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β-glucuronidases (GUS) of intestinal bacteria remove glucuronic acid from glucoronides,
reversing phase II metabolism of the liver and affecting the level of active deconjugated
metabolites deriving from drugs or xenobiotics. Two hundred seventy-nine non-
redundant GUS sequences are known in the gut microbiota, classified in seven
structural categories (NL, L1, L2, mL1, mL2, mL1,2, and NC) with different biocatalytic
properties. In the present study, the intestinal metagenome of 60 healthy subjects from
five geographically different cohorts was assembled, binned, and mined to determine
qualitative and quantitative differences in GUS profile, potentially affecting response to
drugs and xenobiotics. Each metagenome harbored 4–70 different GUS, altogether
accounting for 218. The amount of intestinal bacteria with at least one GUS gene was
highly variable, from 0.7 to 82.2%, 25.7% on average. No significant difference among
cohorts could be identified, except for the Ethiopia (ETH) cohort where GUS-encoding
bacteria were significantly less abundant. The structural categories were differently
distributed among the metagenomes, but without any statistical significance related
to the cohorts. GUS profiles were generally dominated by the category NL, followed
by mL1, L2, and L1. The GUS categories most involved in the hydrolysis of small
molecules, including drugs, are L1 and mL1. Bacteria contributing to these categories
belonged to Bacteroides ovatus, Bacteroides dorei, Bacteroides fragilis, Escherichia
coli, Eubacterium eligens, Faecalibacterium prausnitzii, Parabacteroides merdae, and
Ruminococcus gnavus. Bacteria harboring L1 GUS were generally scarcely abundant
(<1.3%), except in three metagenomes, where they reached up to 24.3% for the
contribution of E. coli and F. prausnitzii. Bacteria harboring mL1 GUS were significantly
more abundant (mean = 4.6%), with Bacteroides representing a major contributor. Albeit
mL1 enzymes are less active than L1 ones, Bacteroides likely plays a pivotal role in the
deglucuronidation, due to its remarkable abundance in the microbiomes. The observed
broad interindividual heterogeneity of GUS profiles, particularly of the L1 and mL1
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categories, likely represent a major driver of pharmacomicrobiomics variability, affecting
drug response and toxicity. Different geographical origins, genetic, nutritional, and
lifestyle features of the hosts seemed not to be relevant in the definition of glucuronidase
activity, albeit they influenced the richness of the GUS profile.

Keywords: β-glucuronidase, human gut microbiota, metagenome, WGS, whole genome sequencing, drug
metabolism, pharmacomicrobiomics

INTRODUCTION

Humans and their colon microbiota evolved together,
establishing a close symbiotic interrelationship, fruitful for
both. The gut microbiota is implicated in a number of biological
processes such as resistance to colonization (Ruan et al.,
2020), immune system modulation (Saldana-Morales et al.,
2021), synthesis of essential vitamins and nutrients (Oliphant
and Allen-Vercoe, 2019), and breakdown of undigested
polysaccharides and proteins (El Kaoutari et al., 2013; Huang
et al., 2017; Raimondi et al., 2021). Furthermore, it encodes
a broad diversity of enzymes capable of processing foreign
compounds (e.g., phytochemicals, environmental pollutants,
pharmaceuticals, and other xenobiotics) and their endogenous
metabolites, adding significant chemical diversity and modifying
lifetimes, bioavailability, and biological activity (Rossi et al., 2013;
Koppel et al., 2017). In this context, pharmacomicrobiomics is
an emerging field focusing on the interplay of microbiome and
drug metabolism and response (Doestzada et al., 2018; Hassan
et al., 2021).

Hundreds of bacterial enzymes are dedicated to the hydrolysis
of carbohydrates and glycoconjugates that are not digested in
the upper gut and reach the colon, where they are broken
down by the microbiota (Flint et al., 2012). Among these
enzymes, β-glucuronidases (GUS) remove glucuronic acid from
glucoronides, reversing the phase II metabolism carried out by
liver enzymes on endo- and xeno-biotics in order to facilitate
their excretion from the body (Ervin and Redinbo, 2020).
Glucuronic acid is then utilized by bacteria as a carbon and
energy source, being channeled into the Entner–Doudoroff
pathway that catabolizes sugar acids into pyruvate (Peekhaus
and Conway, 1998). The deglucuronidated compounds can
be reabsorbed through the gut epithelium and reach the
plasma, in a process called enterohepatic circulation (Roberts
et al., 2002; Pellock and Redinbo, 2017). Thus, bacterial GUS
affect the pharmacokinetics of compounds such as polyphenols,
xenobiotics, and drugs and participate in the regulation of the
levels of circulating metabolites, altering the pharmacological
properties and the biological activities of xenobiotics and
potentially impacting on their beneficial and/or toxic effects on
health (Biernat et al., 2018; Wang et al., 2019; Awolade et al.,
2020).

