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Deep coral-dominated communities play paramount roles in benthic environments by
increasing their complexity and biodiversity. Coral-associated microbes are crucial to
maintain fitness and homeostasis at the holobiont level. However, deep-sea coral
biology and their associated microbiomes remain largely understudied, and less from
remote and abyssal environments such as those in the Clarion-Clipperton Fracture
Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-
associated communities of abyssal gorgonian corals and anemones (>4,000 m depth)
in the CCZ; an area harboring the largest known global reserve of polymetallic nodules
that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25)
belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae
family. Significant differences in bacterial community compositions were obtained
between these three families, despite sharing similar habitats. Anemones harbored
bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and
Pelagibius members. Core microbiomes of corals were mainly dominated by different
Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals’
taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals
harbor bacterial communities that allow obtaining additional energy due to the scarce
availability of nutrients. This study presents the first report of microbiomes associated
with abyssal gorgonians and anemones and will serve as baseline data and crucial
insights to evaluate and provide guidance on the impacts of deep-sea mining on these
key abyssal communities.

Keywords: microbiome, abyssal, deep-sea corals, deep-sea anemones, Clarion-Clipperton Fracture Zone (CCZ),
polymetallic nodules

INTRODUCTION

Deep-water coral communities are found distributed from Arctic to Antarctic latitudes,
along continental margins and on seamounts (Roberts et al., 2006; Yesson et al., 2012).
As well as their shallow-water counterparts, deep-sea corals provide substrate and habitat
for many associated biota, increasing biomass and biodiversity of benthic communities
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(Buhl-Mortensen and Mortensen, 2005). They are considered
engineering species that shape the habitat and increase its
complexity by forming three-dimensional structures (Jones et al.,
1994; Ballesteros, 2006; Sánchez, 2016). Moreover, corals play
key roles in biogeochemical cycles. Thanks to their condition of
filter feeders, corals are responsible for benthic-pelagic coupling
processes by promoting the flow of matter and energy from
pelagic to benthic systems (Gili and Coma, 1998; Ribes et al.,
1999; Hill et al., 2014).

Due to the limited access to surface irradiance, deep-sea corals
lack photosynthetic symbionts. In turn, they obtain nutrients
heterotrophically by filter feeding but also from their associated
microbiomes (White et al., 2005; Zhang et al., 2015). The
microbiome is the microbial community comprising protists,
bacteria, archaea, viruses and fungi that are hosted in the coral
holobiont (Rohwer et al., 2002). It provides crucial benefits
for maintaining the coral holobiont health and dynamics by
their involvement in nutrient cycling, key metabolic pathways
and disease resistance (Rosenberg et al., 2007; Rypien et al.,
2010; Zhang et al., 2015). Therefore, the microbiome augments
basic life functions to the coral holobiont but at the same
time contributes to adaptive and acclimatization responses by
increasing fitness and maintaining homeostasis at the holobiont
level (Bourne et al., 2016; Ziegler et al., 2017, 2019; Marangon
et al., 2021).

Unfortunately, deep-sea coral biology and ecology remain
vastly understudied due to logistical constraints and sampling
challenges and consequently, few studies have addressed deep-
sea coral microbiomes. Of the best studied are the deep-
sea stony corals Desmophyllum pertusum (formerly Lophelia
pertusa) and Madrepora oculata (Yakimov et al., 2006; Neulinger
et al., 2008; Schöttner et al., 2009; Kellogg et al., 2017; Galand
et al., 2018). However, few microbial studies have evaluated
deep-sea octocorals including Paragorgea arborea, Plumarella
superba, Cryogorgia koolsae, Paramuricea placomus, Primnoa
spp., Anthothela spp., and Acanthogorgia spp. (Gray et al., 2011;
Kellogg et al., 2016; Lawler et al., 2016; Goldsmith et al., 2018;
Weiler et al., 2018; Vohsen et al., 2019; Kellogg and Pratte, 2021).
Moreover, none of these studies comprised specimens living
below 1,600 m depth and, to our knowledge, no studies exist
addressing microbial associates of deep-sea anemones.

