions is 
summarized in Figure  1.

In the linear mixed model, the variables “serotypes,” 
“experimental condition,” and their interaction were significant 
(p < 0.01). The significant interaction between serotypes and 
experimental condition (p = 0.0002) suggested that the ability 
of each serotype to produce biofilm depends on the experimental 
condition. This also means that the serotypes differ in their 
ability to produce biofilm, depending on the experimental 
conditions. Focusing on the different experimental conditions, 
S. Senftenberg showed the highest OD values in TSB 10% 
NaCl, pH 7, and the multiple pairwise comparisons indicated 
that its average OD value was significantly higher than that 
of S. Infantis (Figure  1C).

Salmonella Dublin showed the highest OD values in both 
TSB 4% NaCl, pH 4.5, and TSB 10% NaCl, pH 4.5, and its 
average OD values at these conditions were significantly higher 
than those of S. Enteritidis, S. Hadar, S. Infantis, S. Kentucky, 
MVST, S. Newport, S. Rissen, S. Thompson, and S. Typhimurium.

In addition, S. Dublin average OD value in TSB 4% NaCl, 
pH 4.5, was also significantly higher than those of S. Livingstone, 
S. Mbandaka, and S. Senftenberg, and in TSB 10% NaCl, pH 
4.5, it was significantly higher than that of S. Derby.

Finally, no significant differences were detected among 
serotypes in TSB and TSB 4% NaCl, pH 7; however, in the 
former, S. Dublin and S. Enteritidis produced the highest 
amount of biofilm (Figure  1A).

Focusing on each serotype, MVST and S. Senftenberg showed 
a different behavior according to the experimental condition. 
MVST produced a significantly higher amount of biofilm in 
TSB 10% NaCl, pH 7, than in the other experimental condition 
tested, whereas S. Senftenberg produced a significantly higher 
amount of biofilm in TSB 10% NaCl, pH 7, than in TSB 4% 
NaCl, pH 4.5, and TSB 10% NaCl, pH 4.5 (Figure  2).

The significant interaction between serotypes and experimental 
condition (p = 0.0002) suggests that the ability of each serotypes 
to produce biofilm depended on the experimental conditions; 
this means also that the serotypes have a different capacity 
to form biofilm, both between serotypes and within a serotype, 
that depends on the experimental conditions.

DISCUSSION

The ability of different bacteria to form biofilm has long been 
considered a key factor for survival and persistence in different 
environments (Hall-Stoodley et al., 2004; Bjarnsholt et al., 2018). 
Different factors, including pH, temperature, and incubation 
period, influence the biofilm formation process (Stepanović et al., 
2004; Agarwal et  al., 2011; Díez-García et  al., 2012; O’Leary 
et  al., 2015; Roy et  al., 2021). Salmonella strains are able to 
form biofilms on different abiotic surfaces, including polystyrene 
microplates (Stepanović et  al., 2004; Steenackers et  al., 2012), 
and it especially forms biofilm under nutrient-deficient conditions 
(Hood and Zottola, 1997; Ngwai et  al., 2006; Shatila et  al., 
2021), since the promotor responsible for biofilm formation 
(agfD) reaches maximum expression levels in starvation conditions 

(Gerstel and Römling, 2001). Moreover, under limited nutrient 
conditions, bacterial surface characteristics, such as hydrophobicity 
and irreversible attachment, are altered, and close association 
with the surface is more efficient (Hood and Zottola, 1997; 
Ngwai et  al., 2006). In the current study, we  studied the ability 
of Salmonella strains belonging to different serotypes to form 
biofilms on microtiter plates under different NaCl and pH 
conditions, using TSB as medium. TSB is considered less favorable 
for Salmonella growth than other laboratory media, and it has 
been previously used in other studies to test the ability of 
Salmonella to form biofilm (Stepanović et  al., 2004; Lianou and 
Koutsoumanis, 2012). We  varied pH and salinity to reflect 
environmental conditions of food processing environments, as 
this has been shown to significantly affect biofilm production 
(Stepanović et  al., 2004; Lianou and Koutsoumanis, 2011). As 
the most extreme conditions, we  chose pH 4.5, as according 
to Bell and Kyriakides (2009) most Salmonella strains are not 
able to grow below pH 4.5, and NaCl concentrations of 4 and 
10%, in order to obtain TSB with aw 0.976 and 0.94, respectively. 
We  assessed the ability to form biofilm for a selection of 88 
Salmonella strains belonging to 15 different serotypes, including 
serotypes that are most frequently isolated from human infections.