GUS were first identified in 1934 in Escherichia coli and
other Enterobacteriaceae (Masamune, 1934; Oshima, 1934),
but later, they have been detected in several bacterial taxa
belonging to all the main phyla within the gut microbiota:
Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria
(McBain and Macfarlane, 1998; Russell and Klaenhammer, 2001;

Nakamura et al., 2002; Gloux et al., 2011). Nowadays, it is
known that intestinal bacteria encode different GUS types with
structural differences affecting function, biocatalytic properties,
and substrate specificity (Biernat et al., 2019; Parvez et al.,
2021). The driving force for such evolution and diversification of
bacterial GUS has been the availability of dietary and endogenous
glucuronides to the commensal microbiota (Pellock and Redinbo,
2017). In particular, the glucuronides of several endogenous
metabolites (such as bilirubin, estrogen and androgen hormones,
neurotransmitters, and bile acids) are produced by liver
UDP-glucuronosyltransferase and abundantly excreted into the
intestinal lumen (Liston et al., 2001; Meech et al., 2012;
Jarrar and Lee, 2021). The massive sequencing of the human
intestinal metagenomes in the Human Microbiome Project
(HMP) (Turnbaugh et al., 2007) and bioinformatic mining tools
enabled the identification of a wide repertoire of GUS encoded by
human gut bacteria. The so-called GUSome has been proposed,
encompassing 279 non-redundant GUS sequences (Pollet et al.,
2017), 93.5% of which have been taxonomically assigned to
Bacteroidetes (52%), Firmicutes (43%), Verrucomicrobia (1.5%),
and Proteobacteria (0.5%) (Pollet et al., 2017).

Bacterial GUS present a conserved folding, with two structural
elements (loop 1 and loop 2), adjacent to the active site, that differ
in length and amino acid composition and permit classification
into seven GUS structural categories: NL, L1, L2, mL1, mL2,
mL1,2, and NC (Pollet et al., 2017). The enzymes of diverse
categories differ in size, substrate-binding modules, active site
features, and subcellular localization. Most of the intestinal GUS
belong to the category NL (57.3%), followed by mL1, L2, L1,
mL2, NC, and mL1,2 in decreasing order (Pollet et al., 2017). The
dimension of the loops is pivotal for substrate recognition and
affects the biocatalytic properties of the enzymes. Categories L1,
mL1, and L2 are more efficient to catalyze the deglucuronidation
of small substrates in comparison to categories mL2, mL1,2, and
NL (Wallace et al., 2015; Biernat et al., 2019). Differences in the
cellular localization are related to the category: L1 enzymes lack
signal peptide and are intracellular, whereas L2, mL2, and mL1,2
GUS are likely extracellular. For the GUS belonging to categories
mL1 and NL, the presence of signal peptide is linked to the
phylum: absent in Firmicutes and present in Bacteroidetes.

The microbial composition of intestinal microbiota impacts
GUS abundance and diversity, with major effects on the
metabolism of drugs and xenobiotics likely responsible for
different individual responses (Elmassry et al., 2021). This study
wanted to determine the qualitative and quantitative differences
of GUS-encoding genes among metagenomes of healthy subjects.
It aimed to investigate the interindividual variability of GUS-
encoding bacteria in the gut, mining 60 intestinal publicly
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FIGURE 1 | Flowsheet of the pipeline applied in the present study for metagenome analysis and β-glucuronidases (GUS) search.

available metagenomes of healthy subjects. To circumvent the
bias arising from diverse genetic, nutritional, and lifestyle
features, the metagenomes belonging to five geographically
different cohorts were retrieved and processed for GUS
profiling. This approach provided preliminary information of
interindividual differences of the GUS repertoire, with awareness
that transformation of drugs and xenobiotics is subjected to
regulation of the expression. The results herein presented could
promote intentional manipulation of gut microbiota to enhance
drug effectiveness in order to reduce adverse drug interactions
or other approaches of personalized therapy to obtain maximum
efficacy and minimum toxicity.

MATERIALS AND METHODS

Metagenomes
Sixty publicly available metagenomes of gut microbiota
from healthy adults were collected from the NCBI Sequence

Read Archive (SRA), with the accession numbers listed in
Supplementary Table 1. The subjects were ascribed to five
cohorts from five different countries: China (CHN), Ethiopia
(ETH), Spain (ESP), United States of America (USA), and
Sweden (SWE). The selected metagenomes were sequenced
through whole-genome shotgun sequencing on Illumina paired-
end platforms and produced reads ranging between 100 and
150 bp in length.