Deep-sea corals and anemones are also found in abyssal zones
(i.e., at depths between 3,000 and 6,000 m). One example is
the abyssal sea floor of the Clarion-Clipperton Fracture Zone
(CCZ) in the tropical Northeast (NE) Pacific Ocean. This is
a vast and highly remote area harboring the largest known
global reserve of polymetallic nodules, which are commercially
interesting for the seafloor mining (Ramirez-Llodra et al., 2011).
The CCZ is undergoing intense exploration for potential nodule
extraction with currently 17 exploration contracts issued by
the International Seabed Authority. Surprisingly, high levels
of diversity have been associated to the abyssal seafloor (De
Smet et al., 2017; Wilson, 2017; Hauquier et al., 2018).
Specifically, abyssal epifauna including ophiuroids, sponges,
echinoderms, hydrozoans, corals, and anemones live associated
to these polymetallic deposits (Amon et al., 2016; Christodoulou
et al., 2020). Therefore, mining the nodules would cause an

unprecedented impact on the abyssal communities, making
the conservation of CCZ biodiversity of critical importance
(Weaver et al., 2018). For instance, sediment plumes generated
by these anthropogenic activities may bury benthic organisms
preventing larval settlement and colonization and ultimately
triggering habitat and biodiversity loss (Ramirez-Llodra et al.,
2011; Vanreusel et al., 2016; Stratmann et al., 2018). Particularly,
microbiome disruptions following nodule mining may have
direct impacts on coral’s viability and resilience, generating severe
ecological effects at the community level and thus impacting one
of the most remote and least studied environments on the planet
(Wear et al., 2021).

In order to assess and predict direct and indirect impacts
of polymetallic nodule mining on these benthic communities,
it is crucial to obtain baseline data prior to exploitation.
Accordingly, in this study we identify for the first time the
bacterial microbiome of abyssal corals and anemones from the
CCZ. Specifically, we address bacterial community composition
and evaluate the predicted functional diversity of the microbiome
within the holobiont in organisms found deeper than 4,000 m
depth. These valuable results are crucial to understand responses
and evaluate the resilience capacity of key benthic organisms at
the holobiont level when facing local disturbances. Ultimately,
our results will serve as essential insights to assess and provide
guidance on the impacts of deep-sea mining on these crucial
benthic communities.

MATERIALS AND METHODS

Study Site and Sample Collection
Specimens were collected during the SO268 cruise on board
RV Sonne (18 February – 21 May 2019) in the CCZ, in the
tropical northeast Pacific Ocean, at depths varying from 4,089
to 4,543 m (see Table 1). Coral and anemones samples came
from two contract areas: the central GSR area (G-TEC Sea
Mineral Resources NV, Belgium) and the eastern most BGR
area (Federal Institute for Geosciences and Natural Resources,
Germany). Samples were collected with the manipulator arm
(see Figure 1) of the remotely operated vehicle (ROV) Kiel
6000 (GEOMAR) and placed in separated thermally stable
containers that were sealed at depth to prevent microbial
contamination from other specimens or different water masses
during ascent. Each container was washed, ethanol sterilized,
filled with freshwater, and sealed while the ROV was on deck. The
freshwater evacuated at depth when the container was opened
to receive the coral sample, so that only seawater local to the
coral samples was entrained during collection. Once on deck the
containers were immediately transferred to a cold room (4–7◦C)
for sample processing.

From each colony and individual specimens, two samples
were collected of approximately 5 cm length. One sample was
stored in alcohol 96% for molecular taxonomic identification.
The other sample was stored in RNAlater (Thermo Fisher
Scientific, Waltham, MA, United States) and preserved at
−80◦C until subsequent microbiome DNA extraction. Prior
to DNA extractions, all samples were gently rinsed with
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TABLE 1 | Summary of specimens’ taxonomy, collection sites, and depth.

