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As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster
PyV and raccoon PyV have been shown to cause tumors in their natural host. During
the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV
is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans),
whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the
International Agency for Research on Cancer. Although the other PyVs recently detected
in humans (referred to here as novel HPyV; nHPyV) share many common features with
PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as
their role in cancer is questioned. This review discusses whether the nHPyVs may play
a role in cancer based on predicted and experimentally proven functions of their early
proteins in oncogenic processes. The functional domains that mediate the oncogenic
properties of early proteins of known PyVs, that can cause cancer in their natural host or
animal models, have been well characterized and we examined whether these functional
domains are conserved in the early proteins of the nHPyVs and presented experimental
evidence that these conserved domains are functional. Furthermore, we reviewed the
literature describing the detection of nHPyV in human tumors.

Keywords: DDR, DnaJ, PP2A, p53, retinoblastoma, seroprevalence, signaling pathways

INTRODUCTION

The Polyomavirus Family: Genome Organization
Polyomaviruses (PyVs) are a family of small, non-enveloped viruses that can infect fish, birds, and
mammals, including humans (Moens et al., 2017a). Characteristic for PyVs is the circular double-
stranded DNA genome of approximately 5.0 kbp that encodes two major regulatory proteins, the
large tumor antigen (LT-ag) and the small tumor antigen (sT-ag), and at least two structural proteins
(VP1 and VP2). The regulatory genes and structural genes are separated by a non-coding control
region (NCCR) encompassing the origin of replication and the promoter/enhancer sequences
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(DeCaprio and Garcea, 2013; Moens et al., 2017b). The regulatory
proteins are expressed early during infection and participate
in viral replication and viral transcription, while the structural
proteins, which are expressed later in the infection cycle, form
the capsid (DeCaprio and Garcea, 2013; Baez et al., 2017; Moens
et al., 2017b). LT-ag contains an origin binding domain (OBD)
that binds tandem repeated 5′-GRGGC-3′ motifs in the NCCR
and a helicase/ATPase domain in its C-terminus. The OBD and
helicase/ATPase domain are required for viral genome replication
(Borowiec et al., 1990). Many PyVs encode additional regulatory
and structural proteins (e.g., middle tumor antigen or MT-ag,
ALTO, VP3, VP4, agnoprotein) (Carter et al., 2013; Moens et al.,
2017b; Saribas et al., 2019).

To date, fifteen PyVs have been isolated from different
human specimens (Moens et al., 2020). The first human
polyomaviruses (HPyVs), BKPyV, and JCPyV, were identified
in 1971 (Gardner et al., 1971; Padgett et al., 1971). In 2007,
two new HPyVs, Karolinska Institute Polyomavirus (KIPyV)
and Washington University Polyomavirus (Allander et al., 2007)
(WUPyV) (Gaynor et al., 2007), were detected, and in the
following years, Merkel cell Polyomavirus (MCPyV) (Feng et al.,
2008), HPyV6 (Schowalter et al., 2010), HPyV7 (Schowalter et al.,
2010), Trichodisplasia spinulosa polyomavirus (TSPyV) (van der
Meijden et al., 2010), HPyV9 (Sauvage et al., 2011; Scuda et al.,
2011), HPyV10 and its variants Malawi polyomavirus (MWPyV)
and Mexico polyomavirus (MXPyV), (Buck et al., 2012; Siebrasse
et al., 2012; Yu et al., 2012), Saint Louis polyomavirus (STLPyV)
(Lim et al., 2013), HPyV12 (Korup et al., 2013), New Jersey
Polyomavirus (NJPyV) (Mishra et al., 2014), and Lyon IARC
polyomavirus (LIPyV) (Gheit et al., 2017) have been described.
Recently in 2019, Ondov et al. (2019) identified the Quebec
polyomavirus (QPyV) sequences in the stool from one patient
through the MinHash algorithm. Not all PyVs, originally isolated
from human specimens, may be true HPyVs. HPyV12, first
described in a human liver sample, was later shown to infect
shrews as its natural host and was therefore reclassified as a Sorex
araneus PyV (Sara-PyV1) by the International Committee on
Taxonomy of Viruses (ICTV) (Gedvilaite et al., 2017). LIPyV
DNA was first amplified from human skin but is most likely
a feline PyV (Fahsbender et al., 2019; Li et al., 2021). LIPyV
and QPyV have not yet been listed as an HPyV by the ICTV.
QPyV DNA has been detected in urine from systemic lupus
erythematosus patients, multiple sclerosis patients, and pregnant
women, but more studies are required to confirm whether this is
a genuine HPyV (Prezioso et al., 2021).

In this review we define novel human polyomaviruses
(nHPyVs) as KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV,
HPyV9, HPyV10, STLPyV, HPyV12, LIPyV, and QPyV. Although
HPyV12/Sara-PyV1 and LIPyV are not genuine HPyVs, and
QPyV has not been classified as a HPyV, we will use the name
HPyV12 and include HPyV12, LIPyV and QPyV as “nHPyVs”.
Simian virus 40 (SV40) has also been detected in healthy and
malignant samples from humans but is not considered a HPyV
(Moens et al., 2017a). Because of its tremendous importance
in understanding the oncogenic potentials of PyV, SV40 will
be included as the prototype transforming PyV. Murine PyV
(MPyV) and hamster Pyv (HaPyV) will also be discussed.