Assembly and Binning
The FASTQ files were checked for quality and primer presence
with FastQC v0.11.8 (Andrews, 2010), in order to assure that
only high-quality reads (length > 50 bp; quality score > 20)
were further analyzed. When necessary, the tool Cutadapt v1.16
(minimum length 50; quality cutoff 20) (Martin, 2011) was used
for quality filtering. The cohort ESP required primer removal,
which was carried out through Trimmomatic (Bolger et al.,
2014) with ILLUMINACLIP setting. The reads were assembled
in contigs using metaSPAdes v 3.9 (Nurk et al., 2017) with
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default parameters. The contigs were binned with MaxBin2 v2.2.7
(Wu et al., 2016) to obtain metagenome-assembled genomes
(MAGs). MaxBin2 measures the tetranucleotide frequencies of
the contigs and their coverages to classify them into individual
bins. It employs single-copy marker gene prediction to determine
the completeness of bins (Wu et al., 2014, 2016). According
to MaxBin2 default parameters, only contigs at least 1,000 bp
long were utilized for binning, and those shorter were discarded
from further analysis. MAGs were taxonomically identified with
the CAT/BAT tool (von Meijenfeldt et al., 2019). Each bin was
mapped against the raw reads using Bowtie2 (Langmead and
Salzberg, 2013) to assess the relative abundance. Except for
CAT/BAT that was run locally, the steps were conducted on
Galaxy platform1 (Afgan et al., 2018).

BACTERIAL COMPOSITION AND ALPHA
AND BETA DIVERSITY

The relative abundance of taxonomically identified MAGs was
used to define the abundance profile of bacterial taxa in
each metagenome. A BIOM file was produced and imported
into Qiime2 (Bolyen et al., 2019) to compute beta diversity
according to Bray–Curtis dissimilarity. The beta distance
matrix was utilized for principal coordinate analysis (PCoA).
Bacterial composition at a deeper taxonomic level was assessed
by MetaPhLan2 (Segata et al., 2012; Truong et al., 2015)
for the species Clostridium perfringens, Eubacterium eligens,
Lactobacillus rhamnosus, Ruminococcus gnavus, Streptococcus
agalactiae, Bacteroides uniformis, Bacteroides ovatus, Bacteroides
dorei, Bacteroides fragilis, and Parabacteroides merdae, known to
encode several deeply characterized GUS (Pellock et al., 2018;
Biernat et al., 2019; Ervin et al., 2019). Alpha diversity has
been calculated using Shannon index, Chao-1 index, and Pielou’s
evenness with the tool Past v 4.08 (Hammer et al., 2001).

β-Glucuronidase Identification and
Profiling
The 279 sequences of GUS identified and classified by Pollet
et al. (2017), listed in Supplementary Material 1, were blasted
to the binned metagenomes using tBLASTn with an e-value
10−100 (Altschul et al., 1990). The results were filtered at a high
identity percentage (≥98.5%). Redundant hits mapping on the
same position of the same contig were discarded.

The abundance of each GUS was correlated to the abundance
of the bin containing the contig where the GUS sequence was
mapped to. In particular, the abundance of each GUS was
calculated taking into account the number of reads mapping
on the corresponding bin. The Jaccard similarity was computed
to estimate the beta diversity based on GUS profiles and
subjected to PCoA.

Statistical Analysis
Statistical analysis using ANOVA (p < 0.05) followed by Tukey’s
post hoc test was conducted to compare cohorts in terms of

1https://usegalaxy.eu

FIGURE 2 | Bacterial composition and beta diversity of gut metagenomes of
60 healthy adults. (A) Mean relative abundance of the main phyla identified in
the whole dataset and in the five cohorts. (B) principal coordinate analysis
(PCoA) plot of beta diversity based on Bray–Curtis dissimilarity index of the
microbial composition. (C) PCoA plot of the species contribution to
metagenome differentiation.
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FIGURE 3 | The number of β-glucuronidases (GUS) identified in each metagenome (A) and in the whole dataset and in each cohort (B). In (B), cohorts sharing the
same letter did not significantly differ (P ≥ 0.05, ANOVA, Tukey).

GUS profiles, abundance of bacteria harboring GUS genes,
and relative abundance of each GUS structural category. Alpha
diversity indices of cohorts were compared with the Kruskal–
Wallis test followed by Dunn’s multiple-comparison test. In beta
diversity analysis of microbiome composition and GUS profile,
the statistical significance among cohorts was analyzed with
PERMANOVA statistical test (p< 0.05).

RESULTS

Metagenomic Analysis
Sixty metagenomes of gut microbiota from healthy subjects,
sequenced with Illumina paired-end technology, were retrieved
and scanned according to the flowsheet reported in Figure 1
to search the genes encoding the 279 GUS proteins identified
by Pollet et al. (2017). The metagenomes encompassed 44 ± 35
million reads (mean ± SD), with lengths ranging between
100 and 150 bp (Supplementary Figure 1A). Assembly
of metagenomes with MetaSPAdes yielded on average
408,745 ± 131,363 contigs per metagenome (mean ± SD)
(Supplementary Figure 1B).

