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The herpesvirus UL11 protein is encoded by the UL11 gene and is a membrane-
anchored protein with multiple functions. In the last stage of viral replication, UL11
participates in the secondary envelopment process. It also plays a key role in primary
envelopment, the transportation of newly assembled viral particles through cytoplasmic
vesicles, and virion egress from the cell. UL11 is an important accessory protein and
sometimes cooperates with other proteins that participate in virus-induced cell fusion.
Cell fusion is necessary for cell-to-cell transmissions. This review summarizes the latest
literature and discusses the roles of UL11 in viral assembly, primary and secondary
envelopment, and cell-to-cell transmission to obtain a better understanding of the UL11
protein in the life cycle of herpesviruses and to serve as a reference for studying other
viruses. Additionally, some recently discovered characteristics of UL11 are summarized.

Keywords: UL11, interaction, herpesvirus, viral cycle, secondary envelopment

INTRODUCTION

The Herpesviridae family is composed of Alphaherpesvirinae, Betaherpesvirinae, and
Gammaherpesvirinae. The double-stranded DNA genome, capsid, tegument, and envelope form
a mature herpesvirus virion (Guiping et al., 2007; Boštíková et al., 2014). The Aphaherpesvirinae
subfamily includes many viruses, including human alphaherpesvirus-1/2 (HHV-1/2), also called
herpes simplex virus-1/2 (HSV-1/2); pseudorabies virus (PRV); duck plague virus (DPV) (Qi
et al., 2008; Zhao et al., 2008; Chang et al., 2009; Guo et al., 2009; Jia et al., 2009; Wu et al.,
2012); human alphaherpesvirus-3 (HHV-3), also called varicella-zoster virus (VZV); equine
herpesviruses (EHV); bovine herpesvirus (BoHV); infectious laryngotracheitis virus (ILTV);
and Marek’s disease virus (MDV) (Kobty, 2015; Smith, 2017; You et al., 2017; Lefkowitz et al.,
2018). The Betaherpesvirinae subfamily includes human alphaherpesvirus-5 (HCMV) and murine
cytomegalovirus (MCMV). Human alphaherpesvirus-4 (HHV-4), also called Epstein–Barr virus
(EBV), murine gammaherpesvirus-68 (MHV-68), and human alphaherpesvirus-8 (HHV-8) (Yuan
et al., 2005), also called Kaposi’s sarcoma-associated herpesvirus (KSHV), are classified into the
Gammaherpesvirinae subfamily (Foulon, 1992; Wu et al., 2020).

Tegument proteins are key components of herpesviruses (Newcomb et al., 2007). They are
classified into two types, “inner” or “outer” tegument proteins, according to their preferential
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association with either the capsid or viral membrane during the
viral lifecycle. When virions are lysed with non-ionic detergents,
the inner or outer tegument proteins can be detected (Wolfstein
et al., 2006; Mettenleiter et al., 2009; Radtke et al., 2010).
Tegument proteins have multiple functions, including affecting
viral replication by regulating gene transcription, destroying host
innate immune responses, halting cell protein synthesis, and
facilitating viral particle assembly by constructing a bridge that
links viral capsids and envelope proteins (Nicoll et al., 2012;
Owen et al., 2015), and evading innate immunity, as previously
summarized (Yang et al., 2019).

Herpesviruses display two characteristic replication modes,
namely, a rapid, productive replication cycle and a life-long
quiescent infection (Zeev-Ben-Mordehai et al., 2014; You et al.,
2017). To ensure lytic replication, after a virus has entered a cell,
capsid DNA is released into the nucleus, and then viral DNA
begins to replicate. After assembly and genome packaging, the
intact capsid leaves the nucleus, and it immediately undergoes
primary and de-envelopment at the nuclear envelope, followed
by tegumentation and secondary envelopment in the cytoplasm.
Ultimately, mature virions are released from infected cells by
exocytosis (Yang et al., 2019).

The UL11 protein and its homologs are essential to the viral
replication cycle, especially for cell-to-cell transmissions and,
particularly, the secondary envelopment process (Yang et al.,
2020a). In recent years, UL11 functions have been characterized
(Kopp et al., 2004; Koshizuka et al., 2006; Yang et al., 2021,
2022). However, the roles played by herpesvirus UL11 in the
viral replication cycle have not been fully elucidated. This article
reviews the characteristics and roles of herpesvirus UL11 in the
viral life cycle, especially its cell-to-cell transmission and cell
fusion functions and UL11 interaction partners. On the basis
of UL11 studies, we propose hypotheses to test and describe
problems that remain to be solved to further characterize the
importance of UL11 in future studies.

