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Exercise can directly alter the gut microbiome at the compositional and functional
metabolic levels, which in turn may beneficially influence physical performance.
However, data how the gut microbiome and fecal metabolome change, and how
they interact in soldiers who commonly undergo sustained military training are limited.
To address this issue, we first performed 16S rRNA sequencing to assess the
gut microbial community patterns in a cohort of 80 soldiers separated into elite
soldiers (ES, n = 40) and non-elite soldiers (N-ES, n = 40). We observed that the
α-diversities of the ES group were higher than those of the N-ES group. As for
both taxonomical structure and phenotypic compositions, elite soldiers were mainly
characterized by an increased abundance of bacteria producing short-chain fatty
acids (SCFAs), including Ruminococcaceae_UCG-005, Prevotella_9, and Veillonella, as
well as a higher proportion of oxidative stress tolerant microbiota. The taxonomical
signatures of the gut microbiome were significantly correlated with soldier performance.
To further investigate the metabolic activities of the gut microbiome, using an untargeted
metabolomic method, we found that the ES and N-ES groups displayed significantly
different metabolic profiles and differential metabolites were primarily involved in the
metabolic network of carbohydrates, energy, and amino acids, which might contribute
to an enhanced exercise phenotype. Furthermore, these differences in metabolites
were strongly correlated with the altered abundance of specific microbes. Finally, by
integrating multi-omics data, we identified a shortlist of bacteria-metabolites associated
with physical performance, following which a random forest classifier was established
based on the combinatorial biomarkers capable of distinguishing between elite and
non-elite soldiers with high accuracy. Our findings suggest possible future modalities
for improving physical performance through targeting specific bacteria associated with
more energetically efficient metabolic patterns.

Keywords: soldier, gut microbiome, 16S rRNA, gut metabolome, metabolism, physical performance

Frontiers in Microbiology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 827071

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.827071
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.827071
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.827071&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/articles/10.3389/fmicb.2022.827071/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-827071 March 21, 2022 Time: 13:35 # 2

Shi et al. Gut Microbiome Signatures of Soldiers

INTRODUCTION

The human intestine harbors a complex and diverse ecosystem
comprising myriads of bacterial taxa and various viruses, archaea,
fungi, and protozoa, leading to a biomass of more than 1.5 kg
(Qin et al., 2010; Tierney et al., 2019). In recent decades, the
gut microbiome has emerged as the focus of converging interest
in human health research, primarily due to its tremendous
impact on host physiology, nutrition, metabolism, and immune
system development (Feng et al., 2018; Schluter et al., 2020).
Accumulating evidence indicates that many factors, such as diet
(Fujisaka et al., 2018; Garcia-Mantrana et al., 2018), age (Ayeni
et al., 2018; Del Chierico et al., 2018; Nagpal et al., 2018),
genetics (Zhou et al., 2014; Fujisaka et al., 2018), environment
(De Filippo et al., 2010; Yatsunenko et al., 2012), and antibiotic
treatment (Reijnders et al., 2016; Liu X. et al., 2019), can affect
the composition of the human gut microbiota, resulting in a
highly dynamic ecosystem, yet only a few studies to date have
focused on the interaction between exercise and gut microbiota
(Clarke S. F. et al., 2014; Petersen et al., 2017). Still, these studies
suggest that exercise may influence the gut microbial community
at compositional and functional metabolic levels.

Recently, efforts have been engaged to decipher how
exercise influences the human gut microbiome. For example,
a comparison of the microbial communities of rugby players
and healthy controls revealed that exercise increased bacterial
diversity and was associated with differences in the metabolic
capacity of gut microbiota (Clarke S. F. et al., 2014; Barton
et al., 2018). Specifically, certain microbial metabolic pathways
involved in carbohydrate metabolism and amino acid and
short-chain fatty acids (SCFAs) synthesis were enriched in
rugby players. Kulecka et al. (2020) showed that Polish
endurance athletes have increased microbial diversity resulting
from excessive training compared with the control group.
Moreover, different classes of athletes within the same sport also
presented with different gut microbiome profiles with regard to
taxonomical and functional compositions, while these differences
were correlated with physical performance (Petersen et al., 2017;
Han et al., 2020). However, thus far, these previous investigations
focused primarily on the microbial characteristics in professional
athletes, and a considerable proportion of such studies did not
report fecal metabolomics data. Considering the substantial inter-
variability of microbiome features, the impact of exercise on the
gut microbiome in soldiers remains elusive.

During training or combat, soldiers are commonly subjected
to prolonged physical and emotional stress in a military
environment that includes sustained physical exertion, sleep
deprivation, exposure to environmental extremes, and less
opportunities for dietary consumption and recovery (Lieberman
et al., 2005). This combined stress could induce the release
of catabolic hormones, inflammatory cytokines, and microbial
molecules through the activation of the neuroendocrine system,
ultimately altering the physiological homeostasis of soldiers
(Morgan et al., 2015). Recent evidence has shown that alterations
in gut microbial composition are closely associated with
physical and emotional stress during exercise, apart from
regulating skeletal muscle function (Clarke G. et al., 2014;

Hawley, 2020). Specifically, the gut microbiota can respond to
physical and emotional stress by modulating excitatory and
inhibitory neurotransmitters and by promoting the release of
hormones including neuropeptide Y and dopamine (Clarke G.
et al., 2014; Holzer and Farzi, 2014). Given the diverse effects
of the microbiota on host physiological function, it will be
worthwhile to assess how the gut microbiota and fecal metabolites
change in both elite and non-elite soldiers and determine
whether any significant differences exist between the two
groups. Understanding the role of the gut ecosystem in soldier
performance is particularly interesting for soldiers who strive to
improve their results and to reduce recovery time during training
or combat. Furthermore, such information may be beneficial
to human health.