Specimens Longitude Latitude Depth (m) Contract area 18S rRNA barcoding result Blast similarity (%)

A72 −125.869954 14.111864 4,506 GSR Actinostolidae 99.34

A149 −125.871286 14.110831 4,496 GSR Actinostolidae 99.34

A155 −125.924636 14.033209 4,543 GSR Actinostolidae 99.57

A159 −125.923382 14.033285 4,543 GSR Actinostolidae 99.46

C1 −117.024506 11.929556 4,085 BGR Isididae 99.65

C05 −117.024036 11.928.241 4,089 BGR Isididae 99.31

C10 −117.024051 11.92825 4,089 BGR Isididae 99.03

C11 −117.024079 11.928231 4,089 BGR Isididae 99.09

C100 −117.012954 11.861419 4,130 BGR Isididae 100

C101 −117.012724 11.860827 4,129 BGR Isididae 100

C102 −117.012821 11.861526 4,130 BGR Isididae 100

C94 −117.012815 11.862358 4,128 BGR Calyptrophora sp. 99.46

C95 −117.012883 11.862227 4,129 BGR Calyptrophora sp. 99.78

C96 −117.012865 11.862183 4,129 BGR Calyptrophora sp. 99

C97 −117.012922 11.861812 4,130 BGR Calyptrophora sp. 98

C99 −117.01298 11.861698 4,130 BGR Isididae 98.37

C182 −117.023986 11.928615 4,090 BGR Isididae 99.11

C183 −117.024023 11.928651 4,090 BGR Isididae 100

C184 −117.024013 11.928645 4,090 BGR Calyptrophora sp. 97.24

C185 −117.024023 11.928694 4,090 BGR Isididae 99.89

C186 −117.023969 11.929118 4,089 BGR Isididae 99.87

C187 −117.024139 11.928336 4,090 BGR Isididae 99.10

C247 −117.012868 11.86288 4,127 BGR Isididae 98.49

C249 −117.012864 11.862905 4,127 BGR Isididae 93.20

C250 −117.012774 11.862914 4,127 BGR Isididae 99.23

C251 −117.012805 11.862912 4,127 BGR Calyptrophora sp. 98.51

C252 −117.012719 11.862925 4,127 BGR Calyptrophora sp. 97.49

C253 −117.012635 11.862949 4,127 BGR Isididae 99.28

C254 −117.012624 11.862928 4,127 BGR Isididae 99.77

GSR: central area (G-TEC Sea Mineral Resources NV, Belgium). BGR: eastern most area (Federal Institute for Geosciences and Natural Resources, Germany).

100 ml filtered fresh water in order to remove exogenous or
transient microorganisms loosely associated with the coral or
anemone tissues.

Taxonomic Assignment
Cnidarian specimens were identified based on the sequences
of their 18S rRNA genes. DNA was extracted using the
ISOLATE II Genomic DNA Kit (BIOLINE). Fragments
of the nuclear loci encoding 18S rRNA were amplified.
Approximately 1,600 bp of 18S was amplified using the
primers 18SA (AYCTGGTTGATCCTGCCAGT) and 18SB
(ACCTTGTTACGACTTTTACTTCCTC). PCR mixtures
contained 1 µl of each primer (10 µM), 1 µl template DNA
and 12.5 µl of NZYTaq II 2× Green Master Mix (NYZTECH)
in a mixture of total 25 µl. The PCR amplification profile
consisted of initial denaturation at 95◦C for 5 min, 35 cycles
of denaturation at 94◦C for 45 s, annealing at 55◦C for 45 s,
extension at 72◦C for 2 min, and a final extension at 72◦C for
10 min following (Dahlgren et al., 2016). PCR products were
purified using the ISOLATE II PCR and Gel Kit (BIOLINE) and
sent for sequencing in both directions at Eurofins Genomics
(Germany). Overlapping sequence fragments were merged into

consensus sequences and aligned using BIOEDIT 7.3 (Hall,
1999). DNA sequences obtained were identified using BLAST1

(Altschul et al., 1997).

Microbiome DNA Extraction and 16S
rRNA Gene Sequencing
DNA was extracted using the DNeasy Blood & Tissue Kit
(Qiagen) after macerating each sample in liquid nitrogen.
DNA was quantified using a Nanodrop 2000 UV-Bis
Spectrophotometer (Thermo Fisher Scientific). Reagent-
only controls were included for extraction kit and PCR to
identify reagent contamination (Salter et al., 2014; Pollock J.
et al., 2018). Samples were processed in multiple batches (i.e.,
two batches of 10 samples and 1 batch of 9 samples, which
were processed in different days). The variable V3–V5 region
of the 16S rRNA gene was sequenced using the 341F (5′-
CCTACGGGNGGCWGCAG-3′, Herlemann et al., 2011) / 926R
(5′-GGGTTGCGCTCGTTGCGGG-3′, Sacchi et al., 2002) PCR
primers and Illumina flowcell adapter sequences. Barcoded
amplicons were pooled and sequenced on the Illumina MiSeq