Seroprevalence of Human
Polyomaviruses in the Healthy
Population
Serological studies mainly based on the presence of HPyV VP1
antibodies detected by a VP1- or virus-like particle-based ELISA
have demonstrated that HPyV infection is very common in
healthy individuals. For most HPyVs, seroprevalence in the adult
healthy population is > 70%, and most individuals are infected
with more than one HPyV (Kean et al., 2009; Gossai et al.,
2016; Kamminga et al., 2018). Seroprevalences for HPyV12,
NJPyV-2013, and LIPyV are < 10% in all age categories tested,
whereas another study reported a prevalence of 97% and 58%
for HPyV12 and NJPyV-2013, respectively (Gaboriaud et al.,
2018; Kamminga et al., 2018). The seroprevalence of QPyV has
not been examined. A significant number of individuals acquire
HPyVs already during their early life, which might become a
requirement for the onset of a possibly associated disease or
cancer later in the lifecycle (Kean et al., 2009; Gossai et al., 2016;
Kamminga et al., 2018).

Human Polyomaviruses as Proven
Causative Agents in Human Diseases
So far, six HPyVs are firmly associated with diseases. BKPyV
can cause nephropathy and hemorrhagic cystitis in kidney and
in hematopoietic stem cell transplants, respectively (Helle et al.,
2017); JCPyV is a causative agent of progressive multifocal
leukoencephalopathy (PML), primarily in HIV-positive patients
(Cortese et al., 2021); TSPyV is linked to the rare skin disease
trichodysplasia spinulosa (TS) (Kazem et al., 2013), and HPyV6
and HPyV7 are associated with pruritic rash (Klufah et al., 2021).

A human virus is considered a tumor virus when viral
sequences or proteins are regularly and persistently present in
tumors and there is epidemiological evidence that virus infection
represents a major risk factor for cancer development. Moreover,
it is demonstrated that the virus or specific virus genes can
transform cells or induce tumors in suitable animal models
and that transformation of cell and tumor induction in animals
depends on continuous expression of viral protein(s) (zur
Hausen, 2001). According to these criteria, IARC has classified
the human viruses Epstein-Barr virus, Kaposi’s sarcoma-
associated herpes virus, hepatitis B virus, hepatitis C virus,
high-risk human papillomaviruses, human T-cell lymphotropic
virus type 1, and human immunodeficiency virus as group 1
carcinogenic viruses (i.e., carcinogenic to humans) (Bouvard
et al., 2009). As for HPyV, only 3 members may be associated
with cancer. Presently, MCPyV is the only HPyV considered
to cause cancer in its host. Approximately 80% of Merkel cell
carcinomas (MCC) are positive for the MCPyV genome, which
is typically integrated and encodes a truncated form of LT-ag
(Chang and Moore, 2012). As early as in 2012, MCPyV has been
categorized as a group 2A carcinogen by the International Agency
for Research on Cancer (IARC) (Bouvard et al., 2012). MCPyV
has also been discovered in non-neoplastic B cells and neoplastic
B cells, thus suggesting a role in B-cell neoplasia (Pantulu et al.,
2010; Teman et al., 2011; Imajoh et al., 2012). BKPyV and JCPyV
have been suspected to be involved in renal, prostate, colon and

Frontiers in Microbiology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 834368

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-834368 February 14, 2022 Time: 16:7 # 3

Moens et al. nHPyVs and Cancer

brain cancer (Fioriti et al., 2005; Niv et al., 2005; White et al., 2005;
Delbue et al., 2014, 2017; Keller et al., 2015; Starrett and Buck,
2019; Ahye et al., 2020). Both viruses are classified as possibly
carcinogenic to humans by the International Agency for Research
on Cancer (Bouvard et al., 2012).

The aim of this review is to provide an overview of the pro
and contra evidence that argues for or against a possible role of
nHPyVs in cancer. The implication of MCPyV in cancer has been
extensively elaborated on in recent reviews (Chang and Moore,
2012; Becker et al., 2017; Csoboz et al., 2020; Pietropaolo et al.,
2020; DeCaprio, 2021; Krump and You, 2021), so this virus will
therefore only briefly be considered in this review. Although an
emerging role for HPyV6 and HPyV7 in cancer was recently
described in an excellent review (Klufah et al., 2021), we will
include these two viruses.

CONSERVED DOMAINS IN THE EARLY
PROTEINS OF NOVEL HUMAN
POLYOMAVIRUSES THAT MAY
CONTRIBUTE TO ONCOGENESIS

Transformation Functions of the Early
Proteins of SV40, MPyV, and MCPyV
The story of PyVs begins in the 1950s when Ludwik Gross
showed that a filterable agent from leukemia extract from the
inbred Ak mice, a strain that spontaneously developed leukemia,
could cause tumors of the parotid when injected in newborn
non-leukemic C3H mice. Hence, he named the virus parotid
tumor virus. However, some mice developed additional tumors,
and this was confirmed by work by Sarah Stewart and Bernice
Eddy, who then renamed the virus SE polyomavirus reviewed in
Morgan (2014). Our understanding of how PyV causes tumors
came with the isolation of another polyomavirus from rhesus
macaque origin, SV40. This virus was discovered in 1960 as a
contaminant of poliovirus vaccines (Sweet and Hilleman, 1960;
Hilleman, 1998). SV40 can transform cells, including human
cells, induce tumors in animal models (but not its natural host),
and can be detected in human tumors. As previously mentioned,
a role of MCPyV in human cancer was demonstrated in 2008
(Feng et al., 2008).