To bridge such gaps, we conducted a cross-sectional 16S
rRNA gene sequencing analysis of 80 fecal samples obtained
from elite soldiers (ES, n = 40) and non-elite soldiers (N-ES,
n = 40) to characterize gut microbiota features. Fecal metabolites
are crucial in establishing host-microbiota cross-talk (Zierer
et al., 2018). Combined microbial and metabolic analyses is a
well-recognized approach for uncovering the taxonomic and
functional signatures of the gut microbiome (Zheng et al.,
2020). Thus, liquid chromatography-mass spectrometry (LC-
MS) was performed for untargeted fecal metabolomics analysis.
With the integration of multi-omics data, we characterized the
patterns of altered microbiota and fecal metabolites, explored
their reciprocal interactions, and further revealed how these
alterations could modulate host metabolism. More importantly,
a shortlist of microbes and metabolites was identified as potential
biomarkers, facilitating the establishment of a random forest
classifier to monitor the potential of ES with high accuracy.
Collectively, our findings may provide insights for developing
novel strategies to improve soldier performance based on
microbiome-assisted approaches.

MATERIALS AND METHODS

Study Design and Sample Collection
Male soldiers from the identical motorized infantry battalion,
≥18 years of age, with ≥2 years of military training, were
eligible for this study if they did not present with major medical
issues and did not consume antibiotics or any additional dietary
supplementation, such as protein supplements, probiotics, and
prebiotics, within the previous 6 months. The military training
protocol followed by these soldiers was weekly designed in line
with “Military Sports Training Outline” and included general
physical training and specialized training for different armed
branches. The general physical fitness assessment includes the
performance of pull-ups, a 3-km run, a 30-m shuttle run,
and sit-ups; the scoring criteria are divided into the following
four classes: excellent (≥ 360), good (320–359), passed (240–
319), and failed (< 240). Individuals who presented with
excellent results in all four quarterly assessments during 2020
were thus categorized as ES (n = 40), while those who
merely passed all tests were classified as N-ES (n = 40,
Supplementary Table 1). All fecal samples were collected

Frontiers in Microbiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 827071

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-827071 March 21, 2022 Time: 13:35 # 3

Shi et al. Gut Microbiome Signatures of Soldiers

from January 10 to 12, 2021, according to previous methods
(Santiago et al., 2014; Gratton et al., 2016). Briefly, an entire
fecal sample was self-collected using the fecal collection kit
(02544208; Thermo Fisher Scientific), placed immediately in
an ice bag, and delivered to the lab within 3 h. Once
received, the sample was manually homogenized on ice with
a sterile stick within 1 h and divided into two 1.5 mL
sterilized tubes (200 mg per tube) for storage at −80◦C until
further analysis.

The baseline characteristics of the soldiers are presented
in Table 1. Body composition, including body and skeletal
muscle mass indices and fat percentage, were measured with
bioimpedance using the InbodyS10 device (InBody Co., Ltd.,
Seoul, South Korea). Quantitative diet evaluation was based on
the 24-h diet recall method for three consecutive days. The
other data, including duration and frequency of weekly physical
efforts, fatigue states, and psychological factors, were collected
using questionnaire surveys. To investigate the differences
in characteristics between the two groups, we compared the
anthropometric indicators, dietary factors, sport-related features,
psychological states, ranks, and specialties, which showed that
factor1 and factor2 of the fatigue assessment instrument (FAI)
were significantly different (Table 1). All soldiers provided
written informed consent before enrollment. This study was
approved by the Ethics Committee of the Affiliated Jinling
Hospital, Medical School of Nanjing University, Nanjing, China
(2020NZGKJ-071).

DNA Isolation and 16S rRNA Gene
Sequencing
DNA extraction from fecal samples was performed using
the PowerSoil DNA Isolation Kit (12888-100; MO BIO
Laboratories Inc., Carlsbad, CA, United States) according
to the manufacturer’s instructions. The concentration of
the extracted bacterial DNA was assessed using the Qubit
2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
United States; Supplementary Table 2). The V3–V4 region of
the 16S rRNA gene was amplified using the forward primer
5′-ACTCCTACGGGAGGCAGCA-3′ and the reverse primer 5′-
GGACTACHVGGGTWTCTAAT-3′ combined with adapter and
barcode sequences (Supplementary Table 3). The PCR products
were purified using VAHTSTM DNA Clean Beads (N411-01;
Vazyme Biotech Co., Ltd., Nanjing, China) and were quantified
using the Quant-iTTM dsDNA HS Reagent (Q33232; Thermo
Fisher Scientific). All sequencing reactions were performed using
the Illumina NovaSeq 6000 v1.5 reagents (Illumina, San Diego,
CA, United States) with 2× 250 paired-end reads.

Subsequently, the 16S rRNA gene amplicons were processed
to acquire high-quality sequences. The paired-end reads were
merged using FLASH version 1.2.111 (Magoc and Salzberg, 2011).
Chimera sequences were removed using UCHIME version 8.12

(Edgar et al., 2011). The data analysis, operational taxonomic unit
(OTU) classification, and annotations of taxonomic information
were achieved using Quantitative Insights Into Microbial Ecology

1http://ccb.jhu.edu/software/FLASH
2http://www.drive5.com/usearch/manual/uchime_algo.html

TABLE 1 | Baseline characteristics of subjects used in this study.