1http://www.ncbi.nlm.nih.gov
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FIGURE 1 | Sample collection and specimens. (A) ROV Kiel 6000 GEOMAR manipulator arm collecting a coral sample attached to a polymetallic nodule. (B,C)
Actinostolidae, (D–F) Isididae, (G,H) Calyptrophora sp. (Primnoide). Note that blue triangles point polymetallic nodules. Photo credits: GEOMAR.

platform (Eurofins Genomics, Germany), implementing
2× 300 bp paired-end read libraries.

Bioinformatics and Statistical Analyses
Amplicon sequence data were demultiplexed, assembled and
analyzed using QIIME2 (v2021.4) (Bolyen et al., 2019) to identify
Amplicon Sequence Variants (ASVs). Denoising, chimera
filtering, and trimming was performed with DADA2 (Callahan
et al., 2016). Since the resulting sequenced amplicons were too
large for an overlap, we finally had to use single-end data (i.e.,
forward sequences) with a final amplicon length of 300 bp for
subsequent analyses. Microbial taxonomy was assigned using a
naive Bayes classifier trained on the SILVA 132 99% database
(silva-132-99-nb-classifer). Singleton ASVs were removed to
minimize false ASVs, as well as ASVs identified as eukaryotes,
mitochondria or chloroplasts. The sequences were deposited
in the NCBI Sequence Read Archive (SRA) under BioProject
number PRJNA784368.

Diversity indices of the samples were assessed using the
QIIME 2 pipeline.2 Alpha diversity indices (total number of
observed ASVs, Shannon diversity and Faith’s phylogenetic
diversity) were assessed to determine the microbial diversity
within each sample (Shannon, 1948; Faith, 1992). Pairwise
comparisons of alpha diversity metrics between taxonomic
groups were made using non-parametric Kruskal–Wallis tests.
Multivariate analyses were conducted to assess differences
in bacterial community compositions between samples
(beta diversity). In order to visualize differences in bacterial

2https://docs.qiime2.org

community composition between samples we performed
principal coordinate analyses (PCoA), applying a square-
root transformation to relative abundances and calculating
Bray–Curtis dissimilarity matrices. Permutational Analyses of
Variance (PERMANOVA; Anderson, 2001) were conducted to
test differences in bacterial community composition between
samples (9,999 permutations). Similarity Percentage (SIMPER)
analyses were used to identify the taxa contributing to the
greatest extent to the observed patterns. Additionally, heatmap
was generated with the R package ggplot2 (Wickham, 2009)
through the RStudio suite to visualize patterns of similarity in
ASVs’ abundances between samples.

Taxonomy-Based Functional Profiling
Putative functional differences inferred from differences in
bacterial community composition among samples were assessed
by using METAGENassist (Arndt et al., 2012). ASVs filtering
and normalization parameters were used as described by
Hadaidi et al. (2017). Euclidean distance measure (single
linkage algorithm) was used to visualize functional profiles (i.e.,
metabolism, oxygen requirements, carbon, and energy source) in
heatmaps mapped to the microbial communities.

RESULTS

Taxonomy of samples was DNA-based identified. Coral
specimens belonged to Primnoidae (Calyptrophora sp.) and
Isididae families (Alcyonacea, Calcaxonia), while anemone
specimens belonged to Actinostolidae family (Actinaria,
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Enthemonae) (Figure 1). Taxonomy results based on 18S
rRNA barcoding are shown in Table 1 and the respective
GenBank accession numbers are comprised between
OM522904 and OM522932.

