
fmicb-13-829378 February 2, 2022 Time: 10:0 # 1

METHODS
published: 03 February 2022

doi: 10.3389/fmicb.2022.829378

Edited by:
Yasir Muhammad,

King Abdulaziz University,
Saudi Arabia

Reviewed by:
Rajesh Pandey,

CSIR-Institute of Genomics
and Integrative Biology (CSIR-IGIB),

India
Palok Aich,

National Institute of Science
Education and Research (NISER),

India
Francesco Asnicar,

University of Trento, Italy

*Correspondence:
Juan Jovel

jovel@ualberta.ca
Andrew L. Mason

am16@ualberta.ca

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 05 December 2021
Accepted: 11 January 2022

Published: 03 February 2022

Citation:
Jovel J, Nimaga A, Jordan T,

O’Keefe S, Patterson J, Thiesen A,
Hotte N, Bording-Jorgensen M,

Subedi S, Hamilton J, Carpenter EJ,
Lauga B, Elahi S, Madsen KL,

Wong GK-S and Mason AL (2022)
Metagenomics Versus

Metatranscriptomics of the Murine
Gut Microbiome for Assessing

Microbial Metabolism During
Inflammation.

Front. Microbiol. 13:829378.
doi: 10.3389/fmicb.2022.829378

Metagenomics Versus
Metatranscriptomics of the Murine
Gut Microbiome for Assessing
Microbial Metabolism During
Inflammation
Juan Jovel1,2* , Aissata Nimaga3, Tracy Jordan1, Sandra O’Keefe1, Jordan Patterson1,
Aducio Thiesen4, Naomi Hotte1, Michael Bording-Jorgensen5, Sudip Subedi2,
Jessica Hamilton2, Eric J. Carpenter6, Béatrice Lauga3, Shokrollah Elahi7,
Karen L. Madsen1, Gane Ka-Shu Wong1,6,8 and Andrew L. Mason1*

1 Department of Medicine, University of Alberta, Edmonton, AB, Canada, 2 Office of Research, Faculty of Medicine
and Dentistry, University of Alberta, Edmonton, AB, Canada, 3 Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS,
IPREM, Pau, France, 4 Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada,
5 Department of Physiology, University of Alberta, Edmonton, AB, Canada, 6 Department of Biological Sciences, University
of Alberta, Edmonton, AB, Canada, 7 School of Dentistry, University of Alberta, Edmonton, AB, Canada, 8 BGI-Shenzhen,
Beishan Industrial Zone, Shenzhen, China

Shotgun metagenomics studies have improved our understanding of microbial
population dynamics and have revealed significant contributions of microbes to gut
homeostasis. They also allow in silico inference of the metagenome. While they link the
microbiome with metabolic abnormalities associated with disease phenotypes, they do
not capture microbial gene expression patterns that occur in response to the multitude
of stimuli that constantly ambush the gut environment. Metatranscriptomics closes
that gap, but its implementation is more expensive and tedious. We assessed the
metabolic perturbations associated with gut inflammation using shotgun metagenomics
and metatranscriptomics. Shotgun metagenomics detected changes in abundance of
bacterial taxa known to be SCFA producers, which favors gut homeostasis. Bacteria
in the phylum Firmicutes were found at decreased abundance, while those in phyla
Bacteroidetes and Proteobacteria were found at increased abundance. Surprisingly,
inferring the coding capacity of the microbiome from shotgun metagenomics data did
not result in any statistically significant difference, suggesting functional redundancy in
the microbiome or poor resolution of shotgun metagenomics data to profile bacterial
pathways, especially when sequencing is not very deep. Obviously, the ability of
metatranscriptomics libraries to detect transcripts expressed at basal (or simply low)
levels is also dependent on sequencing depth. Nevertheless, metatranscriptomics
informed about contrasting roles of bacteria during inflammation. Functions involved
in nutrient transport, immune suppression and regulation of tissue damage were
dramatically upregulated, perhaps contributed by homeostasis-promoting bacteria.
Functions ostensibly increasing bacteria pathogenesis were also found upregulated,
perhaps as a consequence of increased abundance of Proteobacteria. Bacterial protein
synthesis appeared downregulated. In summary, shotgun metagenomics was useful to
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profile bacterial population composition and taxa relative abundance, but did not inform
about differential gene content associated with inflammation. Metatranscriptomics was
more robust for capturing bacterial metabolism in real time. Although both approaches
are complementary, it is often not possible to apply them in parallel. We hope our data
will help researchers to decide which approach is more appropriate for the study of
different aspects of the microbiome.