THE UL11 PROTEIN

Approximately 700 copies of UL11 proteins per HSV-1 particle
have been detected (Loomis et al., 2006). Using circular
dichroism, limited proteolysis, small-angle X-ray scattering
(SAXS), liquid–liquid phase separation (LLPS) analysis, and light
microscopy, researchers identified that UL11 in vitro has an
intrinsically disordered (ID) structure (Metrick et al., 2020).
UL11 and its homologs in virions have been classified as tegument
components (Johannsen et al., 2004; Tomtishen, 2012). The
molecular size and localization of UL11 differ in herpesvirus
species (Loomis et al., 2006). For example, the molecular size of
UL11 is 15 kDa in HSV-1 (McGeoch et al., 1988), the molecular
size of the UL11 homolog ORF51 in EHV-1 is 12 kDa (Badr
et al., 2018), and the molecular size of UL11 in DPV (Yang et al.,
2021) is approximately 15 kDa. In VZV, the ORF49 encoded
protein is 13 kDa (Sadaoka et al., 2007). In β-herpesviruses,
the molecular sizes of HCMV UL99 and MCMV UL99, each
encoding pp28 protein, are 28 and 11.8 kDa, respectively
(Cranmer et al., 1994; Hitomi et al., 1997). In γ-herpesviruses, the

ORF38 protein in KSHV has been detected as 10 kDa (Wu et al.,
2016). A 12-kDa protein has been found in MHV-68-infected
cell lysate, which is the molecular size of ORF38 (Efstathiou
et al., 1990). Interestingly, in all herpesviruses, UL11 expression
partially overlaps with UL12 expression (Adam et al., 1995;
Johannsen et al., 2004). Although HCMV pp28 has been shown
to multimerize without other viral proteins, the researchers of
this study did not rule out the possibility of an interaction with
a cellular protein following pp28 multimerization (Seo and Britt,
2008). Table 1 shows detailed information about the sizes of the
UL11 protein in various herpesviruses.

Post-translational Modification of the
UL11 Protein
The UL11 protein undergoes multiple forms of post-translational
modification, namely, myristoylation, and palmitoylation.
Covalent modification with a fatty acid is an established
characteristic in several cell types and viral polypeptides (Sefton
and Buss, 1987), and palmitoylation and myristoylation are
two fatty acid modifications. Studies on α-herpesviruses have
shown that HSV UL11 and VZV ORF49 are myristoylated with
myristic acid (MacLean et al., 1989; Harper and Kangro, 1990;
Sadaoka et al., 2007). Additionally, EHV-1 UL11 has a conserved
myristylation consensus sequence (M-G-X-X-X-S/T) (Resh,
1999). In β-herpesviruses, HCMV UL99 encodes a tegument
protein that undergoes myristoylation (Chee et al., 1990). In
KSHV, ORF38 is also myristoylated (Sanchez et al., 2000). In
addition to myristoylation, HSV-1 UL11 is palmitoylated. The
palmitoylated modification sites in UL11 contain one or more
of three consecutive cysteines in the UL11 amino terminus
(N-terminus) (Loomis et al., 2001). UL11 homologs of HSV-1,
HCMV, EBV, and likely HSV-2 are also palmitoylated (Baird
et al., 2008; Seo and Britt, 2008; Chiu et al., 2012; Jones and Lee,
2004).

In addition, UL11 undergoes phosphorylation. The HSV-
1 UL11 homolog—HCMV UL99 phosphoprotein—has been
identified strictly as a late kinetic reaction product (Mocarski
and Courcelle, 2001). Studies have suggested that HCMV pp28
phosphorylation contributes to its intracellular trafficking and
efficient viral assembly and incorporation. For example, when
protein phosphatase 2 (PP2A) modified pp28, the mobility of
pp28 was altered in SDS–PAGE, indicating that pp28 was indeed
phosphorylated, potentially on several residues (Seo et al., 2020).
Moreover, phosphorylation of pp28 tyrosine 34 and serines 41–
43 was found to be important for transfected pp28 trafficking
to the endoplasmic reticulum-Golgi-intermediate compartment
(ERGIC) (Seo and Britt, 2006; Seo et al., 2020). Another
study reported that deletion of HCMV UL26 caused pp28
hypophosphorylation, suggesting that the UL26 protein affected
the normal phosphorylation of pp28 in virions and possibly
additional tegument proteins (Munger et al., 2006). In MCMV,
pp28 has been found to be phosphorylated, potentially by protein
kinase C and casein kinase II (Cranmer et al., 1994), with amino
acids (aa) 25–28 and 91–94 of pp28 being the protein kinase C
targets and aa 42-47 being the casein kinase II targets (Cranmer
et al., 1994). For HCMV, pp28 is the autophagy-initiating protein
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TABLE 1 | Features of herpesvirus UL11 gene and homologs.

Subfamily Virus name Gene Coding protein Number of amino acids Gene type

Alphaherpesvirinae HSV-1 UL11 UL11 96 L

HSV-2 UL11 UL11 96 L

VZV ORF49 ORF49 81 L

EHV-1 ORF51 ORF51 74 E/L

DPV UL11 UL11 87 L

BoHV UL11 UL11 65 L

PRV UL11 UL11 63 ND

MDV-2 UL11 UL11 81 ND

ILTV UL11 UL11 80 L

Betaherpesvirinae HCMV UL99 pp28 190 E/L or L

MCHV UL99 pp28 112 L

Gammaherpesvirinae MHV-68 ORF38 ORF38 75 IE

EBV BBLF1 BBLF1 75 ND

KSHV ORF38 ORF38 61 ND

TABLE 2 | UL11 and homolog post-translationally modified sites.