The final dataset consisted of 29 individual samples.
After filtering, a total of 88 ASVs per sample were obtained
together with a mean of 14,617 reads per sample. Rarefaction
curves for all samples plateaued before 5,000 sequencing
depth, indicating a good representation of bacterial diversity
(Supplementary Figure 1). Significant differences in observed
ASVs and Faith’s phylogenetic diversity were obtained between
Actinostolidae and Primnoidae samples (P = 0.041 and
P = 0.0415, respectively). Additionally, significant differences
in Shannon diversity were obtained between Actinostolidae
and Isididae (P = 0.034) and between Actinostolidae and
Primnoidae (P = 0.027). Beta diversity measurements visualized
by principal coordinate analysis revealed sample clustering
in three well-differentiated groups corresponding to the
three taxonomic families (i.e., Primnoidae, Isididae, and
Actinostolidae; Figure 2A). Interestingly, within Actinostolidae
samples, a clear differentiation in microbiome composition
is observed for A149 from the rest of samples (Figure 2A).
Significant differences in community compositions were
inferred between these three sampling groups (PERMANOVA,
P < 0.05, Permutational Analyses of Multivariate Dispersions,
Table 2). ASVs mainly driving the differentiation between
the three sampling groups were taxonomically assigned to
Spongiibacteraceae (Cellvibrionales, Gammaproteobacteria)
for Isididae corals, Spongiibacteraceae, and Terasakiellaceae
(Rhodospirillales, Alphaproteobacteria) for Primnoidae corals,
and Hyphomicrobiaceae, Parvibaculales, and Pelagibius for
the anemones (Figures 2A, 3 and Supplementary Figure 2).
SIMPER analyses revealed 86.84% of dissimilarity between
anemones and Isididae corals, 99.11% of dissimilarity
between anemones and Primnoidae corals and 93.50%
of dissimilarity between Isididae and Primnoidae corals
(Supplementary Figure 2).

Principal coordinate analysis revealed a gradient of variation
in the microbial community in Isididae and Primnoidae corals,
being able to identify different potential groups within each coral
family (Figures 2B, 3). Different ASVs mainly corresponding to
Spongiibacteraceae and Terasakiellaceae drove the differentiation
between the group of samples from Primnoidae (Calyptrophora
sp.) and Isididae corals (Figures 2B, 3 and Supplementary
Figure 2). Additionally, some Isididae samples showed moderate
abundant ASVs belonging to Mycoplasma, Brevundimonas, and
Acinetobacter bacteria (Figure 3). No significant differences
in bacterial community compositions were obtained between
the two defined sampling areas, according to the sampling
coordinates (PERMANOVA, P = 0.102).

In addition to differences in bacterial community
composition, we also observed differences in taxonomy-based
functional profiles mainly between Isididae and Primnoidae
coral families. Specifically, some Isididae individuals showed
enriched bacterial taxa related to metabolic categories such as
“xylan degrader,” “sulfate reducer,” “nitrite reducer,” “sulfur and
ammonia oxidizer,” “dehalogenation,” “sulfide oxidizer” and

“nitrogen fixation,” “chlorophenol degrading” and “aromatic
hydrocarbons” (Figure 4).

DISCUSSION

We report for the first time the microbiome structure of
polymetallic nodule-associated gorgonian corals and anemones
in the abyssal CCZ (>4,000 m depth). Our results revealed
evident bacterial community differences between corals and
anemones sharing similar habitats. Additionally, differences in
microbial composition between specimens from Primnoidae and
Isididae coral families were driven mainly by different ASVs
belonging to Spongiibacteraceae and Terasakiellaceae.

Bacterial microbiomes were significantly different between
anemones and gorgonian corals. Although the sampled animals
shared similar habitat conditions (i.e., depth and benthic
communities), bacterial compositions totally differed depending
on the type of the cnidarian host. This is in line with the
host-microbe coevolution concept between host linages and
their symbiont microbial communities (Pollock F. J. et al.,
2018; O’Brien et al., 2019). Since microbiomes are vital to
maintain homeostasis, the holobiont can have selected beneficial
symbionts to establish specific and strong relationships over
time (Bordenstein and Theis, 2015), potentially explaining
the differentiation between microbiomes hosted by corals
and anemones. Additionally, polyps size differentiation and
thus, diet variation, may also contribute to differences in
bacterial microbiomes between different benthic organisms
(Galand et al., 2020).