The major oncoprotein of SV40 is LT which exerts is
transforming functions by interfering with the tumor suppressors
retinoblastoma protein and p53. SV40 LT has also been shown
to bind the mitotic spindle checkpoint kinase Bub1, the E3
ubiquitin kinase Cul7, the insulin receptor substrate 1, and the
DNA repair enzyme Nbs1. These interactions contribute to the
oncogenic properties of SV40 LT [reviewed in Cheng et al.
(2009)]. SV40 sT alone cannot transform cells but cooperates
with LT. sT exerts its transforming role mostly by interacting
with protein phosphatase 2A (PP2A) [reviewed in Cheng et al.
(2009)]. The major transforming ability of MPyV depends on its
middle T-antigen (MT) and sT. Both can impede the function
of PP2A, whereas MT can bind and activate the tyrosine kinase
Src (reviewed in Cheng et al. (2009)]. MCPyV-positive Merkel
cell carcinomas express a truncated LT that can interact with

retinoblastoma proteins, but not p53. In vitro studies have
suggested that sT may be the major oncogenic protein (Chang
and Moore, 2012; Pietropaolo et al., 2020; Ahmed et al., 2021).
The functional motifs involved in transformation by LT, sT
and MT will be described in more detail and their presence in
the corresponding proteins of the nHPyVs will be discussed in
the next sections.

Functional Domains in the LT of Novel
Human Polyomaviruses That May Be
Involved in Oncogenic Processes
Cell culture studies with temperature sensitive mutants
demonstrated that the oncogenic potential of SV40 primarily
depends on its LT-ag and this was later confirmed by animal
studies (Noonan and Butel, 1978; Sáenz Robles and Pipas, 2009;
Hudson and Colvin, 2016). LT-ag of BKPyV and JCPyV are also
strongly oncogenic in heterologous animal models (Small et al.,
1986a,b; Dalrymple and Beemon, 1990; Noguchi et al., 2013;
Del Valle and Khalili, 2021). SV40 LT-ag interferes with DNA
repair, apoptosis, cellular transcription, protein degradation,
telomerase activity, immune and inflammatory responses, and
stimulate cell proliferation, angiogenesis, and cell migration.
LT-ag of other PyVs such as mouse PyV (MPyV), BKPyV,
and JCPyV have been shown to (at least partially) possess the
same functions. The oncogenic potential of SV40 and other
PyVs LT-ag predominantly depends on its ability to bind and
impede the function of the tumor suppressor proteins p53 and
retinoblastoma (Moens et al., 2007; Cheng et al., 2009; Topalis
et al., 2013; Baez et al., 2017).

The retinoblastoma tumor suppressor family contains the
proteins, pRb, p107, and p130, encoded by the RB1, RBL1,
and RBL2 genes, respectively. The retinoblastoma proteins (RB)
are key proteins in regulating G1 to the S phase cell cycle
progression through their interaction with the E2F transcription
factors family (Genovese et al., 2006; Dick and Rubin, 2013).
The interference with RB’s function by LT-ag requires a direct
interaction mediated by the RB-binding motif (or pRb pocket)
LXCXE (Stubdal et al., 1997; Sullivan et al., 2000; Brown and
Gallie, 2002). The psycho (PTYGTX9F) motif is also important
for RB binding. Moreover, an intact DnaJ domain, located
in the N-terminal end of LT-ag, is also involved. The DnaJ
domain contains the constant region 1 (CR1; LXXLL) and
the Hsc70 binding motif HPDKGGD/N (Campbell et al., 1997;
Srinivasan et al., 1997; Sullivan and Pipas, 2002). The binding
of LT-ag to RB promotes the activation of E2F, resulting in
expression of genes required for S phase progression. Hsc70 is
a chaperone with weak ATPase activity that binds to the DnaJ
motif HPDKNGN/D. The binding of Hsc70 to LT-ag increases the
intrinsic ATPase activity of Hsc70, with this interaction helping
to disrupt pRb proteins/E2F complexes (Sullivan et al., 2000;
Garimella et al., 2006; Salma et al., 2007). The binding of SV40 LT-
ag and JCPyV LT-ag to Hsc70 stimulates cell cycle progression,
and influences viral DNA replication, transformation, viral and
cellular promoter activity, as well as virion assembly [reviewed
in Frisque et al. (2006), Sullivan and Pipas (2002)]. LT-ags of
SV40, BKPyV, and JCPyV bind all three retinoblastoma proteins,
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and may explain LT-ag’s transforming properties in vitro and
in vivo (Harris et al., 1996; White and Khalili, 2006). The CR1,
the Hsc70 binding motif, and the RB-binding motif seems to be
conserved in the LT-ag of most nHPyVs. A possible interaction
between RB and LT-ag was not examined for all nHPyVs. LT-
ag of MWPyV was found to bind pRb, p107 and p130, but
failed to increase expression of the E2F target genes CCNA
(encoding cyclin A), CCNE (encoding cyclin E), and MYBL2
(encoding B-MYB), and to decrease pRb levels contrary to
SV40 LT-ag (Berrios et al., 2015). LT-ags of WUPyV, HPyV6,
HPyV7, and TSPyV were also found to interact with the family
member pRb by co-immunoprecipitation assays with lysates of
cells overexpressing LT-ag (Rozenblatt-Rosen et al., 2012; Wu
et al., 2016a; Nako et al., 2020). The biological relevance of HPyV7
LT-ag and pRb interaction remains unknown as HPyV-7 LT-ag
expression in thymic epithelial tumors did not correlate with
the phosphorylation of pRb (Keijzers et al., 2015). TSPyV LT-
ag clusters with the cell proliferation marker Ki-67 and with
phosphorylated pRb in hair follicles of TS-affected patients, thus
suggesting a role for TSPyV LT-ag in cell proliferation and a
potential driver of papule and spicule formation, typical for
trichodysplasia spinulosa (Kazem et al., 2014).