Considering the overall tested conditions, only a limited number 
of isolates (n = 14) were not able to produce biofilms, indicating 
that biofilm formation is a process activated by most Salmonella 
bacteria to cope with stressful environmental conditions (Spector 
and Kenyon, 2012). The highest number of isolates classified as 
no biofilm producers was recorded in TSB 4% NaCl, pH 4.5, 
probably because this condition is a limit for growth of most 
serotypes. Contrary to Römling et  al. (1998), who observed 
inhibitory effect of high concentrations of NaCl on agfD expression; 
the tested strains in the current study were classified as moderate 
and strong biofilm producers in TSB 10% NaCl, pH 7, in 68.2 
and 11.4% of the cases, respectively. The same strains, when 
tested in TSB 10% NaCl, pH 4.5, however, did not show the 
same ability to produce biofilm, and the great majority of isolates 
was classified as weak producers (90.9%). This combination of 
high salt and low pH seems to hamper the ability of strain to 
form biofilm, as already reported also by others (Lianou and 
Koutsoumanis, 2012; Moraes et  al., 2018; Roy et  al., 2021).

The results also suggested that pH overall had a stronger 
effect on biofilm production than osmolarity. Indeed, we noted 
a general reduction in the ability to form biofilm among isolates 
of Salmonella at pH 4.5. Previous studies have reported that 
biofilm formation increased at increasing pH values, with 
optimal condition at neutral pH (Lianou and Koutsoumanis, 
2012; Iliadis et al., 2018). In concordance with this, we observed 
the highest number of strains classified as moderate and strong 
biofilm producers when they grew on TSB at pH 7.

In agreement with previous studies (Stepanović et  al., 2004; 
Agarwal et al., 2011; Lianou and Koutsoumanis, 2012), differences 
in biofilm production were observed among serotypes when 
Salmonella strains formed biofilms on plastic surfaces; however, 
the ranking of serotypes was not consistent throughout all the 
growth conditions evaluated. Similar observations were reported 
by Vestby et al. (2009) and Díez-García et al. (2012), who found 
substantial differences among serotypes and, in particular, they 
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highlighted the great ability of S. Agona to form biofilm, compared 
to other serotypes. Of note, both studies reported variable capacity 

to produce biofilm by S. Typhimurium, with strains belonging 
to that serotype being classified as weak, moderate, or strong 

A B

C

E

D

FIGURE 1 | Biofilm formation (OD570 values) per serotype and experimental conditions (A = TSB, B = TSB pH7, 4% NaCl, C = TSB pH7, 10% NaCl, D = TSB pH4.5, 
4% NaCl, E = TSB pH4.5, 10% NaCl). The boxes define the upper and lower quartiles and enclose the central 50% of the observations. The median is marked by a 
horizontal line, and the vertical whiskers extend from the box to the 2.5th percentile and the 97.5th  percentile. Extreme values are indicated by dots and mean 
values are indicated by triangles. MVST = monophasic variant of S. Typhimurium.
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(Vestby et  al., 2009; Díez-García et  al., 2012). We  observed 
within serotype variability in the biofilm-forming activity for 
S. Typhimurium. However, S. Typhimurium strains were classified 
as “weak” or “moderate,” with only one isolate being “no biofilm 
producer” in TSB 4% NaCl, pH 4.5, and one isolate being 
“strong biofilm producer” in TSB 10% NaCl, pH 7. Other 
serotypes which showed high variability in their ability to form 
biofilm were S. Derby, S. Infantis, and S. Enteritidis, as described 
also by Díez-García et  al. (2012) and Lianou and Koutsoumanis 
(2012). A high variation in biofilm-forming behavior is not 
only a characteristics of Salmonella, but has also been reported 
for other food relevant pathogens, such as Listeria monocytogenes 
and Escherichia coli (Borucki et  al., 2003; Reisner et  al., 2006; 
Nilsson et  al., 2011; Schiebel et  al., 2017).

From our data, S. Dublin emerged as the serotype with the 
greatest ability to form biofilm in several conditions, namely, 
TSB, and TSB at pH 4.5 with both 4 and 10% NaCl. Salmonella 
Dublin is a serotype specifically adapted to cattle, but which 
also cause severe human infections, with high mortality rates 
(Funke et  al., 2017; Harvey et  al., 2017; Ju et  al., 2018; Ung 
et  al., 2019). In a study by Martinez-Sanguiné et  al. (2021), 
the authors compared in vitro resistance to acid stress in S. Dublin 
and S. Enteritidis and concluded that isolates of S. Dublin were 
more resistant to the stress conditions found during infection, 
contributing to its higher invasiveness compared to S. Enteritidis. 
In this sense, the requirement of an acid resistance response 

to survive the harsh acidic conditions of the stomach or inside 
the Salmonella-containing vacuole once the bacteria become 
intracellular has been reported and could contribute to the 
higher invasiveness of this serotype compared to others. The 
ability to form an extracellular matrix at pH 4.5 could contribute 
to the survival of S. Dublin isolates in such acidic environments, 
since aggregation could represent a mechanism to ensure that 
a sufficient, even though low, inoculum reaches the epithelial 
layer and cause infection (Collinson et  al., 1991). With regard 
to the ability of S. Dublin to form biofilm even at high salt 
concentration, our results disagree with those by Ju et al. (2018), 
who cultured S. Dublin strains in glucose-free medium with 
different NaCl concentrations (0–2% w/v) and observed that 
NaCl seems to be indispensable to form biofilm, but has adverse 
effects at high concentration. The reason for the discrepancy is 
unknown, but could be related to the use of different growth media.