Virus Protein Post-translational modification and enzyme Modification sites

Myristoylation modification

HSV UL11 By myristic acid N-terminus M-G-X-X-X-S/T consensus sequence

VZV ORF49
EHV-1 UL11
KSHV ORF38
HCMV pp28
Palmitoylation modification
HSV UL11 By palmitic acid One or more of three consecutive cysteines in UL11 N-terminal

HCMV pp28 Multiple cysteine residues
EBV BBLF1 Cys-8

Phosphorylation modification
MCMV pp28 By potential protein kinase C aa 25–28 and 91–94

By casein kinase II aa 42–47
HCMV pp28 By ULK1 Not determined

By UL26 Not determined
By PP2A aa 34 and 41–43

kinase ULK1 phosphorylation target (König et al., 2021). Table 2
contains information on these post-translational modifications.

Localization of the UL11 Protein
The localization of the UL11 protein is dynamic. In HSV-1,
UL11 has been shown to be located at membranes, including
nuclear and Golgi-derived membranes, and especially at the
trans-Golgi network (TGN) (Baines et al., 1995; Loomis et al.,
2001). In EHV-1, UL11 was predominantly localized at the TGN
in infected cells, while in transfected cells, UL11 was localized
at the plasma membrane, as determined through confocal laser
scanning microscopy (Schimmer and Neubauer, 2003). Similar
to UL11 in EHV-1, the virion component VZV ORF49 localized
predominantly at the TGN in infected cells (Sadaoka et al., 2007).
In DPV, UL11 is localized at the perinuclear area in infected
cells and membranes, especially at the TGN membranes, in
transfected cells (Yang et al., 2021). HCMV pp28 is localized in
the ERGIC, which is a dynamic compartment in the secretory
pathway that interfaces with both the ER and the Golgi apparatus

(Sanchez et al., 2000). Another study identified MHV-68 ORF38
as a tegument protein that localized to cytoplasmic compartments
(CT) during transient transfection and viral infection (Shen
et al., 2014). Furthermore, EBV BBLF1 is localized to the
TGN and perinuclear areas (Chiu et al., 2012). Hence, in most
herpesviruses, UL11 is localized in the Golgi apparatus.

Gene Type of UL11
When a target cell is infected by herpesviruses, viral genomic
DNA is circularized, and a temporal cascade of viral gene
transcription is initiated; this cascade consists of three stages:
immediate-early (IE), also called the α gene; early (E), also
called the β gene; and late (L), also called the γ gene, indicating
the expression period and dependence on other gene products
(Mahmoudian et al., 2012; Yang et al., 2020b). ILTV UL11 has
been identified as an L gene in alphaherpesviruses. Similarly,
UL11 is also an L gene in HSV-1 and BoHV (Baines and Roizman,
1992; Desloges and Simard, 2001). In DPV and VZV, UL11
is also an L gene, as determined by its late-stage expression
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(Sadaoka et al., 2007; Yang et al., 2021). In EHV-1, UL11 is
an early-late gene (Schimmer and Neubauer, 2003). Researchers
characterized the HCMV pp28 upstream (pp28US) promoter
with two regulatory components, one dependent on the onset
of viral DNA synthesis and the other replication-independent,
responding to viral trans-acting factors (Wu et al., 2001). Kohler
et al. (1994) found that the pp28US promoter was sufficient to
establish UL99 late kinetics (Kerry et al., 1997). In contrast, Jones
and Lee showed that UL99 was expressed as an early-late protein,
not an L protein, similar to UL99 in EHV-1 (Jones and Lee, 2004).
MCMV UL99 has also been classified as an L gene based on
its gene expression kinetics (Cranmer et al., 1994). Homologs
of HSV-1 UL11 gene products in the herpesvirus family are
nearly all conserved tegument proteins (Baer et al., 1984; Davison
and Scott, 1986; Chee et al., 1990; Telford et al., 1992; Dijkstra
et al., 1997; Osterrieder, 1999; Shen et al., 2014). Surprisingly,
in contrast to other herpesvirus genes, MHV-68 ORF38 has
been designated an IE gene after treatment with cycloheximide
(Ebrahimi et al., 2003). Detailed information can be found in
Table 1.