Another essential LT-ag interaction in PyVs-mediated
tumorigenesis is that with p53, a tumor-suppressing protein that
regulates the gene expression in response to stressful events,
such as DNA damage, leading to cell apoptosis, cell cycle arrest,
or senescence. p53’s function is usually deregulated in many
cancer types (Muller and Vousden, 2013). The interaction of
PyV LT-ag with p53 requires the C-terminal part of the protein,
which also contains the helicase/ATPase domain. The interaction
of LT-ag with p53 prevents p53 from binding to DNA, and
represses the transactivation domain of p53 (Sheppard et al.,
1999). During SV40 carcinogenesis, LT-ag binds and blocks p53
activity, thereby preventing apoptosis, cell cycle arrest, DNA
repair and angiogenesis (Vogelstein et al., 2000; Levine and Oren,
2009). Kellogg and coworkers determined the percentage identity
across the p53 domains of HPyVs BK, JC, KI, WU, MC, 6, 7, TS,
10, STL, and NJ with the SV40 LT-ag p53-interaction domain
(Kellogg et al., 2021). BKPyV and JCPyV LT-ag, which have been
shown to interact with p53, had the highest identity (67 and 69%,
respectively). They also predicted that the interaction of SV40 LT-
ag with p53 requires 13 residues: D402, W581, Y582, P584, V585,
Q590, Q593, K600, D604, F607, L609, S610, and Y612. Only
W581 and Q583 are conserved in MPyV LT-ag. Accordingly,
MPyV LT-ag does not bind p53 (Qian and Wiman, 2000). There
is a high conservation among these residues, with many identical
or similar in LT-ag of HPyVs and MPyV and HaPyV (Figure 1
and Supplementary Figure 1). Their computational docking
studies of p53 with the LT-ags of BKPyV, JCPyV, KIPyV, WUPyV,
MCPyV, HPyV6, HPyV7, TSPyV, MWPyV, STLPyV, and NJPyV
supported the possibility of all LT-ags to bind p53. These findings
predict the possibility of nHPyV LT-ags to interact with p53 in
a manner similar to SV40 LT-ag. A direct interaction between
the LT-ag of BKPyV and the LT-ag of JCPyV and p53 has been
demonstrated (Shivakumar and Das, 1996; Staib et al., 1996).
Less is known about the nHPyVs. Full-length MCPyV LT-ag fails
to bind p53, whereas the truncated LT-ag form expressed in MCC

cells lacks the C-terminal domain, and hence the p53-binding
region (Cheng et al., 2013; Borchert et al., 2014). The TSPyV
LT-ag expressed in HEK293 cells did not or only weakly bound
to p53 (Wu et al., 2016a; Nako et al., 2020). The reciprocal
co-immunoprecipitation with lysates of osteosarcoma U2OS
cells ectopically expressing MWPyV LT-ag, an HPyV10 variant
with > 95% nucleotide identity (Siebrasse et al., 2012), and p53
demonstrated an interaction between these two proteins (Berrios
et al., 2015). However, compared to SV40 LT-ag, MWPyV LT-ag
was less stable and could not stabilize p53, nor could MWPyV
LT-ag promote the growth of human diploid fibroblast IMR-90
cells (Berrios et al., 2015). The rapid turn-over of MWPyV LT-ag
compared to SV40 LT-ag may explain its inability to promote cell
growth and its lack of oncogenic potential.

SV40 LT-ag can interact with additional cellular proteins,
which may contribute to viral transformation (Cheng et al.,
2009). One of these SV40 LT-ag-binding proteins is the mitotic
checkpoint serine-threonine protein kinase Bub1 (Cotsiki et al.,
2004; Hein et al., 2009). Impaired function of Bub1 leads to
chromosomal instability, as observed in cells expressing SV40
LT-ag (Hu et al., 2013). Interaction with Bub1 requires SV40
LT-ag residues 88-98, which contain the WEQWW motif. The
LT-ags of most nHPyVs contain the conserved motif WD/EXWW
(Figure 1 and Supplementary Figure 1). The oncogenic MCPyV,
MPyV, and HaPyV lack the Bub1-binding motif (Figure 1),
and LT-ag of the HPyV6 isolate H6-cg-A2f.11 has the mutated
WGQWW motif, suggesting that the Bub1:LT-ag interaction may
not be absolutely required for HPyVs’ transformation in vivo
(Torres et al., 2018).