Parameters ES (n = 40) N-ES (n = 40) P

Anthropometric indicators
Age (year) 21.80 ± 1.59 21.25 ± 1.69 0.138*
Body weight(kg) 65.98 ± 6.07 67.30 ± 6.47 0.434#

BMI (kg/m2) 21.85 ± 1.22 21.45 ± 1.13 0.084#

SMI (kg/m2) 11.13 ± 0.95 10.98 ± 0.73 0.431*
ASMI(kg/m2) 9.14 ± 0.75 9.31 ± 0.56 0.096#

BFP(%) 6.78 ± 1.64 6.27 ± 1.95 0.169#

FMI(kg/m2) 1.49 ± 0.39 1.35 ± 0.43 0.089#

FFMI(kg/m2) 20.36 ± 1.10 20.10 ± 1.09 0.338#

Dietary factors
Energy(kcal) 3354.74 ± 200.93 3430.89 ± 219.77 0.110*
Carbohydrates(g) 383.50 ± 35.36 396.91 ± 41.33 0.194#

Sucrose(g) 56.38 ± 6.93 58.70 ± 7.72 0.172#

Fiber(g) 23.88 ± 2.70 22.95 ± 2.84 0.139*
Protein (g) 163.77 ± 27.64 160.92 ± 26.61 0.640*
Fat(g) 129.52 ± 13.29 133.29 ± 13.19 0.207*
Saturated fatty acid(g) 43.94 ± 5.54 42.22 ± 4.74 0.140*
Monounsaturated fatty acid(g) 46.03 ± 7.23 47.47 ± 6.03 0.339*
Polyunsaturated fatty acid(g) 22.61 ± 3.38 23.39 ± 4.76 0.441#

Carbohydrates(%) of energy 45.73 ± 3.29 46.23 ± 3.15 0.490*
Protein (%) of energy 19.50 ± 2.94 18.77 ± 2.98 0.273*
Fat (%) of energy 34.77 ± 3.13 35.00 ± 3.12 0.742*
Sport-related features
Impedance (�) 427.97 ± 34.03 436.58 ± 30.30 0.235*
Grip strength(kg) 48.17 ± 7.31 50.16 ± 6.89 0.215*
Exercise load (h/week) 18.63 ± 3.60 17.05 ± 3.40 0.336#

Training units per week 11.08 ± 1.51 10.50 ± 1.57 0.120#

Fatigue assessment instrument
Factor1 3.092 ± 0.619 4.89 ± 1.27 <0.0001#

Factor2 3.82 ± 1.12 4.60 ± 1.27 0.007#

Factor3 5.02 ± 1.68 4.72 ± 1.64 0.289#

Factor4 6.51 ± 0.65 6.45 ± 0.71 0.747#

Psychological states
SAS 35.60 ± 6.47 37.48 ± 5.80 0.176*
SDS 36.93 ± 4.74 35.65 ± 5.47 0.269*
Military ranks
Corporal 26 20 0.369†

Sergeant 10 13
Staff sergeant 4 7
Specialties
Infantry 24 27 0.401†

Artillery 9 10
Scout 7 3

BMI, body mass index; SMI, skeletal muscle mass index; ASMI, appendicular
skeletal muscle mass index; BFP, body fat percentage; FMI, fat mass index; FFMI,
fat-free mass index; SAS, Self-rating anxiety scale; SDS, Self-rating depression
scale; Values are means ± standard deviation; *Student’s t-test; #Mann–Whitney
U-test; †Pearson’s chi-squared test.

version 2.0 (QIIME2,3 (Bolyen et al., 2019). OTUs were clustered
using Uparse 10.04 (Edgar, 2013) at the 97% identity level.
Taxonomic annotations were obtained using the classify-sklearn
algorithm5 and the Silva database (Release132,6 (Callahan
et al., 2016). Alpha and beta diversity values were calculated
using QIIME2. We selected Chao1, Shannon, Simpson, and
phylogenetic diversity indices to evaluate the alpha diversity
of microbial communities. For determining beta diversity,
the gut microbiome similarity between different groups was

3https://qiime2.org/
4http://drive5.com/uparse
5https://github.com/QIIME2/q2-feature-classifier
6http://www.arb-silva.de
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investigated using principal coordinates analysis (PCoA) based
on unweighted UniFrac, binary Jaccard, and weighted UniFrac
distance metrics and visualized using R (version: 4.0.3). BugBase
(Ward et al., 2017), an algorithm used for predicting biologically
explicable phenotypes, was used to predict organism-level
phenotype composition, including oxygen utilization, gram
staining characteristics, and oxidative stress tolerance. Briefly,
the OTU table and mapping file were uploaded selecting for
output normalized OTU table, OTU contributions, and relative
abundance plots for each microbiome phenotype.

Co-occurrence Network Analysis
To describe the correlations among different genera, we
constructed co-occurrence networks according to the 16S rRNA
data (Wang et al., 2018). The microbial correlations in the ES
and N-ES samples were investigated, respectively, in term of the
relative abundance of each genus using Spearman’s correlation
coefficient to establish the co-occurrence network. The cutoff
of the absolute correlation was set at 0.35, and only significant
correlations with a false discovery rate (FDR) <0.05 were
visualized using Cytoscape version 3.8.17 (Shannon et al., 2003).
Further analysis was performed to measure the similarity between
the two networks by shared correlations and closeness centrality
of nodes. The edges with the same nodes in the two co-occurrence
networks were defined as shared correlations. The closeness
centrality indicates the importance of the nodes in each network.
The results were illustrated using the Venn diagram and ggplot2
packages of R (version: 4.0.3).

Correlation Analysis of Dominant Genera
and Physical Phenotypes
To test whether microbiome changes were indicative of
performance status, we conducted a correlation analysis between
dominant genera and phenotypic scores (Bowerman et al., 2020).
First, we identified the genera that presented with significant
differences between the two groups. Thereafter, dominant genera
with an at least 2-fold change between ES and N-ES cohorts were
identified from the genera with significant differences. Finally,
the correlations between significant dominant genera (average
relative abundance >0.03%) and physical phenotypic scores,
including physical fitness assessment mean scores and the FAI,
were undertaken using Spearman’s correlations in R version 3.6.1
(psych package), and the matrix was produced using R version
3.6.1(corrplot package).