FUNCTIONS OF UL11 IN THE VIRAL LIFE
CYCLE

Viral Replication of the UL11 Null Mutant
The effect of the UL11 deletion on viral replication differs by
virus species. In HSV-1 and PRV, the absence of UL11 resulted
in a 10-fold reduction in viral titer (Baines et al., 1995; Kopp
et al., 2003; Fulmer et al., 2007), and neither myristoylation nor
palmitoylation modification of HSV-1 UL11 was found to be
necessary for viral replication (MacLean et al., 1992; Baird et al.,
2010). In EHV-1, deletion of UL11 in the neuropathogenic strain
Ab4p resulted in abrogated progeny production. That is, in these
mutant viruses, UL11 is replicated only in complementing cells;
hence, UL11 is considered to be essential for EHV-1 (Badr et al.,
2018). In addition, the absence of UL11 in the EHV-1 RacH and
RacL22 strains, which exhibited one-step growth kinetics and
were used to infect RK13 cells, resulted in an approximate 10-
to 20-fold reduction in intracellular and extracellular virus titers
(Schimmer and Neubauer, 2003). The reasons for the differences
in these results were discussed in the article (Badr et al., 2018):
First, the Ab4p UL11 sequence is the same as that in the RacH
strain (data not shown); however, the restriction patterns of
UL11 expression in the RacH and RacL22 strains differ from
that in the Ab4 strain, which has a shorter left UL terminus
and lacks a BamHI site (Hubert et al., 1996). Second, 0.85 kbp
sequences in the inverted repeat regions are deleted in both copies
of RacH (Hubert et al., 1996). Moreover, other viral proteins
may compensate for the reduction in UL11 function in the Rac
strain but not in Ab4p. Additionally, there may be experimental
shortcomings in one of the studies. Similarly, HCMV UL99 is
essential for the production of infectious viruses (Silva et al.,
2003; Seo and Britt, 2007). No infectious progeny viruses were
detected in fibroblasts infected with an HCMV pp28-deficient
mutant, which also showed impaired viral replication due to the
lack of enveloped virus particles. Additionally, although ORF49 is

not essential for viral replication (Sadaoka et al., 2007), the VZV
titer of the cell-free virus was 3 to 5% of that of the control virus
(Sadaoka et al., 2014). In contrast to the effect of deletion of the
essential gene UL99 in HCMV, deletion of BBLF1 only partially
impaired EBV lytic replication (Chiu et al., 2012), reducing the
production of EBV particles by approximately 54%. In another
γ-herpesvirus, KSHV, ORF38 has not been considered essential
for virus replication; however, the viral yield of the ORF38-null
mutant was reduced 10-fold (Wu et al., 2016).

UL11 Influences Primary and Secondary
Viral Envelopment
When the capsid is intact, it undergoes primary envelopment.
The specific process of primary envelopment involves
intranuclear capsid budding at the inner nuclear leaflet,
and later, fusion with the outer leaflet of the nuclear membrane.
Specifically, after primary envelopment, capsids undergo
nuclear membrane fusion and de-envelopment, and then the
nucleocapsids bud from the nucleus and are transported to the
TGN, where the tegument is formed and where the nucleocapsid
undergoes secondary envelopment (Mettenleiter, 2002).

For HSV-1, the incidence of UL11-deleted capsid
juxtaposition with the inner lamellae of nuclear membranes
has been shown to be greater than that of wild-type or repaired
viruses. Specifically, approximately 3% of the virion particles in
the nuclei of cells infected with wild-type or repaired viruses
were in contact with the inner lamellae, whereas in cells infected
with the mutant virus, 11% of the nuclear capsids were in
contact with the inner lamellae. Moreover, the number of capsids
partially enveloped by the inner lamellae of cells infected with
the UL11-deleted virus was increased. In cells infected with
wild-type, UL11-null or repaired viruses, enveloped particles,
and, to a lesser extent, unenveloped particles accumulated in the
space between the lamellae of the nuclear membrane 24 h after
infection. The numbers of particles accumulating in this space
were similar to the number of cells infected with each virus. This
study suggested that UL11 gene deletion affected envelopment
at the nuclear membrane by either slowing or inhibiting the
process but had no effect on viral transit into the perinuclear
space (Baines and Roizman, 1992). During the secondary
envelopment stage, the HSV-1 UL11-null mutant produced
fewer enveloped virions and more unenveloped CT capsids
(Fulmer et al., 2007). In addition, deletion of PRV UL11 resulted
in unenveloped capsid accumulation in the cytoplasm, which
was inconsistently associated with recruited tegument proteins,
similar to the effect of gE/gI and gM deletion mutants. Moreover,
the absence of UL11 profoundly impaired the architecture of the
Golgi-derived membrane, which is the typical site of secondary
envelopment (Kopp et al., 2004). Similarly, when RK13 cells
were infected with PRV UL11 and the UL51 double-deletion
mutant, the morphology of the intracytoplasmic membranes
was distorted, and nucleocapsids accumulated in the cytoplasm
in association with aggregated tegument (Klupp et al., 2005b).
The VZV ORF49-deletion mutant and the wild-type virus
exerted the same effects (Sadaoka et al., 2007) in MRC-5 cells, as
determined by ultrastructural analysis. This result suggests that
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TABLE 3 | Comparison of viral UL11 necessity for different viruses and morphologies.