Keywords: microbiome, gut inflammation, shotgun metagenomics, metatranscriptomics, bacterial metabolic
pathways

INTRODUCTION

The human microbiome, which includes bacteria, archaea,
eukaryotic viruses, virophages, and fungi, is tightly linked
to host health. Quantitative and qualitative fluctuations in
the composition of microbial communities correlate with
disease. Hence, the microbiome is a potential source of novel
therapeutics (Jovel et al., 2018a). Notwithstanding its importance,
until recently, little was known about the microbiome, including
taxonomy, assemblage into communities and metabolic
contributions to host physiology (Davenport et al., 2017).
Microbiome studies have been boosted by high-throughput
parallel sequencing technologies and associated bioinformatics
approaches. Metagenomic studies aim at cataloging genes and
other sequences that are contained in microorganisms’ genomes
and therefore have the potential to infer the microbiome’s
functional capability (Nayfach et al., 2015); however, they
may be inadequate to portray the spatio-temporal patterns
of gene expression that occur in response to environmental
stimuli like xenobiotics, dietary changes, or pathogens invasion.
Studying the taxonomic composition of microbial communities
provides insights into their diversity and richness, while recent
metatranscriptomics and metabolomic studies have revealed that
a functional redundancy is present among related bacterial taxa
and that such redundancy is an important component of host’s
fitness since function can be preserved despite perturbations that
alter bacterial populations’ structure (Sharpton, 2018). Therefore,
pure metagenomics surveys associated with phenotypes have
the intrinsic risk of erroneously associating microorganisms
with protective or detrimental roles in diseases. The ultimate
goal is to make causal inferences regarding the observed
phenotype based on measurements of microbes’ activity and/or
population dynamics.

To evaluate the suitability of shotgun metagenomics as
well as metatranscriptomics for assessing changes in metabolic
pathways of the gut microbiome, we used a mouse dextran
sodium sulfate (DSS) acute inflammation model. Mouse
models have been instrumental for the study of the gut
microbiome and have provided valuable insights into host-
microbiome interactions, many of which may be extensible to
humans (Hugenholtz and de Vos, 2018). Shotgun metagenomics
sequences are usually compared against reference databases
through alignments to clade-specific marker genes (Segata
et al., 2012), pseudo-alignments to full or partial genomes
(Wood and Salzberg, 2014) and bona fide alignments to full

or partial genomes (Huson et al., 2007). It is also possible
to make functional inferences from shotgun libraries using
approaches like HUMAnN, which align in silico translated
metagenomics sequences to a protein database and then assign
genes to pathways using MinPath and finally calculate pathways’
coverage (Abubucker et al., 2012; Franzosa et al., 2018).
Metatranscriptomics libraries are derived directly from cDNAs
of mRNA transcripts and hence represent a snapshot of gene
expression. They are aligned to protein databases using sensitive
but computationally expensive alignments (Abubucker et al.,
2012; Nayfach et al., 2015) or more sophisticated methods, like
those incorporating hidden Markov models (Remmert et al.,
2011). In both cases, the extent and accuracy of sequence
classification is dependent on completeness and quality of the
reference database; this implies that significant improvements
in sequence classification should be expected as databases
exponentially increase in size, and as bioinformatics tools are
improved, which also allows automated curation of databases.

Gut inflammation is a relatively well-characterized phenotype,
where many functional alterations of the microbiome are known.
One of the main contributions of the gut microbiome to gut
physiology is the anaerobic fermentation that results in the
production of short-chain fatty acids (SCFA) including acetate
(C2), propionate (C3), and butyrate (C4). They are involved in
many essential processes like energy supply to intestinal epithelial
cells (Vinolo et al., 2011), signaling through activation of GPCR
receptors (Brown et al., 2003), regulation of many cytokines
(TNFα-, IL-2, IL-6, and IL-10), and the migration of leukocytes
to sites of inflammation to destroy invading pathogens (Schirmer
et al., 2016). The microbiome is also a source of immune
modulators including elicitors of Toll-like receptors such as
lipopolysaccharides and flagellin (Vijay-Kumar et al., 2010) and
ATP, which induces the differentiation of CD4 + Th17 immune
cells (Atarashi et al., 2008). Thus, alteration in the proportions
of microorganisms and their gene products in the gut affects the
patterns of production and release of microbial metabolites in the
lumen often resulting in disease (Vernia et al., 1988; Huda-Faujan
et al., 2010), hence the importance of assessing microbiome
functional activity.

Although inflammation is a well-known phenotype and
so are the methods used in this paper, our interest was
specifically in comparing the ability of shotgun metagenomics
and metatranscriptomics to assess functional changes in the
microbiome. We predicted proteins encoded by the metagenome
detected in shotgun libraries, and directly measured mRNA
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abundance in the gut microbiome by metatranscriptomics.
Although each of those approaches have the ability to detect
bacterial proteins, we hypothesized that shotgun metagenomics
does not have the sensitivity to detect statistically significant
changes in protein abundance occurring in response to
inflammation. Our hypothesis was proven to be correct. The
goal of this study was to illustrate, using the mouse dextran
sodium sulfate acute inflammation model, the advantages
and limitations of each of the approaches to make rational
inferences about the phenotype under study, all in the spirit of
assisting metagenomics basic and clinical researchers during their
decision-making process.

