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Some viruses have the ability to block or suppress growth of other viruses when

simultaneously present in the same host. This type of viral interference or viral block has

been suggested as a potential interaction between some respiratory viruses including

SARS-CoV-2 and other co-circulating respiratory viruses. We explore how one virus’

ability to block infection with another within a single host affects spread of the viruses

within a susceptible population using a compartmental epidemiological model. We find

that population-level effect of viral block is a decrease in the number of people infected

with the suppressed virus. This effect is most pronounced when the viruses have similar

epidemiological parameters. We use the model to simulate co-circulating epidemics of

SARS-CoV-2 and influenza, respiratory syncytial virus (RSV), and rhinovirus, finding that

co-circulation of SARS-CoV-2 and RSV causes the most suppression of SARS-CoV-2.

Paradoxically, co-circulation of SARS-CoV-2 and influenza or rhinovirus results in almost

no change in the SARS-CoV-2 epidemic, but causes a shift in the timing of the influenza

and rhinovirus epidemics.

Keywords: SARS-CoV-2, influenza, respiratory syncytial virus, rhinovirus, viral interference, mathematical model

1. INTRODUCTION

A novel coronavirus first detected in Wuhan, China in late 2019 spread rapidly around the
world (Chen et al., 2020; Wu et al., 2020). While many people infected with the virus remain
asymptomatic, a significant number of people develop COVID-19 (Dong et al., 2020; Verity et al.,
2020)—a disease characterized by severe respiratory distress that leads to hospitalization and
potentially death (Goyal et al., 2020; Jiang et al., 2020; Sun et al., 2020). The first waves of SARS-
CoV-2 infection occurred in the late spring and summer months when there are few co-circulating
respiratory viruses. However, subsequent waves have occurred at times when we normally expect
seasonal circulation of viruses such as influenza and respiratory syncytial virus (RSV) (Choe et al.,
2019; DeGroote et al., 2020). There was a fear that the combined effect of SARS-CoV-2 and illness
due to these other respiratory viruses could lead to an excessive burden on the healthcare system
(Kissler et al., 2020; Xu and Li, 2020), but in many parts of the world, the usual seasonal respiratory
virus epidemics did not materialize (Casalegno et al., 2021; Eisen et al., 2021; Le Hingrat et al., 2021;
Liu et al., 2021; Tempia et al., 2021; Williams et al., 2021). It’s not clear if the suppression of other
respiratory viruses is due to an interaction between SARS-CoV-2 and these other viruses or due to
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non-pharmaceutical interventions imposed to control the spread
of SARS-CoV-2 (Oh et al., 2021; Redlberger-Fritz et al., 2021;
Wagatsuma et al., 2021).

There are observational studies that have noted a lack of
SARS-CoV-2 coinfections with other respiratory viruses within
a single host (Blasco et al., 2020; Kim et al., 2020; Nowak et al.,
2020; Xing et al., 2020; Alhumaid et al., 2021).While this could be
attributed to the limited circulation of other respiratory viruses,
other studies suggest that the limited number of coinfections
might be due to virus-virus interactions within the host (Dee
et al., 2021; Stowe et al., 2021). A recent modeling study has
suggested that many respiratory viruses actually suppress SARS-
CoV-2 infections (Pinky and Dobrovolny, 2020), potentially
preventing patients from contracting SARS-CoV-2 while they are
infected with another virus