Reference-free binning with MaxBin2 recovered from 29 to
179 binned genomes per subject, with a mean value of 72
(Supplementary Figure 1C). For most metagenomes (>75%),
the reads associated with a bin, mapped by Bowtie2, accounted
for more than 80% (mean 85.2%) (Supplementary Figure 1D).

Bacterial Composition and Beta Diversity
The bins were quantified with Bowtie2 and assigned a taxonomic
designation with CAT/BAT. The dominant phyla were Firmicutes
and Bacteroidetes, with the former generally outnumbering
the others and the latter dominating only CHN metagenomes
(Figure 2A). The relative amounts of Actinobacteria and
Proteobacteria were quite different among subjects, lying in the
range of 0.2–6.9% and 0.1–3.3%, respectively. Verrucomicrobia
ranged from 0.2 to 2.0% of the whole bacterial population. Bins
ascribed to other phyla or lacking taxonomic attribution (labeled

as “others”) ranged from 3.3 to 9.3%. At deeper taxonomic level,
the quantity of unclassified bins increased; thus, the profiling
was less accurate. Among families, Bacteroidaceae were among
the most abundant, with a mean of 22.5% in 60 metagenomes,
resulting in its prevalence in the CHN cohort. Prevotellaceae were
remarkably higher in the ETH cohort compared to the others.
A similar distribution was observed in genera distribution, with
Bacteroides prevailing in the CHN cohort and Prevotella in the
ETH cohort (Supplementary Figure 2). For each cohort, core
genera present in at least 85% of subjects were identified. Genera
Alistipes, Bacteroides, Faecalibacterium, and Ruminococcus were
identified in all the cohort (Supplementary Figure 3).

Alpha diversity of metagenomes was evaluated with Shannon
index, Chao-1 index, and Pielou’s evenness (Supplementary
Figure 4). Shannon index showed a significant difference
(p < 0.05) between the CHN and ETH cohorts. Chao-1 richness
highlighted higher values for the SWE cohort, significantly
different from the CHN and USA cohorts. Pielou’s evenness
presented high values for all cohorts, with CHN showing a wide
distribution and being significantly different from ESP and ETH.

The beta diversity was assessed according to the Bray–
Curtis dissimilarity index and analyzed with PCoA. The
plot in Figure 2B displays the two most informative
dimensions of the PCoA space, describing 27.1 and 16.7%
of the diversity in the dataset. According to PERMANOVA,
the grouping in cohorts was significant (p < 0.05), even
though extensive overlapping of some cohorts was observed
(e.g., ESP and USA). The CHN and ETH cohorts were
separated along with PCo1, lying mostly at positive and
negative values, respectively. Subjects belonging to the ESP,
SWE, and USA cohorts mostly lie at positive PCo2 values,
unlike the ones belonging to CHN and ETH, mostly located
at negative PCo2.

The genus Bacteroides mainly contributed to PCo1 positive
values that characterized the CHN subjects (Figure 2C),
according to the prevalence of Bacteroidetes over Firmicutes in
this cohort (Figure 2A). On the other side, Prevotella negatively
contributed to the PCo1 autovector. Along with PCo2, the main
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FIGURE 4 | β-glucuronidases (GUS) abundance profile in each metagenome (A) and in the whole dataset, in each cohort, and for each structural category (B). The
abundance of the four main categories in each cohort is shown in (C). In (B,C) cohorts or categories sharing the same letter did not significantly differ (P ≥ 0.05,
ANOVA, Tukey). In determining the GUS abundance profile, for the bins bearing more than one GUS, the abundance was multiplied by the number of GUS therein
identified.

positive contribution came from Clostridiales, while a negative
one came from Prevotella and Bacteroides.

β-Glucuronidases Types and Categories
tBLASTn search within the whole sets of contigs pinpointed 218
of the 279 GUS sequences of the inventory of Pollet et al. (2017).
Each metagenome encompassed 4 to 82 contigs containing at
least a GUS sequence (Figure 3A). The number of different GUS
types per subject ranged from 4 (ETH-10) to 70 (SWE-28), with
a mean of 40. The richness in different GUS was similar among
the cohorts (p < 0.05), except in ETH subjects, which presented
significantly lower values (p< 0.05) (Figure 3B).

Genes encoding GUS of the categories NL, mL1, L2, and
L1 were found in all or the vast majority of the metagenomes

(≥57), while mL2, mL1,2, and NC GUS genes occurred less
frequently (43, 21, and 5 metagenomes, respectively). In terms
of both the overall number of sequences and the number of
sequences per sample, NL was the richest category, followed
by mL1, L2, and L1 (Figure 3A). NL accounted for 129 of
the 218 sequences, reaching up to 50 different sequences per
sample, while mL1, L2, and L1 respectively accounted for 33,
30, and 13 different sequences and reached up to 16, 14, and
13 sequences per sample. mL2, mL1,2, and NC were represented
only by 7, 4, and 2 different sequences, respectively. Despite the
different distribution of structural categories among the subjects,
the grouping in cohorts was not significant (p> 0.05, ANOVA).