Another mechanism by which SV40 LT-ag can induce
transformation is through interaction with the cellular protein
Cul7, an E3 ubiquitin ligase (Kohrman and Imperiale,
1992; Ali et al., 2004). Binding requires residues 69-81
(AHQPDFGGFWDAT) and 98-102 (FNEEN). Mutation of
F98 diminishes Cul7 binding, while deletion of amino acids 68-
83 abolishes it (Cavender and Tevethia, 2016). Cul7 binding to
SV40 LT-ag was shown to play a role in transformation because
mouse embryonal fibroblasts (MEFs) expressing non-Cul7
binding LT-ag mutants were unable to form colonies in soft agar,
while wild-type expression cells were able to do so (Ali et al.,
2004). The FNEEN motif is partially conserved in the nHPyV
KI, WU, 6, 7, 10, TS, STL, and Q, whereas only the BKPyV,
JCPyV, KIPyV, and WUPyV LT-ags show reminiscent identity
with the SV40 LT-ag 69-81 amino acid sequence (Figure 1 and
Supplementary Figure 1). The interaction between LT-ags from
the nHPyV and Cul7 has not been studied, although the low
sequence identity may indicate that no such binding occurs.

Insulin receptor substrate 1 (IRS1) is a component of
the insulin-like growth factor (IGF-I) signaling pathway that
transduces signals from the IGF-I receptor (IGF-IR). SV40 LT-
ag was found to bind IRS1 (Fei et al., 1995). The biological
importance of the IRS-LT-ag interaction in transformation is
underscored by the observation that SV40 LT-ag is unable
to transform IGF-IR−/− MEFs, whereas LT-ag lacking the
N-terminal 250 amino acids fails to bind IRS1 and to transform
IGF-IR−/− MEFs overexpressing IRS1 (Sell et al., 1993; Fei et al.,
1995). The E107K mutation in the pRb motif LFCYE abrogated
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FIGURE 1 | Functional domains in the LT-ags of HPyVs. The amino acid sequence of the functional domains is given in the corresponding colored box. The
consensus sequence (Con) for each domain is shown. M = MPyV (J02288), Ha = HaPyV (NC_001663), SV = SV40 (NC_001669), BK = BKPyV (NC_001538),
JC = JCPyV (NC_001699), KI = KIPyV (NC_009238), WU = WUPyV (NC_009539), MC = MCPyV (NC_010277), H6 = HPyV6 (NC_014406), H7 = HPyV7
(NC_014407), TS = TSPyV (NC_014361), H9 = HPyV9 (NC_015150), H10 = HPyV10 (JX262162), STL = STLPyV (NC_020890), H12 = HPyV12 (NC_024118),
NJ = NJPyV-2013 (NC_024118), LI = LIPyV (NC_034253), and Q = QPyV (BK010702. The accession number is given in parenthesis. CR1 = conserved region 1.

binding of SV40 LT-ag to IRS. Despite conservation of this
residue, it is not known whether LT-ag of the other HPyVs can
bind IRS1, with the exception of JCPyV LT-ag. JCPyV LT-ag
was found to bind IRS1, resulting in nuclear translocation of
IRS-1. IRS-1 could then bind Rad51 and inhibit homologous
recombination DNA repair (Lassak et al., 2002; Reiss et al., 2006).

The interaction of SV40 LT-ag with the DNA repair enzyme
Nbs1 disrupts DNA replication control and has been suggested
to help immortalization of cells. This interaction is mediated by
the DNA binding domain of SV40 LT-ag (Lanson et al., 2000; Wu
et al., 2004). It is not known whether LT-ags of other HPyVs can
associate with Nbs1.

Functional Domains in the sT of Novel
Human Polyomaviruses That May Be
Involved in Oncogenic Processes
The HPyV early region encodes another regulatory protein, sT-
ag, which is translated from an alternative spliced early transcript.
Although sT-ag expression is not a constantly condition for viral
replication, it is required for optimal PyV replication (Kwun et al.,
2009; Tsang et al., 2016). PyV sT-ag has oncogenic properties in
both cell culture and animal models. SV40 sT-ag can transform
cells, including human cells, and can alone or in combination
with LT-ag induce tumors in transgenic animals (Choi et al., 1988;
Ratineau et al., 2000; Goetz et al., 2001; Yu et al., 2001; Ahuja
et al., 2005). MCPyV sT transgenic mice will also develop tumors
(Shuda et al., 2015; Verhaegen et al., 2015, 2017). Moreover,

SV40 sT-ag can also influence the expression of cellular genes,
including proto-oncogenes and tumor suppressor genes (Moens
et al., 1997). The N-terminal regions of LT-ag and sT-ag share
approximately 80 amino acids, which includes the CR1 with
the motif LXLL and the Hsc70 binding HPDKNGN/D sequence
(Figure 2 and Supplementary Figure 2). SV40 sT-ag can interact
with Hsc70, but studies with SV40 LT-ag mutants have shown
that additional sequences C-terminal to the DnaJ and LXCXE
motifs (the latter is not present in sT-ag) are required for
stable interaction with Hsc70 (Sullivan et al., 2001; Genevaux
et al., 2003). The importance of sT:Hsc70 interaction in possible
nHPyV-induced cancers is unknown.