Microbiome of Actinostolidae anemones were composed
mainly of bacteria belonging to Parvibaculales, Pelagibius
(Rhodovibrionales, Kiloniellaceae) and Hyphomicrobiaceae
(Rhizobiales). The order Parvibaculales has been recently
found as dominant microbiome members of coral reef sponges
(Baquiran et al., 2020; Robbins et al., 2021) and have been
associated to temporal dynamics (seasonal changes) (Mena et al.,
2020; Deutschmann et al., 2021). Additionally, these bacteria
have been positively correlated with ammonia concentrations
in the water column (Muck et al., 2019). Members of Pelagibius
genera are strict aerobic bacteria that have been found in coastal
waters (Choi et al., 2009) but also belong to the core microbiome
of the temperate coral Oculina patagonica (Rubio-Portillo
et al., 2016). Members of Pelagibius and Hyphomicrobiaceae
were isolated from lobster lesions, suggesting their role as
opportunistic colonizers (Quinn et al., 2012). This taxon is
involved in nutrient cycling including denitrification and has
been found among the most abundant bacteria in polymetallic
nodules, being potential metal-cycling bacteria (Cleary et al.,
2015; Molari et al., 2020). Most of Hyphomicrobiaceae bacteria
are aerobic chemoheterotrophs and oligocarbophilic, thriving
only in the presence of low concentrations of suitable carbon
sources (Oren and Xu, 2014). These findings suggest that
these deep-sea cnidarians establish symbiotic associations with
chemosynthetic bacteria as an alternative nutritional strategy
from conventional sea anemones (i.e., strict suspension feeders
or prey capture animals).
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FIGURE 2 | Principal coordinate analyses plots based on a Bray–Curtis dissimilarity matrix of bacterial community compositions in anemones and coral samples.
(A) Community compositions from samples belonging to Primnoidae (Calyptrophora sp.), Isididae, and Actinostolidae families and (B) from coral samples belonging
to Isididae and Primnoidae (Calyptrophora sp.). Bray–Curtis dissimilarity metrics on the square-root transformed relative abundances were used to compare
samples. Principal coordinate analysis was used for visualization purposes, and the first two components (explaining over 50% of the variation) are displayed.
Vectors correspond to taxa mainly conducting sample differentiation.

TABLE 2 | PERMANOVA analyses.

PERMANOVA pair-wise tests

Groups t P (perm)

A, C2 3.84 0.0002*

A, C1 3.26 0.0032*

C1, C2 5.34 0.0001*

Anemones (A), Calyptrophora sp. (Primnoidae) (C1), and Isididae (C2).
*P < 0.05.

Isididae and Primnoidae gorgonian corals showed evident
differences in their microbial communities. Interestingly,
these differences were mainly driven by ASVs from
the same taxonomic classification: Terasakiellaceae and
Spongiibacteraceae bacteria. Different Terasakiellaceae ASVs
were associated to Primnoidae corals. These bacterial taxa have
been found associated to marine sponges, scleractinian corals
and to the deep-sea gorgonian Paragorgia arborea (Weiler et al.,
2018; Sacristán-Soriano et al., 2019; Parker et al., 2020). It is
suggested that bacteria belonging to Terasakiellaceae family are
involved in nitrogen cycling, especially in habitats where food
limitation is noticeable, as the deep-sea (Weiler et al., 2018).
Interestingly, the most abundant bacteria found in Isididae
and Primnoidae corals belonged to Spongiibacteraceae family.
However, these two coral families did not share any ASVs from
this bacteria family. Spongiibacteraceae is typically found in
coral holobionts as have been associated to scleractinian corals
including Acropora and Coelastrea species and the deep-water
coral D. pertusum (Gardner et al., 2019; Jensen et al., 2019).
Members of Spongiibacteraceae are known as hydrocarbons
and steroid-degrading bacteria for harvesting additional

energy (Holert et al., 2018; Dhal et al., 2020). Moreover, some
Isididae samples showed four moderately abundant ASVs from
Mycoplasma. This bacterial group has been found associated
to Isididae corals from Alaska (Penn et al., 2006). Additionally,
Mycoplasma were found associated to deep-sea corals and
gorgonians including D. pertusum, C. koolsae and P. superba,
Pacifigorgia cairnsi and P. placomus (Neulinger et al., 2009;
Gray et al., 2011; Kellogg et al., 2016; Quintanilla et al., 2018).
Although Mycoplasma have been considered endosymbionts
in corals and in some cnidarian, their specific role within
the coral holobiont remains unclear (Neulinger et al., 2009;
Weiland-Bräuer et al., 2015).