The relative abundance of the intestinal bacteria harboring
at least a GUS gene was calculated, linking each GUS gene

Frontiers in Microbiology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 826994

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-826994 February 25, 2022 Time: 18:17 # 7

Candeliere et al. β-Glucuronidases Prediction From Gut Metagenome

FIGURE 5 | The mean relative abundance of bacterial phyla (A) and, for each
phylum, the mean abundance of bacteria bearing β-glucuronidases (GUS)
genes (B).

with the relative abundance of the corresponding bin, in its
turn obtained by the number of reads mapping in the bin.
GUS-encoding bacteria ranged from 0.7% (CHN-09) to 82.2%
(CHN-05) (Figure 4A), with a mean abundance of 25.7%. The
bacteria harboring GUS genes were significantly less abundant
in the ETH than in the other cohorts (p < 0.05) (Figure 4B).
However, the dataset presented a high variability, even within the
same cohort. For instance, the CHN cohort encompassed both
subjects where GUS-encoding bacteria presented the lowest and
the highest abundance (CHN-9 and CHN-05, respectively).

With regard to the relative abundance of the GUS-encoding
bacteria, NL was the most represented, followed by mL1, L2, and
L1 (on average, 14.4, 4.6, 3.7, and 2.1%, respectively). Bacteria
harboring GUS genes of mL2, NC, and mL1,2 categories were less
abundant, accounting on average for less than 1%. Despite the low
mean abundance of bacteria harboring L1 genes, this class of GUS
presented the highest variability, with encoding bacteria ranging

from 0 to 24.3%. The abundance of bacteria encoding each
structural category of GUS was similar among the cohorts, with
the sole exceptions of NL and mL1, which were less abundant in
the ETH cohort (p< 0.05, ANOVA, Tukey) (Figure 4C).

Contribution of the Taxa to
β-Glucuronidases Abundance
Abundances, frequencies, and taxa mostly contributing to GUS
profile were explored. Taxonomic assignment of GUS was done
according to the GUS types classified by Pollet et al. (2017).
The abundance of taxa encoding each GUS type was calculated
by summing the relative abundance of each bin harboring at
least one GUS gene, normalized among the whole set of bins,
encompassing or not the GUS genes.

Among the 60 metagenomes, 25.7% of the bins encoded for
at least one GUS gene. The phyla Bacteroidetes and Firmicutes
dominated all the microbiomes and encompassed many bacterial
species encoding for at least one GUS gene (32.0 and 20.8%,
respectively, Figures 2A, 5).

The genus Bacteroides was the main contributor of the
intestinal GUS pool, encoding 120 of the 218 GUS identified in
this study. Among the 20 most relevant GUS sequences (Table 1),
13 were from Bacteroides, including the three most abundant
ones (i.e., no. NL-11, mL1-176, and NL-36), which were also
the most frequently occurring in the metagenomes. In particular,
Bacteroides spp. encoding NL-11 reached up to 8.8% in CHN-37
and occurred in 42 metagenomes (Table 1). Bacteroides vulgatus
encoding mL1-176 was the second most abundant GUS-encoding
bin, accounting for 5.3% of total bacteria and being detected in 36
out of 60 metagenomes. B. dorei encoding mL1-177 occurred in
13 subjects with a mean abundance of 1.8% and reached more
than 10% in CHN-05.

Among Firmicutes, the genus Faecalibacterium was a major
contributor to the abundance of GUS genes. As a whole, the
metagenomes encompassed 44 bins of F. prausnitzii and 197 bins
of Faecalibacterium sp., accounting together, on average, for 6.2%
of the microbiome, 2.9% encoding at least one GUS gene. In
particular, among the 241 bins of Faecalibacterium, 125 harbored
at least one GUS sequence, mainly belonging to categories L1, NL,
or, more rarely, mL1. Eighty-three bins harbored L1 GUS genes,
accounting, as a whole, for 0.55% of the metagenomes. In some
cases, two diverse GUS were found in the same bin, generally L1
and NL. GUS sequences L1-223 and NL-67 of Faecalibacterium
prausnitzii were frequently encountered, both being present
in 37 of the 60 metagenomes. F. prausnitzii encoding GUS
L1-223 and GUS NL-67 presented the highest abundance in
SWE-21 (2.7%) and in ESP-42 (2.1%), respectively. Other
GUS originating from Firmicutes came from the Clostridiales
Eubacterium, Ruminococcus, Roseburia, and Fusicatenibacter
or from unidentified Firmicutes. Eubacterium sp. CAG:180
encoding GUS NL-76 occurred in 14 metagenomes and
was remarkably abundant in ESP-45 (14.2%) (Supplementary
Material 2 and Supplementary Figure 5).