It is unclear what this type of viral interference means for the
eventual co-circulation of SARS-CoV-2 with other respiratory
viruses. Studies have noted that outbreaks of other respiratory
viruses influence each other’s timing. For example, several studies
found that circulation of the 2009 pandemic influenza virus
was delayed in some regions, coinciding with an outbreak of
rhinovirus, suggesting that rhinovirus infections delayed the
influenza outbreak (Anestad and Nardbo, 2009, 2011; Casalegno
et al., 2010a). Studies also noted that the 2009 pandemic influenza
outbreak delayed outbreaks of several other respiratory viruses
(Casalegno et al., 2010b; Pascalis et al., 2012; Yang et al., 2012; Sun
et al., 2014), but it is not just outbreaks of novel viruses that alter
outbreaks of circulating viruses. Influenza and RSV have similar
seasonality yet they are never seen to peak at the same time,
suggesting some kind of interference (Anestad, 1982; Velasco-
Hernandez et al., 2015). Interaction between annual seasonal
influenza outbreaks and rhinovirus often seems to have an effect
on rhinovirus prevalence (Nickbakhsh et al., 2019) and early
annual influenza A outbreaks have been observed to shift the
timing of RSV, influenza B, and coronavirus outbreaks in the
same year (van Asten et al., 2016). More generally, a recent study
investigated covariance of a variety of respiratory virus outbreaks
finding both negative and positive covariance between a number
of viral pairs (Mair et al., 2019).

Epidemiological models have also been developed in an
attempt to understand how viruses interact at the population
level. Many of these models assume interaction between the
viruses based on some form of cross-immunity (Ackleh and
Allen, 2005; Allen and Kirupaharan, 2005; Nuno et al., 2005;
Saunders, 1981; Andreason, 2018; Garba et al., 2013; Ackleh
and Salceanu, 2014; Bhattacharyya et al., 2015; Baguelin and
Eggo, 2018; Almaraz and Gomez-Corral, 2019; Amador et al.,
2019; Gutierrez-Jara et al., 2019), finding competitive exclusion
or at least a diminished presence of one virus depending on the
strength and mathematical formulation of the cross-immunity.
Other interactions between viruses have also been considered.
One epidemiological model examined the interaction of two
viruses (influenza and RSV) under the assumption of one
virus being competitively stronger than the other, finding that
interaction of the two viruses caused emergence of a biennial
fluctuation in the size of epidemics (Velasco-Hernandez et al.,
2015). A study of different mechanisms of interaction between

two influenza strains (H1N1 and H3N2) determined that the
interactions only caused observable interference when the attack
rates of the strains were high (Ackerman et al., 1990).

In all these models, the cross-protective immunity or other
interaction is assumed to be equivalent for both viruses and
typically lasts for the duration of the epidemic, whereas
interaction through within-host viral interference leads to a one-
sided effect that provides only temporary protection against
one of the viruses. In this article, we investigate the case of
an asymmetric interaction between viruses based on the viral
suppression of SARS-CoV-2 by other respiratory viruses. In our
model, infection with one virus (influenza, for example) and
exposure to the second (SARS-CoV-2) will temporarily prevent
infection with the second virus (SARS-CoV-2), but infection
with the second virus (SARS-CoV-2) and exposure to the first
(influenza) will lead to coinfection. We find that this type
of interaction leads to a smaller epidemic of the suppressed
virus, but can also alter the timing of the epidemic of the
dominant virus.

2. MATERIALS AND METHODS

2.1. Mathematical Model
Spread of an infectious disease through a population is
often modeled using ordinary differential equation (ODE)
compartment models. The common basis for many of these
epidemiological models is the Susceptible-Exposed-Infectious-
Recovered (SEIR) model where each class of the population is
represented by a compartment and movement of people between
compartments is governed byODEs (Hethcote, 2000).We extend
the SEIR compartmental model to include two viruses,
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The model diagram is given in Figure 1. Initially, the population
is susceptible to both viruses (S). People can be infected by either
virus with force of infection βi (i = 1, 2) and move into the
exposed compartments (Ei). Our assumption is that virus 1 (non-
SARS-CoV-2 virus such as influenza) blocks infection with virus
2 (SARS-CoV-2) within the host, so people exposed to virus 1
transition to the infectious compartment (I1). Upon recovery
from virus 1, they are immune to virus 1, but are now susceptible