RESULTS

Assessment of Gut Inflammation
We used a dextran sodium sulfate (DSS) mice inflammation
model (Figure 1A) to profile metabolic pathways by shotgun
metagenomics and metatranscriptomics. None of the DSS-
treated animals significantly lost weight during the course of our
experiment (Figures 1B,C). Histological analyses demonstrated
that inflammation had been effectively induced in the colon of
animals treated with DSS (Figure 1D); for instance, the structure
of the villi was distorted and higher infiltration of inflammatory
cells into the villi was observed in DSS-treated animals. The colon
weight/length ratio was significantly higher in DSS-treated than
in control animals (Figure 1E). However, a considerable cage
effect was observed, suggesting that inflammation in animals of
cage A was more severe than in the other cages (Figure 1F).
A pathology histologic score indicative of inflammation was
also significantly elevated in DSS-treated animals (Figure 1G).
Screening of six pro-inflammatory cytokines also showed that
inflammation took place in DSS-treated animals (Figure 1H).

On day 7, we also conducted RNA-Seq on distal colon tissue
of five animals treated with DSS and five controls (Figure 2).
Description of all libraries generated in this study is presented in
Supplementary Table 1. In total, we found expression changes
in 537 transcripts (198 upregulated and 339 downregulated)
(Figures 2A,B and Supplementary Table 2), many of those
transcripts have been found implicated in connective tissue
disorder, inflammatory response, cancer and organismal injury
and abnormalities (Figure 2C), among others (Figure 2D). The
most deregulated disease network was “Cellular compromise
organismal injury and abnormalities,” which also includes genes
involved in gastrointestinal disease (Figure 2E). All diseases and
functions deregulated are shown in Supplementary Table 3.
Some typical pro-inflammatory genes were found upregulated
including KC-GRO (CXCL1), TNFα, IL-1β, and IL-1α (58-, 31-,
436-, and 121-fold, respectively; see Supplementary Table 2).

Shotgun Metagenomics Revealed
Perturbation of the Microbiome but Not
of Microbial Functions
Principal coordinate analysis (PCoA) on Bray-Curtis distances
of taxa abundance per sample showed that the microbiome

of DSS-treated, but not of control, animals had changed
from day 0 to day 7 (PERMANOVA p-value < 0.02;
Figures 3A,B). All bacterial taxa detected with abundance
equal or greater to 10 reads per sample (on average) are
described in Supplementary Table 4. To statistically analyze
differences in bacterial taxa abundance between groups (control
vs. DSS-treated), we modeled observed abundance using a
negative binomial distribution after scaling the data to account
for sampling depth (Lin and Peddada, 2020). In differential
accumulation analysis, with DESeq2, comparing the baseline and
end-of-study time points and using corrected p-values < 0.05
as a significance threshold, only two taxa were found at
different abundance (corrected p < 0.05). Namely, abundance
of Prevotella scopos and the family Staphylococcaceae were
found upregulated and downregulated, respectively (Figure 3C
and Supplementary Table 5). We therefore assumed that,
somehow, changes over time in those bacteria occur due to
stimuli other than inflammation. In DSS-treated animals, more
dramatic changes were observed. Twenty-seven taxa increased
their abundance including bacteria in the Halomonadaceae and
Alcanivoracaceae families, as well as species like Bacteriodes
caccae and Prevotella denticola (Figure 3D and Supplementary
Table 6). Thirty taxa decreased their abundance over the course
of the experiment (Figure 3D and Supplementary Table 6).
This included many bacteria in the families Lachnospiraceae,
Clostridiaceae, and Peptococcaceae (all in the Firmicutes phylum).
In summary, a predominant decrease in Firmicutes and a
predominant increase of Proteobacteria and Bacteroidetes was
observed in DSS-treated animals.

Shotgun metagenomic sequences were subjected to in silico
bacterial pathways profiling using the software HUMAnN2
(Abubucker et al., 2012). Surprisingly, PCoA on Bray-Curtis
distances among KEGG orthology groups’ abundance per
sample did not show significant differences between day 0
and day 7 neither in control nor in DSS-treated animals
(Figures 3E,F; PERMANOVA p-value > 0.05). In differential
abundance analysis, neither the control nor the DSS-treated
animals showed any differentially accumulated KEGG orthology
group (Figures 3G,H). Thus, despite considerable differences
in taxa abundance, no differences could be detected in
KEGG orthology groups predicted from each (control or DSS-
treated) metagenome.

Because inflammation was more severe in cage A, we repeated
this analysis for only animals in such a cage and obtained similar
results (data not shown). Thus, not even for the most severely
inflamed animals we detected differences in predicted gene
content. We also decreased the level of astringency, considering
adjusted p-values < 0.1 to be significant, but no KO group
showed statistically significant differences between control and
DSS-treated mice.