BKPyV and JCPyV sT-ags, but none of the other HPyVs, nor
SV40, MPyV and HaPyV, contain a putative pRb motif LXCXE.
JCPyV sT-ag contains the LYCKE and LHCWE motifs, whereas
BKPyV sT-ag has only one LYCKE motif (Supplementary
Figure 2). These LXCXE motifs are therefore potentially able
to interact with pRb family proteins. Indeed, JCPyV sT-ag was
found to interact with the pRb family members p107 and p130.
The C157A mutation in the LHCWE motif did not abrogate
the interaction with p107 and p130 (Bollag et al., 2010), which
may indicate that the LYCKE motif rather than the LHCWE
sequence is required for binding RB. The authors did not test
whether BKPyV sT-ag, which contains the LYCKE motif, binds
p107/p130, but showed that the C157A substitution reduced
JCPyV replicated by 20-30% compared to wild-type virus.
The importance of the two LXCXE motifs in JCPyV sT-ag is
underscored by the finding that mutations in these sites are
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FIGURE 2 | Functional domains in the sT-ags of HPyVs. The amino acid sequence of the functional domains is given in the corresponding colored box. See legend
Figure 1 for details.

rare. In fact, only two isolates have been described in which
the LHCWE motif was changed into LHRWE and FHCWE,
respectively (accession numbers AAL37643 and AAK 70296).
Whether mutations in the LXCXE motifs affect the oncogenic
properties of JCPyV sT-ag remains to be examined.

The major oncogenic potential of sT-ag is attributed to its
ability to bind the PP2A, since mutants that fail to bind PP2A
cannot induce tumorigenic activity (Hahn et al., 2002). PP2A is
a complex that consists of a structural A, a regulatory B, and a
catalytic C subunit. Several isoforms of each subunit exist, with
the composition of PP2A holoenzyme determining its substrate
specificity and catalytic activity (Janssens et al., 2005; Wlodarchak
and Xing, 2016). This enzyme plays a multi-faceted role in the
regulation of the cell cycle and apoptosis by dephosphorylating
protein targets such as AKT, p53, c-MYC, and β-catenin. PP2A is
identified as a bona fide tumor suppressor (Janssens et al., 2005;
Seshacharyulu et al., 2013; Wlodarchak and Xing, 2016). The
sT-ags of SV40, BKPyV, JCPyV, and MCPyV, in addition to MT of

murine PyV, bind and inactivate PP2A. This interaction promotes
cell transformation, except for MCPyV sT-ag because mutations
that abolished PP2A interaction had no effect on sT’s activity to
transform rat fibroblasts or induce tumors in mice (Arroyo and
Hahn, 2005; Sablina and Hahn, 2008; Cheng et al., 2009, 2017;
Shuda et al., 2011; Griffiths et al., 2013; Kwun et al., 2015; Abdul-
Sada et al., 2017; Verhaegen et al., 2017). However, the sT-ags of
these PyVs seem to bind different subunits of PP2A and with
different affinities. SV40 sT-ag interacts with B55α, B56α, and
B56ε; BKPyV sT with Aα; JCPyV sT-ag with Aα, C subunit, and
the AC core; and MCPyV sT-ag with Aα, Aβ, B5α, Cα, and Cα.
The sT-ags of HPyV6 and TSPyV bind the A and C subunits
of PP2A [reviewed in Moens and Macdonald (2019)]. The
interaction of SV40 sT-ag with PP2A requires the DnaJ domain
and the two Zn-binding domains (Figure 2 and Supplementary
Figure 2; Mateer et al., 1998; Cho et al., 2007). Nonetheless, the
DnaJ domain of SV40 sT-ag contributes to a high affinity binding
to the A subunit of PP2A but is not absolutely essential for
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the sT:PP2A interaction (Mateer et al., 1998). The substitutions
R7A and R21A in the DnaJ domain of SV40 sT-ag disrupted the
interaction with the A subunit of PP2A. The second Zn-binding
domain (see below) seems to be the primary docking site for
PP2A, while the DnaJ domain may stabilize the binding (Cho
et al., 2007). A CXXWPXC consensus sequence is also present
in the sT-ags of BKPyV, JCPyV, whereas HaPyV and MPyV sT-
ags have a CXXPXXC motif, and MCPyV sT-ag has the CXXPXC
motif. The variation in the CXXWPXC consensus sequence may
help explain the difference in the affinity and specificity of sT-ag
for the PP2A subunits. The corresponding sequence of the other
HPyVs shows little similarity with the consensus CXXWPXC
motif, suggesting that they may not or poorly interact with
PP2A. Despite a poor similarity, TSPyV sT-ag and MT-ag, and
the sT-ags of HPyV6, HPyV7, and MWPyV were shown to
bind PP2A (Nguyen et al., 2014; Berrios et al., 2015; Wu et al.,
2017a,b, 2019b) and to stimulate signaling pathways in a PP2A-
dependent manner (see section 3.2). It is not known whether
the sT-ag of the other nHPyVs binds PP2A. Other amino acids
outside the CXXWPXC motif in sT-ag have also been found
to be crucial for PP2A binding. SV40 sT-ag also required the
CXCX2CXLR motif, which is part of the Zn-biding domain [see
next paragraph; (Mateer et al., 1998)]. This CXCX2CXLR/K is
conserved in the sT-ags of MPyV, HaPyV, and HPyVs except
for KIPyV, WUPyV, HPyV12, NJPyV-2013, and LIPyV, which do
not have the terminal basic residue, and MCPyV sT-ag, which
has an additional residue before the basic residue (Figure 2
and Supplementary Figure 2). Single substitutions of residues
R7A, K118A, I122A, L126A, H130A, K134A, L142A, E146A,
and Y150A in MCPyV sT-ag all disrupted the interaction with
PP2A (Kwun et al., 2015). Only residues I122 and L126 are part
of the CXCX2CXLR/K motif, indicating that additional residues
are involved in the MCPyV sT:PP2A interaction. The first Zn-
binding domain with the CX5−7CXCX2−3CX4−5H motif in the
C-terminus of sT-ag is conserved in all HPyVs, except in HPyV10
sT-ag and NJPyV sT-ag, which have CX8CXCX2CX5H and
CX7CXCX3CX4H, respectively (Figure 2 and Supplementary
Figure 2). The second Zn-binding domain CXCX2C is also
present in the sT-ags of MPyV, HaPyV, SV40 and HPyVs. Both
Zn-binding domains contribute to the stability of sT-ag (Jog
et al., 1990; Turk et al., 1993). For SV40 sT-ag, it was shown
that the second Zn-binding motif participates in the interaction
with the A subunit of murine PP2A, whereas the first Zn-
binding motif may be involved in an interaction with the C
subunit of PP2A (Cho et al., 2007). The second Zn-binding
domain has a conserved WF at position + 3/ + 4 (Figure 2).
Mutation of W into A abrogated the interaction of SV40 sT-
ag with the PP2A Aa subunit (Cho et al., 2007). Although not
demonstrated for all nHPyVs, conservation of the PP2A binding
motifs in the sT-ags of the nHPyVs suggests that they can also
interact with PP2A.