to virus 2 (S
(1)
2 ). Once infected with the second virus, they move

through the exposed (E
(1)
2 ) and infectious (I

(1)
2 ) stages, after which

they are fully recovered (R) and immune to both viruses. People
who are infected first with virus 2 can develop a coinfection.
Thus, people in both the exposed and infected compartments for
the second virus (E2 and I2) can become coinfected. We assume
that coinfected exposed (E3) people have moved to the infected
phase for virus 2, so can infect others with this virus, but are
still only exposed to virus 1. After some transition time, they
become fully coinfected (I3) and capable of transmitting both
viruses. After some time, coinfected patients also recover and are
immune to both viruses. Those patients exposed to virus 2 who
do not become coinfected move to the infected compartment
(I2) and recover. At this point, they are immune to virus 2, but

are still susceptible to virus 1 (S
(2)
1 ). Once infected with virus 1,

theymove through the corresponding exposed (E
(2)
1 ) and infected

(I
(2)
1 ) compartments to fully recover.
We make a number of simplifying assumptions to keep the

model tractable. We assume that the population remains fixed,
with total population size N, and that births and deaths are
negligible over the course of the epidemic. We also do not track
deaths due to the infectious diseases. For an epidemic model with
a single virus, this wouldmean that the “recovered” compartment
represents all people who are no longer able to participate in
the infection, whether it is because they have recovered and
are immune or because they have died. In this model, we have
compartments with partial recovery where people are immune

to one virus, but still susceptible to the other. If someone dies
from the first infection, then they cannot be infected with the
second virus, so we are over-counting the number of people with
sequential infections. This might be substantial, particularly for
people infected first with SARS-CoV-2, which has a fairly high
death rate (Salzberger et al., 2020). (This assumption is relaxed in
the Supplementary Material). We assume that order of infection
does not change any of the infection parameters for a particular
virus. In this model, these are the force of infection βi, the
incubation period 1/ki, and the recovery rate δi (i = 1, 2). We
do, however, explore the possibility that coinfection can lead to a
longer recovery time.

2.2. Simulations
For simulations, we use influenza epidemic parameters (Spencer
et al., 2021) as a baseline to investigate interacting viruses
(Table 1). We then consider what might happen during a
potential next wave of SARS-CoV-2 infection that could coincide
with seasonal circulation of other respiratory viruses. We use
parameters for influenza, respiratory syncytial virus (RSV), and
rhinovirus (RV) derived from fits to several years of seasonal
outbreaks in the US (Spencer et al., 2021). Note that, particularly
for influenza, this means that we are not modeling any specific
strain of influenza. For SARS-CoV-2, we use parameters derived
from fits to data from the initial outbreak in China (Anderson
et al., 2020; Bentout et al., 2020). Parameters are given in Table 1.
This leaves us with one unknown parameter: the coinfection
recovery rate δ3. Since the recovery rates for SARS-CoV-2
coinfections are unknown, we consider both a faster and slower
coinfection recovery rate: δ3 = 0.1 /d or δ3 = 0.01 /d.
Simulations are run using python’s odeint differential equation
solver (Bell et al., 2022).

2.3. Sensitivity Analysis
We use the partial rank correlation coefficient (PRCC) to assess
which model parameters contribute most to changes in epidemic
outcome. We allow parameter values to range between ±10%
of their base value and use 1,000 different randomly selected
parameter combinations to calculate the PRCC. The partial rank
correlation coefficient is close to ±1 if there is a high degree of
correlation between the independent and dependent variables,
with positive values indicating a positive correlation (both
increase or decrease together) and negative values indicating a
negative correlation. The output variables examined for PRCC
are total number of virus 1 infections, total number of virus 2
infections, and the number of coinfections.

3. RESULTS

3.1. Epidemics With Identical Viruses
We use a standard compartmental SEIR-type ODE model
described by Equation (1). In the model, people infected with
virus 1 cannot be infected by virus 2, whereas people infected with
virus 2 can be coinfected. The model also allows for sequential
infections without any asymmetry, i.e., a person can get the
other virus after recovering from their initial infection. Infection
is initiated by 100 infected individuals for each of the viruses,
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FIGURE 1 | An extended SEIR model that includes two interacting viruses. Infection with virus 1 temporarily blocks infection with virus 2, but infection with virus 2 can

lead to coinfection upon exposure to virus 1. The transmission rate of each virus is βi . The duration of the exposed period is 1/ki and the duration of the infectious

period is 1/δi .
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Ii(0) = 100. We assume an initial susceptible population, S(0),
of 331,002,651 (the population of the US). All other classes are
initially set to zero. We start by examining the interaction of
two identical viruses using parameters for influenza infection
(Table 1).