Metatranscriptomics Revealed
Dysregulation of Gene Families Related
to Gut Homeostasis
In PCoA and PERMANOVA analyses, neither control
(Figure 4A) nor DSS-treated (Figure 4B) animals showed
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FIGURE 1 | Inflammation experimental design and assessment of inflammation. (A) 129S1/SvlmJ mice (Jackson Laboratories) were acclimatized in our mice facility
for 2 weeks and at 12 weeks of age were divided into two halves (n = 15 each). All animals were fed with a conventional Shaw diet for the whole period of the
experiment. One-half was subjected to a solution of 2.5% of DSS in drinking water, while control animals received only water. Stools were collected daily, and a
Hemoccult test was conducted until day 7, when animals were euthanized, and blood and colon tissue were collected. Metagenomics and metatranscriptomics
libraries were constructed from stools collected at day 0 and day 7 and sequenced using Illumina technology. (B,C) Mice weight did not significantly change during
the course of the study, suggesting that the physiological stress of animals was not extreme. (D) Colon tissue stained with H&E and photographed under light
microscopy at 40X. (E) Statistical comparison of the colon weight/length ratio in control and DSS-treated animals at end of study (day 7). (F) Variability between
cages. (G) Statistical comparison of a histologic score in control and DSS-treated animals at end of study (day 7). (H) Statistical comparison of abundance of a
series of pro-inflammatory cytokines, determined in a Meso Scale Discovery assay, in control and DSS-treated animals at end of study (day 7).

a significant difference in accumulation of KEGG orthology
groups between baseline and end-of-study timepoints (p > 0.05).
In the DSS-treated samples PCoA plot, some points deviated
from the general pattern. A closer inspection revealed that
such samples belonged to cage A, in which inflammation
was apparently induced more severely (Figure 1F). PCoA and
PERMANOVA analyses showed that, for cage A alone, significant
differences in the gene expression profile of DSS-treated animals
were detectable when comparing baseline and end-of-study
timepoints (Figure 4C; PERMANOVA p < 0.05). Analogous

comparisons in other cages did not reveal any statistically
significant difference (not shown).

HUMAnN2 results were subjected to differential abundance
analysis for only samples in cage A as above, but using as
significance threshold of 0.1 (corrected p-values < 0.1). In
control animals, the only KEGG orthology group upregulated
was KO1835, which corresponds to a phosphoglucomutase
(Figure 4D and Supplementary Table 7). No KEGG orthology
group was found downregulated in control animals (Figure 4D).
Conversely, in DSS-treated animals, eight KEGG orthology
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FIGURE 2 | Differential expression analysis results for RNAseq data comparing distal colon of five control and five DSS-treated animals. (A) Principal component
analysis (PCA) on Euclidean distances calculated on counts data subjected to a regularized logarithmic transformation. (B) Volcano plot showing deregulated
transcripts (p < 0.01; fold-change > 2). Red dots are significantly upregulated transcripts, while green dots are significantly downregulated transcripts. (C) Diseases
identified by ingenuity pathways analysis (IPA). Blue bars represent the percentage of differentially expressed transcripts related to a disease, while pink bars
represent the significance (expressed in –log10 of the p-value). (D) Canonical IPA pathways deregulated in inflamed tissue. (E) The most deregulated metabolic
network identified by IPA based on deregulated transcripts: Cellular compromise, organismal injury, and abnormalities. Genes shown in green were found
downregulated while genes shown in red were found up regulated. Genes involved in gastrointestinal disease are highlighted in pink.
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FIGURE 3 | Assessment of the gut metagenome by shotgun metagenomics. (A) Principal coordinates analysis (PCoA) using Bray-Curtis distances on
Kraken2-derived taxa abundance from control or (B) DSS-treated animals between day 0 and day 7. PERMANOVA p-values are included. MA plots depicting
taxonomic differential accumulation analysis results for control (C) or DSS-treated (D) animals. Principal coordinates analysis (PCoA) using Bray-Curtis distances on
HUMAnN2 KEGG orthology groups abundance from control (E) or DSS-treated (F) animals between day 0 and day 7. PERMANOVA p-values are included. MA plots
depicting KEGG orthology differential abundance analysis results for control (G) or DSS-treated (H) animals.

groups were found dramatically upregulated (fold-change
ranging from 3 to 50) and five KEGG orthology groups
were found downregulated (Figure 4E and Supplementary
Table 8). The five most upregulated KEGG orthology groups

in the gut of DSS-treated animals were K03978 (GTP-binding
protein; fold change = 50); K11050 (Multidrug/hemolysin
transport system ATP-binding protein; fold change = 43),
K01424 (L-asparaginase; fold change = 42); K03101, which
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FIGURE 4 | Assessment of the gut microbiome transcripts abundance by metatranscriptomics. Principal coordinates analysis (PCoA) using Bray-Curtis distances on
HUMAnN2-derived gene families abundance derived from control or DSS-treated animals between day 0 and day 7. PERMANOVA p-values are included; (A) control
animals including all cages, (B) DSS-treated animals including all cages, (C) DSS-treated animals for only cage A, where inflammation was strongly recorded. MA
plots depicting KEGG orthology differential abundance analysis results for control (D) or DSS-treated (E) animals. (F–M) Representative boxplots of KEGG orthology
groups differentially accumulated in DSS-treated animals, at the beginning (rose boxes) or end (red boxes) of the study. KEGG orthology groups abundances were
subjected to a regularized logarithmic transformation before boxplots construction.