Expression of TSPyV sT-ag was shown to induce
hyperphosphorylation of pRb, an event associated with
S-phase induction and increased cell proliferation (Wu
et al., 2016b). It remains unknown as to whether TSPyV
sT-triggered phosphorylation of pRb depends on sT’s ability
to inactivate PP2A, nor were the biological consequences and
the possible binding of TSPyV sT-ag to pRb investigated. The

direct interaction between TSPyV sT-ag and pRb seems unlikely
because sT-ag does not contain the RB-binding motif.

Functional Domains in Additional Early
Proteins of Novel Human
Polyomaviruses That May Be Involved in
Oncogenic Processes
The murine polyomavirus (MPyV) and hamster polyomavirus
(HaPyV) can transform a wide variety of cells and can induce
tumors in their natural host (Benjamin, 2001; Jandrig et al.,
2021). In addition to LT-ag and sT-ag, MT-ag also contributes
to neoplastic transformation and can cause tumors in transgenic
animals (Templeton and Eckhart, 1982; Bautch et al., 1987;
Freund et al., 1992; Cheng et al., 2009; Fluck and Schaffhausen,
2009). These three viral oncoproteins are produced by differential
splicing of the viral early region (Fluck and Schaffhausen,
2009). The pattern of splicing is such that all share a common
N-terminal 79 amino-acid, whereas MT-ag and sT-ag share an
additional 112 amino acids. LT-ag, MT-ag, and sT-ag each have
a unique C-terminal sequence of 706, 230, and 4 amino acids,
respectively. The common region with sT-ag encompasses the
PP2A binding site, whereas the unique MT region can bind the
c-SRC tyrosine kinase and has a hydrophobic transmembrane
domain in its C-terminal end (Cheng et al., 2009; Fluck and
Schaffhausen, 2009).

Of the nHPyVs, expression of alternative proteins was only
investigated for MCPyV and TSPyV. MCPyV encodes LT-ag, sT-
ag, 57kT, and an alternative T-antigen (ALTO) (Shuda et al., 2008;
Carter et al., 2013). The function of the latter two is incomplete
understood. Immortalized human foreskin fibroblasts BJ-hTERT
expressing 57kT grew more slowly than control cells, thereby
suggesting that this protein has a growth inhibitory function
(Cheng et al., 2013). ALTO does not seem to be required for viral
replication (Shuda et al., 2008). Expression of the TSPyV early
region in HeLa and HEK293T cells resulted in six differentially
spliced transcripts with the potential to encode LT-ag, MT-
ag, sT-ag, tiny T, 21kT, and alternative T (ALTO) (Figure 3;
van der Meijden et al., 2015). For all of them, except tiny T,
RNA was detected in the skin from TSPyV-infected patients.
LT-ag, MT-ag, and ALTO protein expression was confirmed in
HEK293T cells transfected with the TSPyV early region. The
TSPyV MT-ag is 332 aa long and contains putative PP2A and SRC
binding domains, and a hydrophobic transmembrane domain
in the C-terminus (Figure 4 and Supplementary Figure 3).
The ALTO protein of MCPyV also contains a hydrophobic
rich C terminus and deletion of this domain changed the
subcellular localization of ALTO from cytoplasmic foci to a
diffuse distribution in the cytoplasm (Carter et al., 2013). The
TSPyV ALTO is also detected in the cytoplasm, although the
effect of deleting the hydrophobic C-terminal domain was not
investigated (van der Meijden et al., 2015).