Metabolite Extraction, Profiling, and
Analysis
Fecal samples obtained from the ES and N-ES cohorts were
subjected to metabolomic analysis based on the LC-MS method.
Each 25-mg fecal sample was mixed with 1 mL extract solution
(methanol: acetonitrile: water = 2: 2: 1) that included a standard
mixture of L-leucine-5,5,5-d3 (0.004 mM), Betaine-(trimethyl-
d9) hydrochloride (0.0002 mM), trimethylamine-d9 N-Oxide
(0.001 mM), hippuric acid-d5 (0.0003 mM), [13C3]-L-(+)-
sodium lactate (0.002 mM), and L-glutamic acid-13C5,15N

7http://www.cytoscape.org

(0.006 mM) for quality control. Subsequently, the mixtures were
homogenized at 35 Hz for 4 min, sonicated for 5 min in an
ice-water bath, and were then incubated for 1 h at −40◦C. The
samples were centrifuged at 12,000 rpm for 15 min at 4◦C, and
the resulting supernatant was transferred to a fresh glass vial
for analysis using a UHPLC-QE Orbitrap/MS (Thermo Fisher
Scientific) (Wang et al., 2014).

The LC-MS analysis was conducted according to a previous
method (Li et al., 2017). Briefly, the analysis was conducted using
the Vanquish UHPLC system (Thermo Fisher Scientific) with
a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 µm)
coupled to the Q Exactive HFX mass spectrometer (Orbitrap
MS; Thermo Fisher Scientific). The mobile phase comprised
ammonium acetate (25 mM) and ammonia hydroxide (25 mM)
in water (pH 9.75) (A) and acetonitrile (B). Approximately 3 µL
of the sample was injected at 4◦C for analysis. The QE HFX mass
spectrometer was used with the acquisition software (Xcalibur;
Thermo Fisher Scientific) to acquire the full scan MS/MS spectra.
The positive and negative spray voltages were 3.6 and 3.2 kV,
respectively, the capillary temperature was 350◦C, and the full MS
and MS/MS resolution was set at 60,000 and 7500, respectively.

The raw data were converted to the mzXML format using
ProteoWizard and processed using R package XCMS for peak
detection, extraction, and integration (Smith et al., 2006). The
metabolites were annotated with the featured peaks according
to an in-house MS2 database (BiotreeDB). We removed the
impurity peaks, and the identifications were performed in
duplicate. For each dataset, the compounds present in more than
50% of the samples collected in this study were retained. The data
on missing values were filled by half of the minimum value (Dunn
et al., 2011). Thereafter, the internal standard normalization
method was used for subsequent data analysis.

Principal component analysis (PCA) and orthogonal partial
least-squares discriminant analysis (OPLS-DA) were applied to
assess the differences in metabolic profiles between elite and non-
elite soldiers using 14,182 metabolites detected from 80 fecal
samples. The analysis was performed using the SIMCA16.0.2
software package (Sartorius Stedim Data Analytics AB, Umea,
Sweden). The qualitative metabolites with variable important in
projection (VIP) >1 and P-value <0.05 (Student’s t-test) were
identified as significantly changed metabolites. Furthermore,
commercial databases, including KEGG8 and MetaboAnalyst,9

were used for pathway enrichment analysis. The results
were visualized using R version 4.0.3 (ggplot2 package) and
Cytoscape version 3.8.1.

Microbiome and Metabolome Data
Integration
To determine the relationships between the microbiome and
metabolome in soldiers, correlation analysis between dominant
genera (average relative abundance >0.05%) and significantly
different metabolites with >2.5-fold changes was performed
using R version 3.6.1 (psych and corrplot package). Significant
correlations, defined as absolute coefficient >0.6 and FDR <0.05,

8http://www.genome.jp/kegg/
9http://www.metaboanalyst.ca/
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were included in the downstream analysis and were visualized
using Cytoscape version 3.6.1.

Biomarker Analysis and Random Forest
Model Prediction
Linear discriminant analysis (LDA) effect size (LEfSe) (Segata
et al., 2011) was conducted to identify differential taxonomical
features between the two groups. Specifically, the P-values for
the Wilcoxon rank-sum test and the logarithmic LDA score
for distinct features were set at 0.05 and 3.5, respectively. The
random forest model was established using the randomForest
package in R to identify representative biomarkers. With
respect to metabolic biomarkers, we selected two metabolites
that demonstrated the highest fold changes in the most
enriched metabolic pathway, according to a previous study
(Guo et al., 2020). Thereafter, tenfold cross-validation was
undertaken using a random forest model 50 times to quantify
the discriminative performance of these biomarkers with average
accuracy. Additionally, receiver operating characteristic analysis
was conducted to evaluate the efficiency of possible cutoff values
in the tests (Falony et al., 2016).

Statistical Analysis
Statistical analysis was performed primarily using the R
platform.10 The differences in taxa abundance and diversity
indices were assessed using the Mann–Whitney U-test. All
P-values have been corrected and presented as FDR using
the Benjamini–Hochberg procedure (Guo and Bhaskara Rao,
2008). ANOSIM (Clarke, 1993) was performed using unweighted
UniFrac, binary Jaccard, and weighted UniFrac distance metrics
to evaluate the statistical significance of differences in the
gut microbiota structures across the groups. Multivariate and
univariate analyses were used to identify differential metabolites
specifically defined as VIP >1 and P < 0.05, respectively
(Student’s t-test). Microbiome and metabolome data have been
presented as mean ± SD. Statistical significance was set at
P < 0.05.

RESULTS

Alterations of Gut Microbial
Communities in Elite and Non-elite
Soldiers
A total of 6,379,338 high-quality sequencing reads were identified
across all fecal samples provided by elite and non-elite soldiers,
ranging from 79,042 to 80,401 sequences (Supplementary
Table 4). These sequences were clustered into 51,890 OTUs,
ranging from 265 to 773 OTUs (Supplementary Table 4).
Rarefaction curves suggested the achievement of high coverage
(∼99%) for all samples, indicating sufficient sequencing depth
for investigating gut microbiota and limited benefit of additional
sampling (Supplementary Figure 1A and Supplementary
Table 4). Analysis of the data obtained herein suggested that the

10http://www.r-project.org/

microbial diversity and richness indices were significantly higher
in the ES group than those in the N-ES group (Figure 1A). PCoA
was performed to explore the similarity of the overall microbial
communities in the two cohorts based on unweighted UniFrac
(Figure 1B), binary Jaccard (Supplementary Figure 1B), and
weighted UniFrac distance metrics (Supplementary Figure 1C).
The analysis revealed that the microbial compositions of the
ES cohort clusters were more homogeneous and significantly
distinct from those of the N-ES cohort.