represents a bacterial signal peptidase II (fold change = 39)
and K01142 (exodeoxyribonuclease III; fold change = 10). The
five downregulated KEGG orthology groups included two PTS
system, lactose-specific components (IIC and IIB; K02788 and
K02787; fold change= 29), two small subunit ribosomal proteins
(S17 and S10; K02961 and K02946; fold change = 19 and
6, respectively) and the large subunit ribosomal protein L3
(K02906; fold change = 4). In Figures 4F–M the abundance of
selected proteins (KO groups) are depicted. Here, it is noticeable
that upregulated proteins showed a more consistent pattern

among animals in each group, and the same was more variable
for downregulated proteins. In summary, metatranscriptomics
libraries proved to be more informative than metagenomics ones
at profiling bacterial metabolic pathways, as discussed below.

Costs of Implementation
In Table 1, we present a summary of costs associated with the
production and sequencing of each type of libraries discussed
in this article. Monetary costs and labor time were substantially
lower for shotgun metagenomics than for metatranscriptomics
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TABLE 1 | Comparative analysis of costs for implementation of shotgun
metagenomics and metatranscriptomics.

Description Cost (US dollars)

Shotgun metagenomics

DNA extraction (FastDNA Fungal/Bacterial DNA kit, MP
Biomedicals; 96 Rx)

$ 10.54

Consumables (tubes, tips, gloves, etc.) $ 5.00

Nextera XT reagents (96 Rx) $ 45.61

Illumina indexing oligos $ 3.00

Agencourt AMPure XP beads (Beckman Coulter) $ 2.00

QC reagents (Bioanalyzer + Qubit) $ 8.00

Sequencing at 1 M reads (150 bp paired-end) $ 15.00

Hands-on time 0.3 h

Total cost per sample $ 86.15

Metatranscriptomics

RNA extraction (FastRNA spin kit, MP Biomedicals; 96 Rx) $ 12.60

Consumables (tubes, tips, gloves, etc.) $ 5.00

ScriptSeq Complete Kit (Epicenter; 48 Rx) $ 179.47

Agencourt AMPure XP beads (Beckman Coulter) $ 2.00

QC reagents (Bioanalyzer + Qubit) $ 8.00

Sequencing at 3 M reads (150 bp paired-end) $ 30.00

Hands-on time 1.5 h

Total cost per sample $ 237.07

Costs include construction of libraries and sequencing, but not bioinformatics.

libraries. Costs for bioinformatics are not included but are similar
for both types of libraries, since they were analyzed with similar
pipelines, and are dependent on sequencing depth.

DISCUSSION

A balanced microbiota is associated with gut homeostasis;
therefore, detecting imbalances of the microbiome at the
taxonomical and/or functional levels provides insights into
disease phenotypes. Taxonomic profiling through metagenomics
is informative insofar as bibliographic information exists to
correlate fluctuations in taxa abundance with reported functional
roles of such taxa. Metagenomics data also allows computational
inference of the coding capacity of the microbiome thus enabling
statistical comparisons of the metagenome between classes
under study. However, the whole bacterial gene complement
is not constitutively expressed, instead, genes are turned on
and off in response to a complex array of gut environmental
clues. Metatranscriptomics can detect those selective patterns
of gene expression but its implementation is more expensive
and troublesome.

A major dilemma of the gut immune system is to be
ready to react against pathogens whilst being tolerogenic to
the presence of a multitude of commensal microorganisms’
and food antigens. Rapidly accumulating evidence supports
the notion that the gut microbiota is intimately linked to
intestinal inflammation or to the absence thereof. Consequently,
colitis does not fully develop in germ-free mice (Macdonald
and Monteleone, 2005; Gkouskou et al., 2014). One possibility
is that CD4 + T cells reactive to enteric bacterial antigens

mediate inflammatory processes (Macdonald and Monteleone,
2005). Although no conclusive evidence exists yet, some pro-
inflammatory and anti-inflammatory roles have been attributed
to specific bacteria (Lee and Kim, 2017). For instance, a marked
decrease in abundance in bacteria of the phylum Firmicutes
and an increase in Enterobacteriaceae have been reported in
inflammatory bowel disease, and transcriptional activity mirrors
such relative abundance (Rehman et al., 2010; Morgan et al.,
2012). Butyrate-producing bacteria like Roseburia hominis and
Faecalibacterium prausnitzii are thought to have a protective
role against inflammation and their abundance is reduced in
ulcerative colitis patients (Machiels et al., 2014; Abu-Ali et al.,
2018; Schirmer et al., 2018). In general, decreased carbohydrate
metabolism and amino acids biosynthesis with concurrent
increase in nutrient transport and uptake have been observed
during inflammation (Morgan et al., 2012; Franzosa et al., 2014).