Actinobacteria and Proteobacteria were minor phyla within
the analyzed metagenomes, which scarcely contributed to the
pool of GUS, since only a minority of bacteria ascribed to
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TABLE 1 | List of the main β-glucuronidases (GUS) sequences identified.

GUS ID Type Origin Mean% Max% (subject) Frequency, no. subjects (%)

11 NL Bacteroides spp. 5.6 8.8 (CHN-37) 42 (70)

176 mL1 Bacteroides vulgatus 5.3 6.0 (CHN-35) 36 (60)

36 NL Bacteroides uniformis 4.4 8.8 (CHN-37) 30 (50)

220 L1 Escherichia coli 3.3 23.3 (ESP-48) 11 (18)

87 NL Bacteroides dorei 2.4 8.8 (CHN-05) 23 (38)

17 NL Bacteroides uniformis 2.4 4.0 (SWE-16) 27 (45)

242 L2 Bacteroides uniformis 2.2 5.7 (CHN-08) 22 (37)

177 mL1 Bacteroides dorei 1.8 10.6 (CHN-05) 13 (22)

47 NL Bacteroides massiliensis 1.8 4.9 (CHN-35) 16 (27)

67 NL Faecalibacterium prausnitzii 1.7 2.1 (ESP-42) 37 (62)

35 NL Bacteroides uniformis 1.6 2.8 (SWE-21) 15 (25)

223 L1 Faecalibacterium prausnitzii 1.6 2.6 (SWE-21) 37 (62)

10 NL Bacteroides ovatus 1.6 2.3 (SWE-26) 25 (42)

185 mL1 Bacteroides ovatus 1.6 4.6 (CHN-05) 22 (37)

173 mL1 Bacteroides massiliensis 1.5 4.1 (CHN-38) 17 (28)

257 L2 Bacteroides ovatus 1.5 2.3 (SWE-26) 26 (43)

53 NL Parabacteroides merdae 1.5 2.5 (CHN-08) 31 (52)

76 NL Eubacterium sp. CAG:180 1.5 14.2 (ESP-45) 14 (23)

126 NL Firmicutes 1.4 2.2 (ESP-47) 36 (60)

134 NL Firmicutes 1.3 2.2 (ESP-47) 34 (57)

180 mL1 Parabacteroides merdae 1.3 2.5 (CHN-08) 26 (43)

261 L2 Bacteroides cellulosilyticus CAG:158 1.2 4.9 (CHN-08) 16 (27)

The sequences reported represent the 10 GUS with higher mean abundance, abundance in single microbiome, and frequency in the set of GUS-encoding bacteria.

these phyla-encoded GUS (1.6 and 1.3%, respectively). Among
Proteobacteria, E. coli encoding GUS L1-220 mostly participated
in GUSome, being detected in 11 metagenomes, remarkably
abundant in ESP-48 (23.3%), ESP-45 (12.8%), and ETH-
13 (8.5%).

The 40.2% of Verrucomicrobia harbored GUS genes
(Figure 5). However, bacteria ascribed to this phylum
represented only 0.9% within the set of microbiomes.
Akkermansia was the main GUS-encoding genus ascribed
to this phylum. Among the whole dataset, 13 bins were ascribed
to Akkermansia sp., accounting for 0.6%, 10 of which harbored
GUS genes. In particular, the sequence of GUS mL2-218 was
identified in eight bins of Akkermansia muciniphila, representing
0.4% of the whole dataset, whereas another two bins of
Akkermansia encoded the gene mL2-209. A remarkably high
amount of A. muciniphila encoding GUS mL2-218 (10.6%) was
found only in subject ESP-50.

The abundance of specific species known to encode several
deeply characterized L1-GUS, such as C. perfringens, E. eligens,
L. rhamnosus, R. gnavus, S. agalactiae, B. uniformis, B. ovatus,
B. dorei, B. fragilis, and P. merdae, was inferred by MetaPhlAn2
metagenomic analysis because CAT/BAT failed to name these
bins with a species designation. L. rhamnosus, S. agalactiae, and
C. perfringens lie below the limit of detection in most of the
metagenomes (≥ 53/60) and, when found, were present at very
low abundances (≤ 0.15%). E. eligens and R. gnavus were more
represented (observed in 51 and 39 subjects, respectively) with
a mean abundance of 1.0% and 0.3%. B. uniformis was the
most abundant among the above-mentioned Bacteroidetes, being

detected in 55/60 metagenomes at the mean abundance of 2.7%,
followed by B. ovatus (1.1%; 51/60), B. dorei (1.0%; 51/60), and
B. fragilis (0.5%, 32/60), while P. merdae was pinpointed in 47
subjects with a mean abundance of 1.2%.