At the phylum level, the four most abundant phyla identified
in soldiers were Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria (Figure 1C), and this finding was consistent
with that reported within the Chinese population (Liu H. et al.,
2019). Thereafter, comparisons of the relative abundances of
these phyla revealed that elite soldiers harbored significantly
greater proportions of 10 taxa than N-ES, while the proportion
of only 1 taxon, Bacteroidetes, was significantly decreased in
elite soldiers (Supplementary Figure 2A). Recent studies have
shown that the Firmicutes/Bacteroidetes (F/B) ratio is closely
associated with increased physical performance (Durk et al.,
2019). Hence, F/B values were calculated, and the ES cohort
exhibited significantly higher F/B values (Figure 1D). At the
genus level, 226 discriminative organisms were identified
between the two groups (Supplementary Table 5). Specifically,
we found that Ruminococcaceae_UCG-005, Lactobacillus,
Prevotella_9, and Veillonella were enriched in the ES cohort,
while Bacteroides, Megasphaera, and Coprococcus_2 were
dominant in the N-ES cohort (Figure 1E and Supplementary
Figure 2B). Additionally, the hierarchical heatmap demonstrated
that the top 30 significantly different genera detected across all
samples presented different patterns between the ES and N-ES
groups (Supplementary Figure 2C).

Based on the taxonomical composition, the differences in
the phenotypic compositions of ES and N-ES cohorts were
investigated using Bugbase (Ward et al., 2017). Significantly
greater relative abundances of aerobic, facultative anaerobic,
and oxidative stress tolerant microbiota were observed in ES
relative to N-ES, while anaerobic microbiota were significantly
less abundant in ES (Figure 1F). However, there were no
significant differences in the proportions of gram-positive and
gram-negative bacteria between the two groups.

To gain insights into potential relationships among bacterial
genera within the microbial communities from an ecological
perspective, the genus–genus co-occurrence networks of each
group were constructed based on Spearman correlations. Within
the two co-occurrence networks, the differential genera belonged
to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and
Epsilonbacteraeota (Figures 2A,B). The ES group presented
with a more complicated co-expression network with strong
positive correlation among genera (Figure 2A). Conversely, the
correlation between microbes in the N-ES group was distinctly
weak (Figure 2B). To quantify such differences, we determined
the number of edges (correlations) and the closeness centrality
of nodes (genera) in the two networks. The Venn diagram
displayed 96 edges shared by both groups, while 873 and 327
edges were unique to the ES and N-ES groups, respectively
(Supplementary Figure 3A). Moreover, the closeness centrality
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FIGURE 1 | Characteristics of the gut microbiota in elite soldiers (ES) and non-elite soldiers (N-ES). (A) Comparison of Chao1, Shannon, Simpson, and phylogenetic
diversity indices of microbial communities between the two groups. (B) Principal coordinates analysis (PCoA) of the gut microbiota based on unweighted UniFrac
distance metrics for ES and N-ES. ANOSIM, R = 0.399, P = 0.001. (C) Bacterial proportions at the phylum level. (D) The values of Firmicutes/Bacteroidetes of ES
showing significantly higher than that of the N-ES cohort. (E) Radar charts depict information on the discriminative microbiota between ES and N-ES cohorts at the
genus level. The differential genera with mean relative abundances more than 0.2% of the total abundance are presented for clarity. Except for Bacteroides with the
unique axis scale, the remaining genera have been presented using the same options for axes. (F) The estimate of phenotypic compositions in ES versus N-ES.
*P < 0.05, **P < 0.01, ***P < 0.001, Mann–Whitney U-test with false discovery rate correction.
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FIGURE 2 | The co-occurrence networks constructed based on relative abundances of genera in each group. (A,B) Genus–genus co-occurrence networks of ES
(A) and N-ES (B) according to the Spearman correlation algorithms. Each node indicates a bacterial genus. The node size represents the relative abundance of
these genera. Edges between nodes stand for positive (light red) or negative (light green) correlation, and the edge thickness indicates the Spearman coefficient.

of shared genera also exhibited distinct differences between
the two groups (Supplementary Figure 3B). Taken together,
the above-mentioned analyses indicated that the microbial
interactions in the ES cohort exhibited alterations compared
with those in the N-ES cohort, which might generate disparate
synergistic and niche-related relationships and partly account for
differences in the physical performance of soldiers.

Gut Microbiome Changes Reflecting
Performance Status
To explore whether the differences in the microbiome signature
were related to performance status, we conducted Spearman’s
rank correlation analysis between dominant genera (average
relative abundance >0.03%) and the phenotypic scores of all
soldiers (Figure 3). We found that the ES group could be
characterized by 45 enriched dominant genera mainly belonging
to Bacteroidetes and Firmicutes (18/45), and almost all members
of the Bacteroidetes (6/7), such as Prevotella_7, Prevotella_9,
and Prevotellaceae_UCG-003, were positively associated with
the mean score of each physical fitness assessment item.
Conversely, the dominant microbiota enriched in the N-ES group
mainly belonged to Actinobacteria and Proteobacteria (20/28),
and most genera (16/20), including Rothia, Pseudomonas,
and Sphingomonas, exhibited negative correlations with four
physical fitness assessment results. Alternatively, four distinct
dimensions of fatigue were identified in the FAI. The first
factor could be perceived as a quantitative indicator of the
overall fatigue used to measure fatigue severity, the second
factor was indicative of the sensitivity of fatigue to specific
circumstances, the third factor addressed possible consequences

of fatigue, and the fourth factor indicated the response of
fatigue to rest/sleep (Schwartz et al., 1993). In this study, the
enriched genera in the ES cohort mostly exhibited strong negative
correlations with Factor1, while a considerable proportion of the
enriched genera in the N-ES cohort and Factor1 were strongly
and positively correlated. Overall, these findings support an
association between the gut microbiome and soldier performance
status, aiding the identification of genera associated with an
enhanced exercise phenotype. However, further investigation of
longitudinal samples is needed to detect long-term changes in
microbial composition.