Serotypes frequently isolated from human infections, such 
as S. Typhimurium and its monophasic variant and S. Enteritidis, 
did not show great biofilm-formation abilities at pH 4.5. In 
particular, S. Typhimurium strains were classified as weak or 
moderate biofilm producers in the tested conditions. The 
observations agreed to those by O’Leary et  al. (2015), who 
investigated the biofilm-forming ability of 142 S. Typhimurium 
isolates, of which 90.8% formed weak to moderate biofilms. 
Interestingly, in the current study, the monophasic variant of 
S. Typhimurium, a serotype frequently isolated from humans, 

FIGURE 2 | Plot of the estimated average optical density (OD) and 95% CIs, per serotype and experimental conditions.
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significantly differed in its ability to form biofilm between the 
experimental conditions. This behavior was observed also for 
S. Senftenberg, which showed significantly more biofilm formation 
than the rest of the serotypes in TSB supplemented with 10% 
NaCl. Although this serotype is rarely isolated from humans 
(only 119 reported cases in the EU in 2019, ECDC, n.d.), 
recently the number of isolations from animals, especially in 
the poultry sector, and ready-to-eat vegetables (fresh basil) arose 
(Pezzoli et  al., 2007; Boumart et  al., 2012). The concern with 
this serotype is derived from its high resistance to antimicrobials 
(Hendriksen et  al., 2013; Veeraraghavan et  al., 2019) and 
persistence in food processing environments (Boumart et  al., 
2012; Grépinet et  al., 2012; El Ghany et  al., 2016). As already 
reported by Vestby et  al. (2009), the ability of S. Senftenberg 
to form biofilm could be  accounted as an important factor 
for persistence, especially in the food processing environments, 
posing a great risk for food contamination and spoilage.

With respect to the other serotypes studied, we  did not 
observe trends linked to the serotype in biofilm-formation 
ability, and this seems to be  a general trends also reported 
by other researchers when screening a large number of Salmonella 
isolates, belonging to multiple serotypes (Agarwal et  al., 2011; 
Lianou and Koutsoumanis, 2012; Moraes et  al., 2018). 
Traditionally, bacterial foodborne pathogens are regarded as 
pathogenic at the species level; nonetheless, there is increasing 
scientific evidence demonstrating a subtype-dependent virulence 
potential, supported by a corresponding variation in various 
aspects of microbial behavior, including biofilm formation 
(Lianou and Koutsoumanis, 2013; Lianou et al., 2020). Moreover, 
we noticed substantial variability in the biofilm-forming behavior 
of the tested strains, with differences both intra-serotype and 
intra-conditions. Different papers already reported high inter-
isolate variability of the biofilm-formation behavior, with regard 
to incubation media and time (Díez-García et al., 2012; Castelijn 
et  al., 2013; Lianou et  al., 2020). The source of Salmonella 
isolates did not seem to influence the biofilm formation ability 
on plastic surfaces, as reported by other researchers (Stepanović 
et  al., 2004). This was not surprising, since ultimately, human 
isolates originate in food, which has been contaminated by 
Salmonella from livestock.

In conclusion, despite the limited number of strains tested 
for each serotype, our data suggest that the capacity of Salmonella 
strains to form biofilm might be strain- and experimental condition-
dependent, as reported also for other foodborne pathogens, such 
as Bacillus cereus, Staphylococcus aureus, Campylobacter jejuni, 
and E. coli (Lianou et  al., 2020). It is thus advisable to consider 
the ability of Salmonella at a strains level, rather than at a serotype 
level, to form biofilm as one of the events contributing to the 
persistence in the food processing environments and products, 
serving as a reservoir also for human infections.

Although the literature is not conclusive about the possibility 
for the strains able to form biofilms to be  also more virulent 
or responsible for outbreaks (Aviles et  al., 2013; Etter et  al., 
2019; Romeu et al., 2020), and despite some authors suggesting 
that host adaptation in Salmonella generally causes a reduction 
in the ability to form biofilm (Römling et al., 2003; MacKenzie 
et  al., 2017), we  noted that S. Dublin was the best serotype 
under several condition. The serotypes most commonly causing 
human infections in Europe were not superior in biofilm 
formation, suggesting that this phenotype is not decisive in 
the overall success of serotypes in terms of human infections.
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