The beta diversity was computed based on the presence of
the 218 GUS sequences. Jaccard metrics were utilized, with
a qualitative approach to prevent abundant Bacteroides from
concealing the differences among metagenomes and cohorts. The
plot in Figure 6A displays the PCoA space of beta diversity
in the two most informative dimensions, describing 11.8 and
6.4% of the diversity. Cohort grouping based on the presence
of GUS sequences was statistically significant according to
PERMANOVA (p < 0.05). The CHN and SWE cohorts were
characterized by a negative value of PCo1, and the ETH by
a positive one. Most of the GUS that negatively contributed
to PCo1 originated from Bacteroides, mainly B. uniformis and
B. vulgatus. On the other side, the main positive contributors
to PCo1 were GUS sequences from Prevotella, Prevotella copri,
F. prausnitzii, Eubacterium, and E. coli (Figure 6B).

DISCUSSION

Pharmacomicrobiomics investigates the interplay of microbiome
diversity and drug disposition and response and may provide
an important basis in personalized medicine (Doestzada et al.,
2018; Hassan et al., 2021). The role of bacterial GUS on drug
bioavailability and biological effects (i.e., the reactivation and
absorption vs the excretion) encouraged our deep analysis of
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interindividual variability of the intestinal GUS, originating
from different microbiome compositions. With this aim,
metagenome data of 60 healthy adults from different geographic
provenance were utilized to predict and compare their GUSome,
i.e., the abundance and the diversity of GUS genes and
structural categories.

The abundance of intestinal bacteria harboring at least a
GUS gene was highly variable among subjects, ranging from a
very small minority (e.g., 0.7% in CHN-09) to an overwhelming
majority (e.g., 82.2% in CHN-05) of the intestinal microbial
community. No significant difference between cohorts could be
identified, except for ETH, where GUS-encoding bacteria were
significantly less abundant. The GUSome (i.e., the abundance
and the diversity of GUS genes within the metagenome) was
generally dominated by category NL, followed by mL1, L2, and
L1, in agreement with literature information (Pollet et al., 2017).
In some subjects, particularly in the ETH cohort, a low level of
GUS sequences was in relation to the low abundance of bacteria
encoding NL and mL1 GUS.

NL and L2 GUS are involved in processing commonly
available large substrates (e.g., mucins, glycosaminoglycans, plant
polysaccharides, etc.) (Pollet et al., 2017). On the one hand, their
abundance and frequency in the microbiome are presumably
related to a role in the energetic metabolism of intestinal bacteria
and may be a positive adaptive trait related to the evolution of
bacteria in the colonic environment. On the other hand, GUS
belonging to categories L1 and mL1 are involved in the hydrolysis
of small molecules, including drugs (Pollet et al., 2017; Biernat
et al., 2019).

L1 GUS process estrone and estradiol glucuronides, affecting
the estrogen profile and promoting the onset of hormonal
disorders (Baker et al., 2017; Ervin et al., 2019). L1 GUS also
participate in the toxicity of irinotecan since they are key
effectors of metabolite SN-38 reactivation and have been targeted
by specific inhibitors to protect the intestinal epithelial cells
and to reduce chemotherapy-induced diarrhea (Bhatt et al.,
2020; Jariwala et al., 2020; Parvez et al., 2021; Wang et al.,
2021). Moreover, L1 GUS are responsible for the deconjugation
of glucuronidated non-steroidal anti-inflammatory drugs
(NSAIDs), which is among the most commonly used medications
worldwide (Maseda and Ricciotti, 2020).

In most of the microbiomes analyzed in this study, the
bacteria encoding L1 GUS genes presented a relatively low
abundance. The ratio of bacteria encoding L1 genes was less
than 2% in 34 subjects and accounted for 2–5% in 12, resulting
significantly higher in the SPA cohort than in the CHN one.
Three microbiomes presented a very high abundance of L1 GUS-
encoding bacteria (ESP-48 24.3%, ESP-45 15.6%, and ETH-13
9.9%). The most relevant L1 GUS, in terms of frequency and
abundance of the corresponding bins, were L1-220 GUS of E. coli
and L1-223 of F. prausnitzii (Table 1). E. coli containing the
L1-220 GUS gene were present in 11 out of 60 metagenomes
and generally occurred in low concentrations. These results
are consistent with data reported in a recent study aimed to
characterize intestinal E. coli from healthy adults (Raimondi
et al., 2019), revealing that approx. a fifth of E. coli isolates
did not present β-glucuronidase activity. In the microbiomes

FIGURE 6 | (A) PCoA plot of beta diversity based on Jaccard dissimilarity
index of the β-glucuronidases (GUS) profiles of the 60 metagenomes.
(B) PCoA plot of the GUS contribution to GUSome differentiation.