Metabolic Pattern Differences Between
ES and N-ES Groups
The fecal metabolome is acknowledged as a direct functional
readout of the gut microbiome (Zierer et al., 2018). Hence, we
explored the host metabolic signatures in the same samples and
detected 14,182 metabolites, of which 1,370 had known chemical
identity, including 1,092 in the positive and 278 in the negative
ion mode. The fecal samples obtained from different cohorts
could be completely separated according to PCA and OPLS-
DA (Figures 4A,B), suggesting distinct differences in the overall
metabolic phenotypes.

Subsequently, 133 discriminative metabolites were identified
between the ES and N-ES groups (Supplementary Table 6).
Compared with the N-ES group, elite soldiers could be
characterized by 97 enriched metabolites and 36 depleted
metabolites (Figure 4C), among which the 30 most significantly
different metabolites exhibited a dissimilar metabolic mode
between the two groups (Supplementary Figure 4). The
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FIGURE 3 | Correlations between the members of the gut microbiome with physical phenotypes. Spearman’s rank correlations were calculated between dominant
genera (> 0.03%) and phenotypic scores. Higher taxonomy of genera (phylum) with enrichment in either ES or N-ES samples have been indicated by the colored bar
at the top portion. The correlation effect is shown by a color gradient from blue (negative correlation) to orange (positive correlation). Black stars within heatmap
boxes represent significant results (*P < 0.05, **P < 0.001, Student’s t-test with false discovery rate correction for multiple comparisons).

enrichment analysis of these altered metabolites identified
eight significantly enriched metabolic pathways, including
butanoate metabolism, alanine, aspartate, and glutamate
metabolism, and arginine biosynthesis (Figure 4D), which were
primarily associated with carbohydrate, amino acid, and energy
metabolism (Figure 4E). Notably, most metabolites clustered
in these pathways, such as (R)-3-hydroxybutyric acid, succinic
acid, and pyruvic acid, were enriched in the ES group, while
the N-ES group exhibited enrichment in only four metabolites,
L-serine, glycine, citrulline, and isocitric acid (Figure 4E).
Studies have shown that exercise capacity is closely correlated
with the energy-related metabolic pathways performed by the
gut microbiota, especially carbohydrate metabolism, because
polysaccharides and monosaccharides are the primary substrates
that are oxidized to meet energy demands during prolonged
subjection to submaximal exercise (van Loon et al., 2001;
Mach and Fuster-Botella, 2017). Therefore, our results revealed
that the ES group exhibited a more energetically efficient
metabolic phenotype, which seemed to be crucially important for
enhancing performance.

Integration of the Microbiome and
Metabolomes
Next, we investigated the potential relationships between the
abundances of dominant genera (> 0.05%) and fecal metabolites.

Overall, the multi-omics correlation analysis revealed strong
and broad relationships, many of which involved microbes
and metabolites enriched in the ES group (Figure 5A).
Seventy-nine significant associations with absolute Spearman’s
coefficients higher than 0.6 were found (Figure 5B). Within
this network, the scattered genera were principally assigned to
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The
enriched microbiota in the ES cohort, such as Prevotella_9,
Lactococcus, and Ruminococcaceae_UCG-005, were positively
correlated with many fecal metabolites, including beta-alanine,
succinic acid, and (R)-3-hydroxybutyric acid, which contributed
to carbohydrate and amino acid metabolism. However, the
microbiota enriched in the N-ES cohort, such as Brevibacterium
and Weissella, presented numerous negative correlations with the
aforementioned metabolites and exhibited positive correlations
with only three metabolites associated with amino acid
metabolism, citrulline, taurine, and gentisate aldehyde. These
findings illustrated that diverse microbes dominated in different
groups, and this could be the driving force for the differences in
metabolic phenotypes.

Combinatorial Biomarkers for
Distinguishing Between ES and N-ES
To further explore gut microbial community features at the
taxonomic level, LEfSe was performed to identify microbial
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FIGURE 4 | Discrepant metabolic patterns in elite soldiers (ES) and non-elite soldiers (N-ES). (A,B) The clustering analyses of principal component analysis (PCA)
and orthogonal partial least-squares discriminant analysis (OPLS-DA). (C) Volcano plots showing the P-value (y-axis), fold-change (x-axis), and variable important in
projection (VIP, node size) of the qualitative metabolites identified in the metabolomics analysis. The color of the circle represents differential metabolites (VIP >1,
P < 0.05 Student’s t-test) with enrichment (red) or depletion (blue) in ES group. (D) Bubble diagrams showing the top 20 enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways for the differential metabolites. Abscissa variations indicate the degree of enrichment (Rich factor), and the vertical axis shows the KEGG
pathway information. The color scale indicates significance levels, and the node size represents the number of discriminative metabolites in the mapping pathway.
(E) The significantly enriched KEGG pathway (P < 0.05 hypergeometric test) of the differential metabolites. Identified metabolites are represented by nodes with the
size reflecting fold change. Each node is labeled with red (enriched in ES cohort) or green (enriched in N-ES cohort). The solid and dotted arrows symbolize
organism-specific and reference pathways, respectively, according to the KEGG database. The disparate color shadows highlight the pathway at KEGG level 2.
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FIGURE 5 | The multi-omics correlation analysis of the microbiome and metabolome. (A) Correlations between dominant genera (> 0.05%) and metabolites with
>2.5-fold changes between ES and N-ES, VIP >1, and P < 0.05 (Student’s t-test). Enrichment in either group and higher levels of taxonomy (phylum) are indicated
by colored bars at the left and top of the heatmap. Significant correlations are denoted by black stars (*P < 0.05, **P < 0.001, Student’s t-test with false discovery
rate adjustment for multiple comparisons). (B) Network profiles of the correlations with absolute coefficients higher than 0.6. The node shape represents the
components involved in this study (circle: microbiota; round rectangle: metabolite). In the network, these metabolites mainly belong to carbohydrate and amino acid
metabolism. The colors of the border of circles indicate different phyla. The node size indicates the fold change, and the color reflects higher abundance in either ES
(red) or N-ES (green) samples. Edges between nodes stands for Spearman’s positive (light red) or negative (light green) correlation; the edge thickness denotes the
range of the absolute coefficients.
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markers in each cohort. We obtained data on 13 taxa with
LAD score >3.5, seven of which were more abundant in the
ES cohort, including Bacilli, Lactobacillales, and Lactobacillaceae
(Figure 6A). The random forest model was used to evaluate the
feature importance and to identify the representative variations
that could describe the most considerable deviations between the
two cohorts (Yang et al., 2020). As shown in Figure 6B, the genera
Prevotella_9 and Ruminococcaceae_UCG-005 were identified as
biomarkers for the ES cohort. At the metabolic level, considering
that the most enriched pathway was butanoate metabolism with a
4.3-fold change in the level of succinic acid and a 3.4-fold change
in the level of L-glutamic acid (Figures 4D,E), we selected these
two metabolites as biomarkers for the ES cohort according to a
previously reported method (Guo et al., 2020).