Different UL11-null mutants Virus name Whether an essential gene Morphology of these UL11-deleted mutants

Alphaherpesvirinae HSV-1 No Fewer enveloped virions and two- to three-fold increase in
unenveloped cytoplasmic capsids

PRV No Unenveloped capsids accumulated in the cytoplasm, tegument
proteins aggregated, and distortion of the architecture of

Golgi-derived membranes

EHV-1 ? Remained unclear

VZV No No difference between the wild-type and the UL11 deletion mutant

Betaherpesvirinae HCMV Yes Tegument-associated capsids accumulated in the cytoplasm that
failed to acquire an envelope

Gammaherpesvirinae MHV-68 ND ND

EBV No Tegumented capsids accumulated

KSHV No Viral DNA present in the vesicle-rich fractions was reduced

VZV ORF49 did not affect primary or secondary envelopment
in MRC-5 cells. In HCMV pp28-null mutant-infected cells,
normal levels of viral DNA and L proteins were observed, but
a large number of tegument-associated capsids accumulated
in the cytoplasm and failed to undergo envelopment (Silva
et al., 2003; Britt et al., 2004). Moreover, EBV BBLF1 has been
hypothesized to be important for tegumented capsid budding
into glycoprotein-embedded membranes during viral maturation
(Chiu et al., 2012). MHV-68 ORF38 has also been reported to
participate in secondary envelopment (Shen et al., 2014). As
shown in a membrane flotation assay, KSHV ORF38 participated
in the virion packaging process, promoting virion packaging into
cytoplasmic vesicles critical for viral maturation and egress (Wu
et al., 2016). Detailed information is presented in Table 3.

Effect of UL11 on Trafficking
Similar to that in another herpesvirus model, in an HSV-1 model,
assembled nucleocapsid shuttling into the nucleus involved
separate inner and outer nuclear membrane budding-fusion
events; subsequently, these nucleocapsids moved through the
cytoplasm as unenveloped capsids and underwent envelopment
at TGN-derived vesicular membranes. As the nucleocapsids
acquired this final lipid bilayer at the TGN, the tegument, which
includes glycoproteins, was formed (Browne et al., 1996; Loomis
et al., 2001). Notably, many other molecules are involved in
the process of transporting non-enveloped viral particles such
as microtubules.

The detected correlation between UL21 and microtubules
(Takakuwa et al., 2001) has raised the possibility that UL21
participates in capsid transport to TGN-derived vesicles (Guo
et al., 2010), where UL16 interacts with UL11, facilitating the
budding process by linking capsids to the membrane (Loomis
et al., 2003). A study showed that palmitoylation of HSV-1 UL11
was necessary for both Golgi targeting specificity and effective
membrane binding. In addition, one-half of a conserved acidic
sequence cluster in UL11 has been found to be important for
tegument protein recycling from the plasma membrane to the
Golgi apparatus (Loomis et al., 2001). HCMV UL99 has been
shown to traffic to vacuole-like cytoplasmic structures, and the
second glycine and a 44–57 acid sequence have been suggested
to be necessary for envelopment (Jones and Lee, 2004). Further

analyses of ORF33/ORF38 mutants revealed that the production
of virion-containing vesicles was decreased, indicating that
KSHV ORF38 facilitated the transport of newly assembled viral
particles in cytoplasmic vesicles, a process that is essential for
viral maturation and egress (Wu et al., 2016). When the first 100
amino acids in respiratory syncytial virus (RSV), Gag proteins
were replaced by the entire UL11 sequence; the resulting chimeric
protein was targeted in the Golgi apparatus rather than being
localized to the plasma membrane. Studies have shown that
a region consisting of the first 49 amino acids in UL11 is
myristoylated, which is required for Golgi-specific targeting.
In addition to the identification of a previously unknown
modification site on UL11, these experiments showed that UL11
directed RSV Gag to internal cellular membranes (Bowzard et al.,
2000). Taken together, these studies suggest that UL11 has highly
dynamic membrane-trafficking properties.

Effect of UL11 on Cell Fusion and
Cell-to-Cell Spread
Viruses spread to uninfected cells in two ways (Carmichael et al.,
2018). Upon release from an infected cell and entry into the
surrounding environment, a virus enters a new cell through
cell-free spread. This modality describes both the viral infection
of new hosts and transmission between cells within a host.
However, some virions, including those of all herpesviruses,
pass directly through cell junctions, enabling virion detection
by neutralizing antibodies (Johnson and Huber, 2002; Mateo
et al., 2015; Carmichael et al., 2018). In addition, virus-induced
cell fusion, which facilitates transmission into adjacent cells, also
protects virions from being exposed to neutralizing antibodies.
This model of infectivity is observed in herpetic lesions (Roizman
et al., 2007). This modality of transmission is important and
worth studying because the mechanisms of cell-to-cell spread and
cell fusion in herpesvirus infections remain unclear.