Figure 2A shows the projected epidemics caused by two
identical viruses circulating in a population, but with virus 1
having the ability to block infection with virus 2. For comparison,
the dashed black line shows the epidemic if only one of these
viruses is circulating on its own. For both viruses in the co-
circulating epidemic, the number of people infected with a single
virus (either 1 or 2) is lower than if the virus was circulating
without any interaction. The number of people infected with
virus 2, however, is more suppressed than the number of
people infected with virus 1. Even if we include the coinfected
population, there is an overall lowering of the number of people
infected with virus 2 in the population, while the total number of
people infected with virus 1 stays the same (Figure 2B).

TABLE 1 | SARS-CoV-2 (Anderson et al., 2020; Bentout et al., 2020), influenza

virus (H1N1) (Spencer et al., 2021), respiratory syncytial virus (RSV) (Spencer

et al., 2021), and rhinovirus (RV) (Spencer et al., 2021) parameters for simulation.

Virus Transmission Exposed Infection Coinfection

rate rate recovery recovery

βi , d
−1 ki , d

−1 rate, δi , d
−1 rate, δ3, d

−1

Flu (H1N1)i = 1 0.35 0.38 0.21

0.1 or 0.01
RSVi = 1 0.45 0.22 0.13

RVi = 1 0.19 0.42 0.10

SARS-CoV-2i = 2 0.41 0.20 0.10

We use partial rank correlation coefficient (PRCC) to assess
how different model parameters affect the outcome of the
epidemic. We consider three outcomes: the total number of
people infected with virus 1, the total number of people infected
with virus 2, and the total number of coinfections. Results of
the PRCC are shown in Figure 3. The results for the numbers of
people infected with either virus 1 or virus 2 are fairly symmetric,
with the total number of people infected with virus 1 depending
most strongly on virus 1 infection and recovery rates (β1 and δ1),
and the total number of people infected with virus 2 depending
most strongly on virus 2 infection and recovery rates (β2 and δ2).
The asymmetry in the model is most apparent when looking at
the parameter dependence of the total number of coinfections.
The total number of coinfections depends more strongly on the
infection rate and recovery rate of the second virus than on the
infection and recovery rates of the first virus. The only way to
become coinfected is to first be infected with the second virus,
so the more virus 2 infections and the longer they last, the more
likely we are to see coinfections.

3.2. Epidemics With Different Viruses
In reality the viruses that circulate at the same time are
described by different epidemiological parameters. To better
understand how differences in viral spread enhance or suppress
the population-level interaction of the two viruses, we examine
the epidemic when the infection rate (β1 or β2) of either virus
changes. We use three measures of the epidemic curve to assess
how the epidemic changes: the peak number of infected, the time
of peak, and the cumulative number of infected.

Results of this analysis are shown in Figure 4. The left and
center columns show changes in peak number of infected (top
row), time of peak (center row), and total infected (bottom
row) measured relative to their value in a single virus epidemic.

FIGURE 2 | Interacting viral epidemics. Infection is initiated by 100 virus 1 and virus 2 infected individuals assuming the initial number of susceptible population is the

current population of the US, i.e., 331,002,651. (A) The dashed line shows the trajectory of a single epidemic, while the remaining lines show the number of people

infected during a co-circulating epidemic, with red giving the number of people infected with virus 1, blue giving the number of people infected with virus 2, and cyan

giving the coinfected population. (B) The fraction of the population infected at the end of the epidemic for a single virus (black) or co-circulation of virus 1 (red) and

virus 2 (blue). The left bars do not include co-infected people, while the right bars include co-infected people.
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FIGURE 3 | Partial rank correlation coefficients for model parameters. Bars indicate the coefficients, which measure the sensitivity of total number of virus 1 infections

(A), virus 2 infections (B), and number of coinfections (C) on model parameters.