Remarkably, none of the coral samples include
Endozoicomonas in their core microbiomes. This pattern is
concordant with microbiomes of the deep-sea coral D. pertusum
and the deep-sea gorgonians P. placomus and Anthothela
grandiflora (van Bleijswijk et al., 2015; Kellogg et al., 2016;
Lawler et al., 2016). However, microbiomes of deep-sea
Acanthogorgia spp. and D. pertusum have been recently reported
to be dominated by this bacterial group (Kellogg and Pratte,
2021). Endozoicomonas is a dominant genus in temperate and
tropical corals that play important roles in coral’s health by
providing antimicrobial activity, and being involved in multiple
metabolic functions (Ding et al., 2016; Neave et al., 2017).
Although coral host selecting for or against Endozoicomonas
may be contributing to explain this pattern (Meistertzheim
et al., 2016; Galand et al., 2018; Chapron et al., 2020), it is
also probable that specific environment conditions such as
depth, pressure, temperature and availability of food resources
relate with the absence of Endozoicomonas members in our
Isididae and Primnoidae corals. This raises an interesting
question as whether highly abundant Spongiibacteraceae
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FIGURE 3 | Heatmap of the relative abundances of ASVs taxa accounting for the cumulative 80% of total abundance in anemones (A) and coral (C) samples.

members present in our Isididae and Primnoidae samples
are playing equivalent roles as Endozoicomonas in tropical
and temperate shallow gorgonians in order to maintain
holobiont homeostasis.

Some Isididae samples showed bacterial taxa with the potential
to fix nitrogen and to use organic carbon resources like xylan.
Since deep-sea corals depend on heterotrophy, association
with bacteria that can fix nutrients is crucial to cover the
holobiont demands (Middelburg et al., 2015; Röthig et al.,
2017). Specifically, sulfate and nitrite reducing bacteria may
indicate the capacity of some microbiome components to use
other elements as distinct functional adaptations in challenging
environments (Lawler et al., 2016; Röthig et al., 2017). Then,
evidence of specific metabolic pathways such as those belonging
to nitrogen cycling suggest nutrition supplement in cold-water

corals (Middelburg et al., 2015). Moreover, the presence of
sulfur-oxidizing bacteria in Isididae samples may correspond to
the availability of nitrogen compounds derived from organic
matter decomposition (Hensen et al., 2006). Interestingly, the
most abundant ASVs found in our samples, Spongiibacteraceae,
are considered marine hydrocarbon-degrading bacteria with
the potential to harvest additional energy (Dhal et al., 2020).
Therefore, the predicted functional profiling found in our results
suggest that deep-sea corals harbor bacterial communities that
allow obtaining and using additional energy due to the scarcity
of nutrients at such depths.

Finally, it is worthy to point out that differences in microbiome
compositions were also observed within anemones and within
each of the two coral families. Differences in host-associated
microbiomes among cnidarians from low or same taxonomic

Frontiers in Microbiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 828469

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-828469 March 25, 2022 Time: 16:14 # 8

Quintanilla et al. Microbiome of Abyssal Cnidarians

FIGURE 4 | Taxonomy-based functional profiling of bacterial communities in coral samples from Isididae and Primnoidae families. Shifts in potential functional
differences are represented by a relative abundance scale showing the enrichment (red color) and depletion (blue color) in different metabolic profiles mapped to the
corresponding taxonomic information. Hierarchical clustering of samples and functions was performed by a single linkage algorithm using Euclidean distance
measurements.

levels may be driven by host-specificity, host health status and/or
environmental settings (van de Water et al., 2016, 2017; Brown
et al., 2017; Pollock F. J. et al., 2018; Quintanilla et al., 2018).
Undoubtedly, higher taxonomic resolution of samples would
help to interpret these results.

Our study reveals the bacterial microbiome composition of
gorgonian corals and anemones from the abyssal sea floor
of the CCZ in the tropical NE Pacific Ocean. The study
recognizes specific microbiome compositions according to the
host taxonomy, despite sharing similar habitats. Given the pivotal
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role that microbiome plays in holobiont health status, future
studies should focus on elucidating direct and indirect impacts
of deep-sea nodule mining on microbiome disruptions and
resilience capacity of these key benthic communities.
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