We analyzed the feasibility of using shotgun metagenomics
as a surrogate of metatranscriptomics to assess the metabolic
changes of the microbiome during induction and/or maintenance
of disease phenotypes (i.e., inflammation). Metagenomics is
cheaper than metatranscriptomics and is often used as a
proxy to estimate bacterial protein abundance in the gut. In
the shotgun metagenomics survey of stools from DSS-treated
animals, significant changes in bacteria relative abundance, from
days 0 to 7, were observed (Supplementary Table 6). The most
significant changes revealed a marked decrease of Firmicutes
and a concomitant increase in Bacteroidetes and Proteobacteria.
Considering findings reported in the literature, the bacterial taxa
with decreased abundance in this group are likely related with
colonocyte homeostasis, and therefore their depletion will favor
progression of inflammation in the gut. For instance, a series
of Clostridia were found at reduced relative abundance, which
have been implicated in gut homeostasis (Lopetuso et al., 2013).
More specific findings included butyrate-producing bacteria like
the species Intestinomonas butyriciproducens (Kläring et al.,
2013), the acetate-converting butyrate producers Eubacterium
rectale (Rivière et al., 2015), Christensenella massiliensis, and a
series of bacteria in the family Lachnospiraceae. Bacteria in the
family Christensenellaceae have been associated with gut health,
and their reduction has been reported associated with negative
effects in obesity and inflammatory bowel disease (Waters and
Ley, 2019), while bacteria in the family Lachnospiraceae are
among the main producers of SCFA (Deleu et al., 2021). Thus,
interpreting bacterial abundance changes in light of published
reports allows inference of the role of specific bacterial taxa
during inflammation. Interestingly, when the shotgun libraries
were used to infer the metagenome, with HUMAnN2, differences
in the KEGG orthology groups’ abundance were not statistically
significant (Figures 3G,H). These results agree with a reported
functional redundancy in the metagenome of the gut microbiome
(Franzosa et al., 2014). How can it be that evident changes in
taxonomy profiles did not result in differences in abundance
of predicted functions? One possibility is that, as significant
changes in specific taxa occur, this is compensated by opposite
changes in other taxa with redundant genetic complements.
Also, as shotgun metagenomics libraries include reads along
the whole bacterial genomes, the proportion of reads per
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library mapping to protein coding sequences is smaller than in
metatranscriptomics libraries for equal amounts of sequencing
data; this should lower the sensitivity of shotgun metagenomics
libraries when assessing gene’s abundance through comparison
against reference sequences. We also explored possible changes
in microbial diversity between the baseline and the end of
the experiment, but neither the control nor the DSS-treated
animals experienced changes in microbial diversity during the
course of the experiment (Wilcoxon test between Simpson or
Shannon diversity indices at baseline and end of study were
not significant; p > 0.05; data not shown). In principle, the
apparently lower sensitivity of metagenomics libraries to detect
statistically significant changes in KEGG orthology groups might
be attributed to reduced sequencing. However, the number of
KEGG orthology groups that were surveyed in metagenomics
libraries at a depth of 10 or more reads per sample (on average)
was slightly higher than the ones in the metatranscriptomics
libraries (data not shown); this suggests that the underlying
problem is not derived from scarce alignments of metagenomics
sequences to protein reference sequences.

In metatranscriptomics, a direct readout of gene activity
is collected. Only minor differences were observed at the
metatranscriptomics level when all animals in each group
were considered. However, as mentioned above, a strong cage-
effect was detected, animals in cage A were more severely
inflamed. Comparisons between day 0 and day 7 time points
for cage A alone showed statistically significant differences
(padj < 0.1) in DSS-treated animals. Here, thirteen KEGG
orthology groups were found at altered abundance and such
changes might represent complex interactions between the
microbiome and the inflamed gut. The most upregulated KEGG
orthology group in the gut of DSS-treated animals was a
GTP-binding protein. It is known that GTP-binding proteins
are activated during inflammation and they amplify immune
responses and regulate tissue damage (Tretina et al., 2019),
this may hint to the activity of some protective bacteria.
Multidrug/hemolysis transport system ATP-binding protein was
also found upregulated and it may be implicated in bacterial
pathogenesis (Lewis et al., 2012), perhaps as a reflection of the
increase in Proteobacteria. As mentioned above, inflammation
is associated with an increase in nutrient transport (Morgan
et al., 2012; Franzosa et al., 2014). Multidrug/hemolysis transport
system ATP-binding protein and the signal peptidase II may
contribute to nutrient transport. In addition, an L-asparaginase
was also found at increased abundance. Such enzymes have
long been used as anti-cancer agents (Vimal and Kumar,
2018) and their antiinflammatory role has also been addressed
from the perspective of immune cells suppression (Song et al.,
2017). Another enzymes upregulated, although to a lesser
extent, included a exodeoxyribonuclease III (K01142), the
ribosome binding factor A (K02834) and the two-component
system, OmpR family response regulator ArlR (K18941), which,
at least in Staphylococcus aureus, is involved in adhesion,
biofilm formation, and virulence (Ouyang et al., 2019). The
five downregulated KEGG orthology groups corresponded
to three ribosomal proteins and two proteins involved in
lactose transport (PTS system, lactose-specific components,