The left column shows results for virus 1 (the dominant virus;
Figures 4A,D,G) while the center column shows results for
virus 2 (the suppressed virus; Figures 4B,E,H). In each figure
we vary either the infection rate of virus one (β1) or the
infection rate of virus 2 (β2). Thus, varying β1 increases the
peak number of infected for virus 1 (red line; Figure 4A), but
has little visible effect on the peak number of infected for virus
2 (red line; Figure 4B). Varying β2 has the opposite effect (blue
lines; Figures 4A,B). Altogether, we see that varying βi causes
changes primarily in the epidemic of virus i, where there is a
minimum βi needed for the presence of an epidemic. Beyond
this threshold, as βi increases, there is a higher peak number of
infections (Figures 4A,B), an earlier time of peak (Figures 4D,E)
and higher total number of infections (Figures 4G,H). There is
little change in the epidemic time course of one virus as the
infection rate of the other virus is varied.

There is also very little obvious asymmetry in the graphs;
changing the infection rate of the dominant and suppressed virus
appears to have more or less the same outcome. However, if we
look carefully, there is a small dip in virus 2 response to changes
in β1 (near relative β = 1) that is not apparent in the response
of virus 1 to changes in β2 of the left column. To highlight this
asymmetry, we subtract the direct responses (virus i response to
change in βi) of virus 1 and virus 2, as well as subtract the indirect
responses (virus i response to change in βj) of virus 1 and virus
2, with the results given in Figures 4C,F,I. Any asymmetry in
the response to changes in infection rate is confined to a small
range near equal infection rates when the viruses have similar
epidemiological characteristics. The dominant virus has a slightly
higher peak number of infections, higher total infections and
earlier time of peak than the suppressed virus, no matter which
infection rate is varied (either β1 or β2). Thus, the within host
suppression of one virus by another is reflected in decreased
population-level spread of the suppressed virus.

3.3. SARS-CoV-2 and Other Respiratory
Viruses
Based on the results of a recent modeling study that suggests that
SARS-CoV-2 is suppressed by several common respiratory
viruses (Pinky and Dobrovolny, 2020), we investigated

interacting epidemics of SARS-CoV-2 with influenza, respiratory
syncytial virus (RSV), and rhinovirus (RV). We start both
epidemics at the same time with the same number of infected
people (100), which might not be entirely realistic. Model
predictions of the epidemics are shown in Figure 5. Note that
these simulations use parameters describing spread of each of
these viruses in a typical epidemic season without any sort of
non-pharmaceutical interventions (NPI) such as mask-wearing,
social distancing, or closures/lockdowns. Thus, the predictions
are more representative of what could happen in coming years
rather than what occurred in 2020 or even in 2021 when some of
these NPIs were at least partially in place.

In the case of influenza and rhinovirus, the influenza and RV
epidemics are predicted to start largely after SARS-CoV-2 has
run its course, so there is little effect of the interaction on the
time course of the SARS-CoV-2 epidemic. There is, however,
a noticeable effect on the time course of the influenza and RV
epidemics, which are shifted, and occur earlier than if either
virus was circulating alone. This shift is seen for both values
of coinfection recovery rate in the case of influenza, but only
for the lower recovery rate in the case of RV. The shift occurs
when coinfected individuals transmit the infection for a longer
period of time than singly infected individuals. While there are
few coinfected individuals, the longer recovery time allows them
to infect a few more people, speeding up the epidemic.

In the case of SARS-CoV-2 and RSV interacting epidemics, the
epidemics are predicted to peak at nearly the same time, so there
is a more visible effect of the within-host viral block. The peak of
the SARS-CoV-2 epidemic is reduced and delayed as compared
to the single epidemic. Additionally, there is a clear change in the
slope of the SARS-CoV-2 epidemic curve during the peak of the
RSV epidemic, suggesting that the presence of RSV is preventing
some SARS-CoV-2 infections.