where L1-encoding E. coli presented a high abundance (e.g.,
ESP-48 23.3%, ESP-45 12.8%, and ETH-13 8.5%), it is expected
that L1 GUS from this commensal pathobiont could heavily
interact with drug glucuronides, affecting efficacy and/or toxicity.
Faecalibacterium sp. and F. prausnitzii, which are commensals
associated with beneficial health effects, were much more
frequent and abundant, representing on average 6.2% of the
microbiomes herein analyzed. Despite their abundance, only a
negligible ratio of Faecalibacterium encoded L1 GUS, accounting
for 0.55% of the set of bacteria. However, the small portion of
Faecalibacterium encoding L1-223 remained the major player in
L1-catalyzed deglucuronidations, being identified in the majority
of the subjects. On the other side, E. coli encoding L1-220 could
participate in deconjugation in few microbiomes where it is
exceptionally abundant. However, L1-220-encoding E. coli lie
below the limit of detection in most cases.
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Literature reports several L1-GUS that have been deeply
characterized in some Firmicutes (i.e., C. perfringens, E. eligens,
L. rhamnosus, R. gnavus, and S. agalactiae) and Bacteroidetes
(i.e., B. ovatus, B. dorei, B. fragilis, and P. merdae) (Pollet et al.,
2017; Biernat et al., 2019; Jariwala et al., 2020). CAT/BAT did
not pinpoint nearly any bin of these species, likely because
of the high fragmentation of metagenomic assemblies; thus,
they were searched using MetaPhlAn2, which allowed higher
accuracy of taxonomic profiling. C. perfringens, L. rhamnosus,
and S. agalactiae were found in a minority of metagenomes
at a negligible concentration. On the other hand, E. eligens
and R. gnavus occurred more frequently and abundantly in
the metagenomes and thus are expected to contribute to
the pool of L1 GUS.

L1 GUS are involved in the deconjugation of glucuronidated
NSAIDs, such as diclofenac. The glucuronide of diclofenac is
synthesized in the liver and excreted in the gut lumen (Maseda
and Ricciotti, 2020). L1 GUS from E. eligens is the most active
in hydrolyzing this glucuronide (kcat 138 s−1), followed by
the corresponding of S. agalactiae, C. perfingens, F. prausnitzii,
E. coli, and R. gnavus (kcat from 97 to 30.7 s−1), while that
from L. rhamnosus presents a catalytic efficiency approx. one
magnitude lower (Biernat et al., 2019). Taking into account
the abundance of these species, E. eligens, F. prausnitzii, and
E. coli are expected to mostly contribute to the release of the
diclofenac aglycone from the glucuronide. The peculiar richness
of some of these species, as detected in our dataset for E. coli,
likely modifies the clearance of the drug, facilitating reuptake
and recirculation. A similar pattern of catalytic activity has
also been assessed for SN-38, with L1 GUS reactivating this
toxic metabolite of the anticancer drug irinotecan and causing
consequent gastrointestinal toxicity (Jariwala et al., 2020; Parvez
et al., 2021).

Glucuronides of small drugs can be also hydrolyzed by
mL1 GUS (Wallace et al., 2015; Biernat et al., 2019). For
instance, GUS mL1-188 of B. fragilis was described to possess a
remarkably high activity against p-nitrophenol-β-D-glucuronide,
diclofenac-glucuronide, and SN38-glucuronide, albeit lower than
L1 enzymes (Biernat et al., 2019; Bhatt et al., 2020). In the
microbiomes analyzed in this study, the abundance of mL1 GUS-
encoding bacteria was significantly higher than L1, with the CHN
cohort significantly richer than the ESP and ETH ones. Among
the 16 mL1 GUS sequences herein identified, the one encoded by
B. vulgatus (mL1-176) was the main in terms of abundance and
frequency, followed by those encoded by B. dorei, B. ovatus, and
B. massiliensis (mL1-177, mL1-185, and mL1-173, respectively).
mL1 GUS 188 of B. fragilis, the structure and activity of which

has been deeply characterized (Wallace et al., 2015; Biernat et al.,
2019), was retrieved in 13 out of 60 metagenomes, but its mean
abundance was 0.15%. Since the genus Bacteroides generally
occurs at high levels in the microbiomes and encodes the main
mL1 GUS, it is conceivable that this genus plays an important role
in the regeneration of parent compounds or active metabolites in
the gut, evoking their major contribution to drug reactivation.

Within the observed broad interindividual heterogeneity of
GUS profiles, the described differences in terms of L1 and mL1
GUS likely represent the major drivers of the variability in
pharmacomicrobiomics, affecting the level of active deconjugated
molecules and thus influencing drug response and toxicity.
Strains belonging to the species B. ovatus, B. dorei, B. fragilis,
E. coli, E. eligens, F. prausnitzii, P. merdae, and R. gnavus emerged
as pivotal in the differentiation of catalytic activity toward small
glucuronides in the host and can be claimed as the main players
in the reactivation of drug metabolites by the various intestinal
microbial ecosystems. The targeted control of gut microbiota, by
modulating metabolic diversity, represents a future perspective to
govern and reduce the deconjugation activity. This strategy, also
based on the administration of selected probiotics, could mitigate
extreme and severe differences among patients in terms of
adverse drug responses, responsible for numerous disease states.
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