The mechanism of cell-to-cell spread is complex. In HSV-1,
gE is crucial for cell-to-cell spread, as indicated by the
inhibition of cell-to-cell spread in gE-deletion mutants treated
with neutralizing antibodies in vitro and transmission between
neurons in mouse models (Dingwell et al., 1994; Howard et al.,
2014). Further research showed that the peripheral membrane-
binding protein UL11, which is associated with tegument
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FIGURE 1 | The complete process of the herpesvirus life cycle. (1) Viral particles enter a cell. With gM, UL11 promotes virus entry. (2) The viral DNA replication. (3)
Primary envelopment of viral particles. UL11 participates in capsid primary envelopment. (4) Primary envelopment capsids arrive at the TGN to obtain secondary
envelopment. UL11 can raise glycoproteins at the TGN to carry on secondary envelopment. (5) Secondary enveloped viral particles will be transported by the
vesicle. UL11 promotes the association of the newly assembled viral particles with the vesicle. (6) Mature viral particles with the vesicle egress out of a cell. UL11
increases the number of viral particles released from the cell.

proteins UL16 and UL21, forms a complex on the cytoplasmic
tail of gE. In cell culture, this complex appears to be critical
for cell-to-cell spread (Han et al., 2012; Sarfo et al., 2017). The
replication efficiency of the HSV-1 UL11-null mutant was nearly
one logarithmic unit less than that of the wild-type virus, and the
UL11-null virus formed plaques that were, on average, one-third
the size of those created by the wild-type virus (Kim et al., 2014).
Other HSV-1 proteins, including UL51, gI, and UL34, have also
been shown to participate in cell-to-cell spread (Dingwell and
Johnson, 1998; Haugo et al., 2011; Roller et al., 2014). When UL11
was deleted in EHV-1, the viral plaque decreased significantly—
to approximately 20% of the parental virus (Schimmer and
Neubauer, 2003). Moreover, the VZV UL11-null mutant showed
diminished plaque compared to the wild-type strain, similar to its
effect on HSV-1 infection of the human malignant melanoma cell
line. However, no differences in plaque size or cell-to-cell spread
were observed in MRC-5 human embryonic fibroblasts infected
with the wild-type or mutant virus (Sadaoka et al., 2007).

Surprisingly, UL11 was also shown to be vital for the virus-
induced cell fusion process. In the alphaherpesvirus HSV-1, when

UL11 and gM were deleted, the virus entered cells more slowly
than the wild-type virus, indicating that gM and UL11 both
regulate the HSV-1 membrane fusion machinery during virus-
induced cell fusion and virus entry (Kim et al., 2013). Cell
fusion was induced when a 28 aa sequence in the carboxyl-
terminus (C-terminus) of gB was deleted by the insertion of a
stop codon and when the gK alanine residue at position 40 was
replaced with valine. Among gB syncytial mutants, the gB128
mutation is considered to exert the most profound inductive
effect on the fusion of most cell types in tissue culture (Silverman
et al., 2012). In addition, the gKsyn20 mutation caused extensive
virus-induced cell fusion of most cell types (Chouljenko et al.,
2009). Abrogation of UL11 led to severe impairment of gB428
and gKsyn20-induced virus-induced cell fusion. In addition,
UL11 affected gBA855V-induced cell fusion, confirming the
aforementioned result that suggests that UL11 is required for
gB428 induced cell fusion (Silverman et al., 2012; Kim et al.,
2013). In a study by Han, the UL11-null mutant in the presence
of the UL11 interaction proteins UL16 and UL21 failed to form
syncytia in HSV-1 (Han et al., 2012).
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Effect of UL11 on Virion Egress
Upon maturation, viral particles are released from host cells.
UL11 plays a key role in viral egress, as indicated by the profound
delay in UL11-null mutant HSV-1 virus release from infected
cells. Specifically, the wild-type virus showed an approximately
500-fold increase in virion release, while the UL11-null mutant
showed only a 15-fold increase between 8 and 14 h post-infection
(Baines and Roizman, 1992). Moreover, in the HSV-1 UL11
null mutant, Chouljenko et al. (2012) found that there were
fewer extracellular virions than cytoplasmic virions. Interestingly,
HCMV pp28 was phosphorylated by the autophagy-initiating
protein kinase ULK1, which leads to efficient viral release (König
et al., 2021). Thus, UL11 may facilitate the viral egress process.
Figure 1 depicts a function map for the UL11 protein.

UL11 INTERACTION PARTNERS

The gE-UL11-UL16-UL21 Complex
The classical interaction between UL11 and UL16 has been
determined to be conserved in all members of the Herpesviridae
family (Fossum et al., 2009; Diefenbach, 2015). Evidence has
shown that the interaction between HSV-1 UL11 and UL16
may promote the correlation observed between nucleocapsids
and the secondary envelopment process (Vittone et al., 2005;
Meckes and Wills, 2007; Meckes et al., 2010; Johnson and Baines,
2011; Starkey et al., 2014). Because it is a nucleocapsid-associated
protein, upon interaction with its partners, UL16 may recruit
nucleocapsids to cytoplasmic membranes for envelopment
within infected cells. In PRV, the interaction between UL11 and
UL16 was identified in a glutathione S-transferase (GST) pull-
down assay (Harper et al., 2010), and the complex promoted
UL36 incorporation into mature virions (Michael et al., 2006),
which was also observed in VZV (Sadaoka et al., 2014).
Furthermore, binding with HCMV UL99 stabilized the UL16
homolog UL94 (Phillips et al., 2012), facilitating cytoplasmic
nucleocapsid transport to membranes (Phillips and Bresnahan,
2012). In KSHV, ORF33 interacts with ORF38, and this
interaction leads to the optimal production of infectious progeny
viruses (Wu et al., 2016). The UL16-binding sites in homologs of
HSV-1 and HCMV have been confirmed to be in the N-terminal
half of the UL11 protein (Yeh et al., 2008; Liu et al., 2009):
specifically, in HSV-1, they are in the acidic cluster sequence and
leucine-isoleucine (LI) motifs within the UL11 N-terminus (Yeh
et al., 2008). Similarly, in EBV, the interaction between BGLF2
and BBLF1 is required for the efficient production of infectious
virus particles (Hung et al., 2020). These findings show that the
interaction between the UL16 and UL11 proteins is conserved in
the herpesvirus family.