IIB and IIC), which were downregulated to the same extent
since they are co-expressed as part of the lac operon
(Sanganeria and Bordoni, 2020).

In summary, shotgun metagenomics detected changes in
bacterial taxa abundance that were informative in the context
of inflammation, but failed to predict statistically significant
changes in abundance of in silico translated proteins. The
obvious explanation for such insensitivity is that shotgun
metagenomics surveys gene content, rather than gene expression.
Therefore, changes in microbial population composition will
correlate with gene expression profiles only in the absence of
functional redundancy in bacterial genomes. This is congruent
with the fact that shotgun metagenomics was developed for
surveying taxonomic composition and relative abundance of
bacterial populations. Predicting the metagenome through
in silico translation of metagenomics sequences is a bonus
and can certainly be used as a proxy of gene abundance, but
caution should be exercised when extrapolating results to gene
expression profiles.

Although metagenomics and metatranscriptomics approaches
are informatively complementary because together they provide
snapshots of microbial taxonomy profiles, functional potential,
and gene activity, it is not always feasible to interrogate
the microbiome with the concurrent application of both
approaches. There are situations where the song is more important
than the singer and in such cases metatranscriptomics fits
best. Conversely, in other scenarios, like those intended to
identify microorganisms with therapeutic or pre- or probiotic
potential, metagenomics is essential. Both approaches have
their own intricacies: they vary in terms of costs, experimental
complexity and analytical methods required. We hope that
this comparative analysis assists researchers in selecting the
most appropriate method to evaluate their hypotheses; as
well as facilitate their implementation through the analytical
pipelines included.

MATERIALS AND METHODS

Animal Experiments
Mice were handled in accordance with the Basel Declaration
and the International Council for Laboratory Animal Science
(ICLAS) following a protocol approved by the Health Science
Animal Care and Use Committee of the University of Alberta.

We generated original sequencing data from the microbiome
of male mice stools, in which intestinal inflammation was
induced by administering water containing 2.5% Dextran sodium
sulfate (DSS) for 7 days (n = 15). Animals that received water
without DSS served as controls (n = 15). Each group was
distributed into three cages (A, B, and C; five animals per
cage). From day 0, stools were collected daily and a hemoccult
test was conducted. Stool collected on day 0 (baseline) and
day 7 (end-of-study), were used to produce metagenomics
and metatranscriptomics next generation sequencing (NGS)
libraries. On day 7, animals were euthanized and dissected. Stool,
blood, and colon samples were collected. All experiments were
conducted in accordance with the ARRIVE guidelines.
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Metagenomics
Bacterial DNA was extracted with FastDNATM Spin Kit
for Microbes (MP-Biomedicals). We conducted shotgun
metagenomics sequencing, using the NexteraXT technology
(Illumina) for library preparation as described by the
manufacturer. Libraries were sequenced using the NextSeq
platform (Illumina), with a 300 cycles protocol. Libraries stats
are presented in Supplementary Table 1.

Taxonomic classification of sequences was conducted with
Kraken2 (Wood and Salzberg, 2014). The coding potential of
the microbiome was then determined from shotgun sequencing
using HUMAnN2 (Abubucker et al., 2012). Principal coordinate
analysis and PERMANOVA were conducted in R. Differential
abundance analysis was conducted with DESeq2 as described
in Weiss et al. (2017) and Lin and Peddada (2020). For
metagenomics comparisons, differences in taxa abundance were
considered statistically significant if adjusted p-values < 0.05.
In metatranscriptomics, because we only analyzed data for
cage A, thereby the degrees of freedom are reduced, adjusted
p-values < 0.1 were considered statistically significant.