3.4. Extensions to the Base Model
Two possible extensions of the model are examined in the
Supplementary Material, but are found to have a small effect
on model predictions. The first is including death of patients,
a factor that could be particularly important when considering
SARS-CoV-2 and influenza, which have higher case fatality rates
than many other respiratory viruses (Zhang and Zhao, 2012; Liu
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FIGURE 4 | Co-circulating viruses with different infection rates. We change the infection rate of virus 1 (red lines) or virus 2 (blue lines), leaving other parameters the

same, and plot the peak number of infected (A–C), time of epidemic peak (D–F), and total number of infected (G–I) for virus 1 (A,D,G) and virus 2 (B,E,H). All values

are presented as relative to their values for a single virus epidemic. (C,F,I) The graphs highlight asymmetries in response of the two viruses by subtracting blue lines

from corresponding red lines in the left and center columns.

et al., 2020; Fan et al., 2021). Inclusion of death decreases the
number of people available for a sequential secondary infection,
so there is a reduction in the total number of people infected with
either virus (Supplementary Figure 1). We also allowed for virus
1-infected patients to become coinfected with virus 2, assuming
that the virus 2 infection would be suppressed enough to be
asymptomatic, but would stimulate enough immune response
to prevent further virus 2 infections for the remainder of the
epidemic (Supplementary Figure 3). This assumption leads to a
larger number of coinfected patients and even larger suppression
of virus 2 since a subset of virus 2 infected people do not transmit
the infection (Supplementary Figure 4).

4. DISCUSSION

We explored an epidemic involving two viruses that interact via
suppression of one virus if the two viruses occur in the same
host. Such viral interference is seen in many viral coinfections

(Whitakerdowling and Youngner, 1987; Kumar et al., 2018), and
was hypothesized as a possible explanation for an apparent lack of
SARS-CoV-2 coinfections with other respiratory viruses (Pinky
and Dobrovolny, 2020). Our model predicts that the within host
suppression of one virus by another manifests in a decrease in
prevalence of the suppressed virus at the population level.

One of the big concerns of public health officials is the
potential for a surge of sick patients that might overwhelm

hospital capacity (Li et al., 2020; Moghadas et al., 2020). There
has been particular concern about co-circulation of SARS-CoV-2
and other respiratory viruses, like influenza, that can also cause

surges in hospitalization rates (Bertolani et al., 2018). Should

both epidemics peak at the same time, hospitals might not have

sufficient resources to treat all those in need. Our simulations
indicate that there will be a decrease in the prevalence of the
suppressed virus, which helps with the hospital capacity issue,
although the effect is small and might not be enough to prevent
overwhelming of healthcare systems.
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FIGURE 5 | Common respiratory viruses co-circulating with SARS-CoV-2. Graphs show the model predictions for interacting epidemics of SARS-CoV-2 and influenza

(A,B), RSV (C,D), and rhinovirus (E,F) assuming that SARS-CoV-2 is suppressed during coinfections with each of these viruses. (A,C,E) assume a coinfection

recovery rate of 0.1 /d while (B,D,F) assume a coinfection recovery rate of 0.01 /d.

Hospitalization rates will also be affected by the clinical
severity of coinfections. If coinfections have a protective effect,
there could be less strain on medical resources; if coinfections
result in more severe clinical outcomes, hospitals could be
even more strained. Some studies have found that coinfections
decrease disease severity (Martin et al., 2011, 2013) or are at
least no more severe than mono-infections (Brand et al., 2012;