Although both gE and pUL21 are unique to the
Alphaherpesvirinae subfamily and have not yet been investigated,
homologs of pUL11 and pUL16 may bind to the cytoplasmic
tail of envelope proteins in the Beta and Gammaherpesvirinae
subfamilies. Notably, a study reported that an HSV-1 UL11
acidic cluster motif is indispensable for gE packaging (Han et al.,
2011). In DPV, research has shown that DPV gE and UL11
preferentially and exclusively interact. UL11 can interact with the

CT and ET domains of gE, and the CT domain of gE is critical
for UL11 incorporation into a viral particle (Yang et al., 2021). In
HSV-1, UL11, and UL16 have been shown to interact with the
cytoplasmic tail of gE, and UL11 has been shown to initiate the
weak interaction observed between UL16 and gE (Farnsworth
et al., 2007; Han et al., 2011, 2012; Yeh et al., 2011). In HSV,
DPV, and PRV, UL21 can interact with UL16 (Klupp et al.,
2005a; Harper et al., 2010; Gao et al., 2017; Yang et al., 2020b).
In HSV, UL21 interacts with UL11 in the presence of UL16, and
UL21 promotes the weak interaction between UL11 and UL16
(Han et al., 2012). Similar to the UL11-gE interaction, the UL11
and UL21 interaction has been found to be weak and has been
identified only in the Alphaherpesvirinae subfamily (Diefenbach,
2015). UL21 and UL16 are capsid-associated proteins, and
UL11-UL16-UL21 can form a complex. Therefore, UL11 may
indirectly affect capsid function. In fact, UL11, UL16, UL21, and
gE may have formed a quadruple complex in transfected Vero
cells (Han et al., 2012). Table 4 contains additional information,
and details of the relationship between UL11, UL16, UL21, and
gE are presented in Figure 2.

UL11 Can Form Homomultimers or
Interact With Other Viral Proteins
Through GST pull-down assay and other immunoprecipitation
experiments, Koshizuka et al. confirmed that UL11 interacted
with UL56 in HSV-2-infected cells. UL56 is a tail-anchored
type II membrane protein associated with the Golgi apparatus
and cytoplasmic vesicles (Koshizuka et al., 2006). However, no
reports have indicated that UL11 interacts with UL56 in other
herpesviruses. On the basis of an immunoprecipitation assay,
another study revealed that the CT domain of HSV-1 gD is bound
to UL11 in HSV-1-infected cells (Farnsworth et al., 2007), but
whether this interaction was direct or not was unclear, and it
could not be induced in cells infected with other herpesviruses.

UL11 can undergo self-interaction to form homomultimers.
A study found that the initial 43 amino acid sequences in HCMV
pp28 contain a domain that is critical for the self-interaction
of pp28 (Seo and Britt, 2008). Although this interaction was
found to be independent of other viral proteins, the possibility
of a pp28 interaction with cellular proteins was not ruled out.
Additionally, multimerization of UL11 has only been reported in
HCMV. Detailed information on the UL11 network is presented
in Figure 3.

UL11 Can Interact With Lipid Rafts
Lipid rafts, also called detergent-resistant membranes (DRMs),
are microdomain structures that are rich in cholesterol and
glycosphingolipids. Although lipid rafts are generally located on
the plasma membrane, rafts are often assembled in the Golgi
apparatus (Simons and Ikonen, 1997). Many proteins interacting
with lipid rafts have important roles in trafficking, signal
transduction, and pathogen entry and exit (Koshizuka et al.,
2007). Researchers found that HSV-2 UL11 was associated with
lipid rafts. In DPV research, UL11 has been shown to interact
with lipid rafts, and this interaction depends on the second
glycine of UL11 (Yang et al., 2022). The dual acylation of UL11 is
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TABLE 4 | Interaction domain between UL11 and other proteins.