Metatranscriptomics
Bacterial RNA was extracted using FastRNATM Spin Kit
for Microbes (MP-Biomedicals). Essentially, preparation of
metatranscriptomics libraries includes two steps: removal of
the omnipresent ribosomal (r)RNA transcripts and ligation of
previously fragmented reverse-transcribed messenger transcripts
into sequencing adapters. We used the ScriptSeqTM Complete Kit
(Bacteria) from Epicenter (Illumina). We recommend processing
not more than six samples in parallel to be able to efficiently
implement the protocol.

rRNA Depletion
For rRNA removal, paramagnetic beads conjugated to probes
complementary to bacterial ribosomal RNA were washed with
RNase-free water, resuspended in bead resuspension reagent and
supplemented with 1 µl of RNase inhibitor. Two microgram of
total bacterial RNA resuspended in 28 µl of RNase-free water
were supplemented with 4 µl of RiboZero buffer and 8 µl of
rRNA RiboZero removal solution, incubated 10 min at 68◦C and
finally equilibrated to room temperature (RT) for 5 min. Sixty-
six microliter of pre-washed beads were added and mixed up by
pipetting 10X, vortexed and incubated 5 min at RT. Samples were
vortexed again and incubated 5 min at 50◦C and immediately
placed on a magnetic rack until the solution cleared up. Ninety
microliter of the supernatant containing the rRNA-depleted RNA
were removed, and such eluat was placed back on the magnetic
rack for a second round of elution in 85 µl to remove residual
beads. Elution of purified RNA was conducted in a RNeasy
column (Qiagen). Volume of sample was adjusted to 100 µl
with RNase-free water, supplemented with 350 µl of RLT buffer
and 550 µl of absolute EtOH, and passed through the column
in halves by centrifugation for 15 s at 8,000 × g. Column was
supplemented with 500 µl of RPE buffer and centrifuged as
before. Column was supplemented with 500 µl of 80% EtOH,
centrifuged once at full speed for 2 min, transferred into a new
tube and centrifuged again at full speed for 5 min. Column

was transferred to a new tube and RNA was eluted in 12 µl of
RNase-free water by centrifuging 1 min at full speed.

RNA Fragmentation and cDNA Synthesis
Nine microliter of purified RNA were supplemented with 1 µl of
RNA fragmentation solution and 1 µl of cDNA synthesis primer
and incubated at 80◦C for 5 min and immediately chilled on ice.
For first strand synthesis, the RNA-fragmentation reaction on ice
was supplemented with a previously prepared mix containing
3 µl of cDNA synthesis premix, 0.5 µl of 100 mM DTT and
0.5 µl of StarScript RT and incubated 5 min, 25◦C; 20 min, 42◦C;
37◦C (add 1 µl of finishing solution) and allow incubation for
10 min; 3 min, 95◦C; hold at 25◦C. For second strand synthesis,
7.5 µl of Terminal Tagging Premix was mixed with 0.5 µl of
DNA polymerase and added to the RT reaction at 25◦C and
further incubated for 15 min. Second-strand synthesis reaction
was inactivated at 95◦C for 3 min and then transferred to ice.
cDNA was purified with 45 µl of Agencourt AMPure XP beads
(Beckman Coulter), incubating 15 min at RT, clearing up the
solution for 5 min on a magnetic rack, removing the liquid phase
and washing beads twice with 200 µl of 80% EtOH. Beads were
air-dried on-rack, resuspended in 25 µl of RNAse-free water,
solution cleared-up on-rack, and finally cDNA was recovered in
22.5 µl of the aqueous phase.

Indexing and Amplification
A mix containing 25 µl of FailSafe PCR mix E, 1 µl Forward PCR
primer and 0.5 µl FailSafe PCR Enzyme, was added to the cDNA
solution and 1 µl of a unique index added to each sample. The
following indexing/amplifying reaction was conducted: 1 min,
95◦C; 20X (30 s, 95◦C; 30 s, 55◦C; 3 min, 68◦C); 7 min 68◦C;
hold at 4◦C. PCR reaction was finally cleaned up with 50 µl of
Agencourt AMPure XP beads as above. Libraries were sequenced
on a HiSeq 2500 instrument (Illumina) following a 300-cycle
paired-end protocol.

Metatranscriptome sequences were analyzed with HUMANn2
and statistical analysis conducted as described above.

RNAseq in Colon Tissue
Total RNA from colon sections from control or inflamed
animals was extracted with TRIzol reagent. RNAseq libraries
were constructed using the TruSeq RNA Library Prep Kit v2
(Illumina), according to manufacturer’s instructions. Briefly,
polyadenylated transcripts were enriched by pulling down RNA
harboring sequences complementary to oligo-dT sequences,
conjugated to paramagnetic beads. Long polyadenylated
transcripts were chemically fragmented and cDNA was obtained
by retrotranscription of fragmented transcripts. Resulting
cDNA fragments were blunted and A-tailed and finally adapters
were ligated which served as binding site of primers used for
indexing PCR. Libraries were sequenced in a MiSeq instrument
using a protocol with 75 cycles that included demultiplexing
of samples according to their barcodes. Sequencing data was
analyzed as previously described (Jovel et al., 2018b), and
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pathways analysis was conducted with the Ingenuity Pathways
Analysis software (IPA; Qiagen).
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