To exploit the potential value of identified biomarkers for
monitoring the potential of soldiers, 10-fold cross-validation
was performed using a random forest model with 50-time
repeats. The results showed that, based on the microbial
biomarkers, the area under the curve (AUC) and average
accuracy obtained for distinguishing between ES and N-ES
samples were 0.898 and 85.48% (81.25–88.75%, Figure 6C),
respectively. Similarly, based on the metabolic biomarkers,
the AUC and average accuracy for identifying ES from N-ES
samples were 0.861 and 82.43% (77.50–86.25%, Figure 6C),
respectively. Nevertheless, we discovered that a combinatorial
marker panel of these four biomarkers enabled the detection of
ES samples from N-ES samples with high classification power
(AUC: 0.932; average accuracy: 88.88%, ranging from 85 to
92.5%; Figure 6C), resulting in a more robust discriminative
performance than that of microbial biomarkers or metabolic
biomarkers alone. In summary, the gut microbiome and
metabolome signatures in elite soldiers differ significantly
from those of non-elite soldiers. Our findings may have
potential applicability in the prediction of the potential of elite
soldiers from a group of soldiers. However, further research
is warranted to clarify the direct causation or correlation
between these biomarkers and enhanced exercise performance
using animal models.

DISCUSSION

In the present study, we first outlined the landscapes of microbial
and metabolic signatures and their interactions established in
the gut ecosystem of Chinese soldiers under conditions of
sustained military training. The microbial communities of ES
significantly differ from those of N-ES in terms of both diversity
and the presence of several taxa. The enrichment of carbohydrate
and amino acid metabolism was the hallmark of the ES gut
ecosystem. Moreover, an accurate classifier was established based
on a combinatorial marker panel, emphasizing considerable
potential in distinguishing candidate elite soldiers from a group
of soldiers. Since changes in the microbiome and metabolome
correlated with performance status, our findings might lay
the foundation for the development of performance-enhancing
strategies by targeting specific bacteria that could beneficially
influence metabolic efficiency.

Previous studies consistently reported that physical exercise
could contribute to higher microbial diversity and alterations in
microbial composition (Clarke S. F. et al., 2014; Han et al., 2020;
Kulecka et al., 2020). Microbial diversity correlates with higher
peak oxygen uptake (VO2 max/kg), which is crucial for exercise
capacity (Estaki et al., 2016). In this study, the microbial richness
and diversity of ES were significantly higher than those of N-ES.
The more diverse microbiota can promote ecological stability
and resist the effect of harmful environmental factors (Sommer
et al., 2017). The proportions of certain microbial taxa were also
altered between the ES and N-ES groups. The F/B ratio is usually
used to characterize the general composition of gut microbiota.
ES exhibited an elevated F/B ratio in accordance with previous
reports on elite athletes (Han et al., 2020). Recently, accumulating
evidence has demonstrated that the F/B ratio positively correlates
with fecal total SCFAs (Mariat et al., 2009; Fernandes et al., 2014),
particularly butyrate (Yamamura et al., 2020), and peak oxygen
uptake (VO2 max/kg) (Durk et al., 2019). Compared with the
N-ES group, ES presented a significantly higher abundance of
the genera Ruminococcaceae_UCG-005, Prevotella_9, Veillonella,
andAkkermansia. Members of these genera have been reported to

FIGURE 6 | Multiple markers obtained for monitoring the potential of soldiers. (A) Microbial biomarkers obtained for identification of ES and N-ES cohorts. (B) The
order of importance for these variables. The bar colors indicate enrichment in ES (red shades) or N-ES (green shades). (C) Classification performance of the random
forest models based on metabolic markers (green), microbial markers (blue), and combinatorial markers (red) for ES and N-ES cohorts.
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produce SCFAs (Krautkramer et al., 2021) previously associated
with numerous health benefits, including the promotion of
skeletal muscle strength and endurance capacity (Morrison and
Preston, 2016; Frampton et al., 2020). This finding is consistent
with a recent study which has confirmed that the exercise-
enhancing properties of Veilonella atypica are realized via its
metabolic conversion of lactate into propionate (Scheiman et al.,
2019). Hence, we speculate that the changes in the microbial
composition of elite soldiers are conducive to increased SCFAs
production, at least partly accounting for the improvement in
their physical performance.