Interaction Subfamily Herpesviridae member Interaction domain

UL11-UL16 Alphaherpesvirinae HSV-1 Leucine-isoleucine and acidic cluster motifs of UL11

VZV Phenylalanine 129, and four amino acids in the carboxyl-terminal half of the
acidic cluster in ORF49

Betaherpesvirinae HCMV Amino acids 22-43 of pp28

MCMV The non-conserved N-terminal region of UL94 has also been shown to
contribute to the binding of UL99

Gammaherpesvirinae EBV N-terminal region of BGLF2 is important to its interaction with BBLF1

KSHV Cysteines of ORF33 are involved in its interactions with ORF38

MHV-68 Not determined

UL11-gE Alphaherpesvirinae HSV-1 C-terminal 26 residues of UL11

DPV Not determined the interaction domain

UL11-UL16-UL21 Alphaherpesvirinae HSV-1 UL21can interact with UL11 when the UL16 exists; only determined in
HSV-1

U11-UL56 Alphaherpesvirinae HSV-2 Interaction only determined in HSV-2

UL11-gD Alphaherpesvirinae HSV-1 Interaction only determined in HSV-1

UL11-UL11 Betaherpesvirinae HCMV 43aa; only determined in HCMV

FIGURE 2 | Summary of the known interactions between UL11 and UL16, UL21, and gE. UL11 binds to UL16, which is directly conserved in a representative
member of Herpesviridae. However, UL11 formed a strong interaction with gE only in a study of HSV-1 and DPV. In HSV, DPV, and PRV, UL21 interacts directly with
UL16. The dotted line represents the weak interaction between UL11 and UL16 and between UL16 and gE (left). UL16 may undergo enhanced binding with gE in
the presence of UL11, UL16 may undergo enhanced binding with UL11, and UL16 may undergo enhanced binding with UL11 in the presence of UL21 in HSV-1
(right). Therefore, UL11, UL16, UL21, and gE form a complex. Some inspiration for this figure was obtained from previous articles (Han et al., 2012).

FIGURE 3 | Network of protein–protein interactions between the tegument protein UL11 and other viral proteins. Black solid lines represent interactions.
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required for lipid raft association because mutated myristoylation
or palmitoylation sites block lipid rafts (Koshizuka et al., 2007;
Baird et al., 2008). Through an immunoprecipitation assay, a
study elucidated the DRMs associated with HSV-1 UL11 and
showed that they depended on LI and acidic cluster motifs in
UL11 (Baird et al., 2008).

OTHER FUNCTIONS OF UL11

Studying HSV-1, researchers found that the C-terminus of UL11
has a disordered structure, and further experiments indicated that
this disordered structure fails to bind ribosomal RNA (rRNA)
(Metrick et al., 2020). Additionally, this disordered structure was
found not only in UL11 but also in all the tegument proteins of
HSV-1. Moreover, this was the first report showing that UL11 is
associated with RNA. Hence, the disordered tegument structure
and its correlation with assembly mechanisms should be taken
into account. The structural disorder in other tegument proteins
needs to be further investigated because the details of these
protein interactions are unclear.

For the study of HCMV, the UL99 transcript has been
identified as a rapid marker of therapy effectiveness. Through a
qRT–PCR assay analysis of 18 bronchoalveolar lavage samples
from patients who were or were not subjected to antiviral
treatment in vivo and vitro, UL99 has been developed as an
antiviral control (Gambarino et al., 2014). In the past, it was
difficult to study L gene promoters, as they were expressed in
a disorderly fashion in transient assays (Kohler et al., 1994).
However, a study of the entire viral genome showed that
sequences from position –40 to +106 of the pp28 promoter are
important for the L gene expression. The –6 to +46 sequences
of the pp28 promoter repressed gene expression. The +46
to +88 sequence of the pp28 promoter was not particularly
important to gene expression compared with the influences of
the other sequences. These results indicate that translation of the
L genes can be regulated by leader sequences in the pp28 gene
(Kerry et al., 1997).

CONCLUSION

Among all α-, β-, and γ-herpesviruses, UL11 is a conserved gene.
In the Herpesviridae family, the viral protein–protein interaction
network is dynamic and necessary for the secondary envelopment
process. Since it can associate with multiple proteins, UL11
is a key mediator in this interaction network. Moreover, the

UL11 interaction network is important for the secondary
envelopment process. Future studies on the structure of the
conserved interactions, such as the UL11-UL16 interaction, will
facilitate further research in herpesvirus assembly and tegument
structure. The mechanism and function of the UL11, UL16,
UL21, and gE quadruple complex also need to be investigated.
Details on the function of the UL11 interaction with the two
types of capsid-associated proteins need to be ascertained to
determine whether they are related to the construction of a
bridge between the capsid and the envelope. Studies of the
interaction between the host protein and UL11 are rare, and
elucidating the UL11-host cell protein interactions within virions
may reveal the question regarding whether host cell proteins are
simply passively acquired during viral assembly and trafficking or
whether other mechanisms are involved is worth investigating.
For research on β-herpesviruses, UL99 has been determined to
be an important factor in antiviral therapy research, and it may
be useful as an additional tool for overcoming drug resistance at
the onset of infection.

In addition to the UL11 interaction partners that regulate the
viral life cycle, other functions need to be investigated. Most
tegument proteins, such as UL41, UL48, and UL49, have been
reported to participate in innate immunity. However, because
research into the effect of UL11 on innate immunity is rare, it
remains unclear whether or to what extent UL11 is needed or
functional. Investigating the role played by UL11 in immunity
will lay a foundation for UL11 function research.
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