Martin et al., 2013; Asner et al., 2014; Rotzen-Ostlund et al.,
2014; Mexico Emerging Infect Dis, 2019; Xiang et al., 2021),
although others have found that coinfections can be more severe
than mono-infections (Waner, 1994; Goka et al., 2015; Alosaimi
et al., 2021; Musuuza et al., 2021). In the case of SARS-CoV-
2 coinfections, studies are equally mixed about the severity of
clinical disease, with some studies indicating a protective effect
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(Chekuri et al., 2021; Goldberg et al., 2021), others showing
a worsening of clinical outcomes (Alosaimi et al., 2021; Stowe
et al., 2021), and still others showing no significant difference
between SARS-CoV-2 coinfections and mono-infections (Cheng
et al., 2021; Guan et al., 2021). A meta-analysis of SARS-CoV-
2 coinfections with influenza indicated no overall increase in
mortality associated with coinfections, but found that SARS-
CoV-2/influenza coinfections had decreased mortality in China
and increased mortality in other regions (Guan et al., 2021),
suggesting that other factors besides the characteristics of the two
pathogens might be involved in determining severity.

Using parameters for influenza, RSV, and rhinovirus, we found
that RSV had the most impact on the prevalence of SARS-CoV-
2 when the two viruses co-circulate. Of the viruses investigated
here, SARS-CoV-2 and RSV have the most similar infection rates
(β). According to the analysis of section 3.2, the largest changes
occur when the two viruses have similar growth rates, so this is
why ourmodel predicts the largest effect for the RSV/SARS-CoV-
2 combination. In reality, all of these viruses, and more, are co-
circulating together, making it difficult to isolate the interaction
of one pair (de Celles et al., 2022). In our simulations, we assume
that influenza, RSV, and rhinovirus all suppress SARS-CoV-2,
as was suggested in a mathematical modeling study (Pinky and
Dobrovolny, 2020). These modeling results have been recently
supported by experiments showing suppression of SARS-CoV-2
by rhinovirus in human respiratory epithelium (Dee et al., 2021)
and suppression of SARS-CoV-2 viral loads in mice first infected
with influenza (Achdout et al., 2021), as well as in ferrets first
infected with influenza (Bao et al., 2021). Our model could also
be used to simulate the converse, SARS-CoV-2 suppression of
other respiratory viruses, although for influenza and rhinovirus,
we expect to see little change in the epidemic dynamics since
their infection rates are quite different from the infection rate
of SARS-CoV-2.

Two extensions of our interaction model, inclusion of
patient death and incomplete viral block, are considered in
the Supplementary Material, but other factors might also affect
the predicted dynamics. For example, asymptomatic infections
contribute to spread of influenza (Furuya-Kanamori et al., 2016;
Cui et al., 2019), RSV (Munywoki et al., 2015), rhinovirus
(Martin et al., 2018), and SARS-CoV-2 (Al-Sadeq and Nasrallah,
2020; Dobrovolny, 2020), but are not explicitly accounted for
in our model. Additionally, people infected with SARS-CoV-2
are asked to isolate, keeping them from further spreading the

infection (Hellewell et al., 2020). While symptomatic patients
with other respiratory viruses will often avoid typical daily
activities, isolation measures are not as strict, so this would add
an additional asymmetry between the dynamics of SARS-CoV-
2 and other respiratory viruses. There is the possibility of other,
less direct, interactions between respiratory virus infections.
For example, a number of studies have observed a correlation
between influenza vaccination and decreased COVID-19 severity
in patients (Amato et al., 2020; Marín-Hernández et al., 2021;
Zanettini et al., 2020), suggesting a possible interaction between
the influenza immune response and SARS-CoV-2 virus. Perhaps
the biggest factor not considered in the model is mitigation
strategies for reducing spread of SARS-CoV-2, such as wearing
of masks and social distancing. These NPIs not only change
the time course of the SARS-CoV-2 epidemic, but also help
stem the spread of other respiratory viruses (Ngonghala et al.,
2020) and are largely thought to be responsible for the lack
of typical seasonal respiratory viruses in 2020 (Oh et al., 2021;
Redlberger-Fritz et al., 2021; Wagatsuma et al., 2021).

Despite these limitations, our model provides insight into
how co-circulating viruses will spread through the population if
they participate in viral interference at the within-host level. The
model suggests a reduction in the total number of cases of the
suppressed virus, although the effect is small, but also suggests a
shift in the timing of the peak of the dominant virus is possible.
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