Additionally, mounting evidence has shown that microbial
composition can also affect the responses to inflammatory
and oxidative stress (Przewlocka et al., 2020). During physical
training, there is an overproduction of reactive oxygen species
and occurrence of low-grade systemic inflammation, leading
to lipid and protein peroxidation and muscle cell metabolism
disorders, which together ultimately disrupt muscle function
(Merry and Ristow, 2016; Karl et al., 2017). The ES presented with
an overrepresentation of Lactobacillus, which might contribute
to inflammation reduction by stimulating the secretion of anti-
inflammatory cytokines such as TGF-β, IL-10, and tryptophan-
2,3-dioxygenase, and might aid oxidative stress reduction by
elevating superoxide dismutase activity and intestinal glutathione
levels (Przewlocka et al., 2020). Consistently, the proportion
of oxidative stress tolerant microbiota was significantly higher
in ES. Furthermore, Akkermansia, which has been reported
to improve metabolic health (Dao et al., 2016), was also
enriched in the ES cohort. Akkermansia muciniphila can help
strengthen the integrity of the intestinal epithelial cell layer
(Reunanen et al., 2015) and increase the thickness of the
mucus layer by stimulating mucin production (Shin et al.,
2014), contributing to reduced microbial translocation and
inflammation. Moreover, the elevated abundance of Prevotella_9
in the ES cohort, consistent with the results reported by Petersen
et al. (2017), may result in the exertion of mucosal protective and
immunoregulatory effects through the binding of its metabolite
(succinic acid) to GPR91 on the surface of dendritic cells (Rubic
et al., 2008; Kovatcheva-Datchary et al., 2015). Combined with
the observed associations between dominant genera (> 0.03%)
and exercise phenotypes, it can be speculated that these genera
may mediate beneficial effects on the intestinal barrier, endotoxin
translocation, and immune modulation, which may combine
to prevent or mitigate the adverse effects of inflammatory and
oxidative stress on skeletal muscle, thereby positively influencing
exercise performance.

Gut microbiota can significantly shape the fecal metabolome.
In our study, this viewpoint was also confirmed via metabolic
function and multi-omics correlation analyses. In the metabolic
network, all altered fecal metabolites were primarily involved
in carbohydrate and amino acid metabolism. Consistently, fecal
metabolites, substantially correlated with dominant microbiota
(> 0.05%), were also mapped into these two categories of
metabolic pathways. A recent study revealed the distinct
alterations in microbial functional profiles characterized by
a higher proportion of ATP, carbohydrate, and amino acid
metabolism in elite athletes (Han et al., 2020). In line with these

results, we found that most differential metabolites associated
with carbohydrate and amino acid metabolism, especially
succinic acid, were more abundant in the ES group than those
in the N-ES group. On one hand, succinic acid, mainly produced
by Prevotella (Kovatcheva-Datchary et al., 2015), is considered
an SCFA precursor, which can be converted to methylmalonyl-
CoA and later to propionate (Koh et al., 2016) that have well-
established effects on improving exercise capacity (Scheiman
et al., 2019). On the other hand, succinic acid is identified as
a signaling molecule for mediating muscle exercise adaptations,
including muscle innervation, extracellular matrix remodeling,
and increased strength (Reddy et al., 2020). Beta-alanine, another
important metabolite, acts as the rate-limiting precursor for
synthesizing creatine that plays a crucial role as calcium regulator
in skeletal muscle (Boldyrev et al., 2013). Elevated muscle
carnosine concentrations are associated with performance-
enhancing effects in high-intensity exercise (Blancquaert et al.,
2017). Additionally, arginine biosynthesis is critically important
for elite soldiers, which may be partly attributed to arginine
increasing peroxisome proliferator-activated receptor-gamma
coactivator 1α (PGC1α) expression (Chen et al., 2018). PGC1α

serves as the master regulator of mitochondrial biogenesis and
skeletal muscle fiber type, and therefore its upregulation may help
promote an oxidative skeletal muscle phenotype, consequently
improving exercise capacity (Chen et al., 2018; Kamei et al., 2020).
Simultaneously, PGC1α-mediated NO production may increase
blood flow through the skeletal muscle (Kamei et al., 2020).
However, the impact of arginine on muscle growth seems to be
limited here, owing to a non-significant difference in skeletal
muscle mass index between ES and N-ES groups. By integrating
these findings, we speculate that the microbially driven metabolic
signatures of the ES cohort exert critical biological significance
for physical performance.

As the present investigation is an exploratory study,
several limitations of the data presented should be noted,
especially concerning the cross-sectional design and lack of a
matching non-soldier cohort. Moreover, to exclude potentially
confounding effects, we used well-matched fecal samples to
explore the molecular signatures inherent in elite soldiers. Of
course, it should not be ignored that a 3-day diet may have
a short and limited effect on the gut microbiome. Once the
dietary habits or training intensity change, the gut microbiome
and metabolome of soldiers exhibit responses in kind and
undergo alterations. Hence, in future studies, we aim to perform
a long-term follow-up analysis and to recruit more subjects,
including healthy non-soldier and validation cohorts, to verify
the stability of our findings as well as the generalizability of
the identified biomarkers. Finally, blood metabolomic analysis
may be favorable for gaining a deeper understanding of the
mechanism by which the gut microbiome modulates host
metabolism in soldiers.

CONCLUSION

Using multi-omics data, we have provided evidence that ES
can be characterized by the enrichment of SCFAs-producing
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bacteria and oxidative stress tolerant microbiota, as well as by
more abundant metabolites associated with carbohydrate and
amino acid metabolism. These alterations exert a synergistic
effect on host metabolism, which may be strongly implicated
in the enhanced physical phenotype. Furthermore, based on the
combinatorial markers, we constructed a classifier that enabled
effective distinction between elite and non-elite soldiers. Taken
together, our findings provide new directions for developing
novel performance-enhancing strategies for soldiers by targeting
specific microbiota that drive more energetically efficient
metabolic patterns.
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