No alternative early proteins for the other nHPyVs have
been predicted or detected, with the exception of STPyV and
NJPyV-2013. STLPyV encodes a hypothetical MT, which contains
the putative PP2A domain and a hydrophobic rich C-terminus.
However, there is little similarity with the putative SRC domain
of TSPyV MT (Supplementary Figure 3). For NJPyV-2013 a
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FIGURE 3 | Alternative early transcripts of TSPyV. Modified after (van der Meijden et al., 2015; van der Meijden and Feltkamp, 2018).

transcript encoding a putative 299 aa alternative T-antigen could
be amplified from muscle tissue from a NJPyV-2013 positive
patient (Mishra et al., 2014). The existence and possible function
of these plausible STLPyV and NJPyV-2013 proteins remain to
be investigated.

EPIDEMIOLOGICAL EVIDENCE FOR A
ROLE OF THE NOVEL HUMAN
POLYOMAVIRUSES IN CANCER

Detection of Novel Human
Polyomaviruses in Tumor Samples
Previous studies had shown a higher prevalence of BKPyV in
urothelial and renal cancers and of JCPyV in brain tumors
and colorectal cancers, compared to healthy tissue [(Delbue
et al., 2014; Keller et al., 2015; Starrett and Buck, 2019;
Shavaleh et al., 2020; Shoraka et al., 2020); see Supplementary
Table 1]. MCPyV is associated with approximately 80% of all
MCC cases (Arora et al., 2012; Becker et al., 2017; Pietropaolo
et al., 2020). The presence of nHPyVs has been examined in
several human tumor tissues (Supplementary Table 1). Yet,
the lack or very infrequent detection of (RT-)PCR amplified
nHPyV sequences, nHPyV proteins by immunohistochemistry,
and nHPyV reads after deep sequencing does not support a
role of nHPyVs in human cancers (Table 1 and Supplementary
Table 1). Exceptions are HPyV 6 and HPyV7 for which an
emerging role has been suggested in certain skin cancers and
non-cutaneous malignancies, respectively [(Klufah et al., 2021;
Supplementary Table 1].

Correlation Between Novel Human
Polyomaviruses Antibodies and Cancer
Serological studies have proven that most healthy individuals
are infected with one or several HPyVs, and possess antibodies

against the major capsid protein VP1 (see section 1.2). Thus,
comparing VP1 seroprevalence between healthy individuals
and cancer patients may be inconclusive. The prevalence of
antibodies against LT-ag or sT-ag may be a better marker as
was shown for patients with MCPyV-positive MCC compared
to non-MCC individuals. While only 2% (respectively, 1%)
of 530 non-malignant subjects had antibodies against LT-ag
(respectively, sT-ag), 26% (respectively, 41%) of 205 MCPyV-
positive MCC patients were seropositive for LT-ag (respectively,
sT-ag) (Paulson et al., 2010). This significant difference in anti-
MCPyV oncoprotein antibodies was confirmed in another study,
showing seropositivity in 1% of healthy persons (n = 100) against
52% in 219 MCC patients (Paulson et al., 2017). Only a few
studies have examined the seroreactivity against nHPyVs in
normal and cancer patients. Even so, most of these studies have
monitored antibodies against VP1 and did not investigate the
presence of the virus in the tumor. Comparing VP1 antibody
prevalence in women with invasive cervical cancer or cervical
intraepithelial neoplasia grade 3 with matched controls did
not show significant differences (Castellsagué et al., 2014).
Teras et al. (2015) determined the presence of antibodies
against KIPyV, WUPyV, HPyV6, HPyV7, and TSPyV VP1 as a
prognostic risk factor for non-Hodgkin lymphoma. They found
that there was no association of these HPyVs with the risk
of non-Hodgkin lymphoma risk, although a not statistically
significant inverse trend for TSyV antibodies and non-Hodgkin
lymphoma risk was observed. Similarly, no clear association
between KIPyV, WUPyV, HPyV6, HPyV7, TSPyV, and HPyV10
VP1 seropositivity and squamous cell carcinoma (SCC) risk
was found (Gossai et al., 2016). The authors also compared
HPyV6, HPyV7, TSPyV, and HPyV10 LT-ag seropositivity in
SCC patients and healthy controls. However, because of the
cross-reactivity and the small number of samples that were LT-
ag seropositive, the results were excluded (Gossai et al., 2016).
The presence of viral nucleotide sequences or proteins in the
SCC tumors was not investigated. Results from HPyV6, HPyV7,
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FIGURE 4 | Amino acid sequence of MT-ag, ALT, sT-ag and LT-ag of TSPyV. The common sequences are enlightened in the same color. Putative functional motifs
are shown.

TABLE 1 | Prevalence of novel HPyV in human tumor samples.

Oral
Cavity

Respiratory
system

Digestive
system

Excretory
system

Reproductive
system

Integumentary
System

Nervous
system

Circulatory
system

Endocrine
system

skeleton

KI 0/475 (0)* 10/677 (1.5) 0/148 (0) 0/399 (0) 0/434 (0) 4/258 (1.6) 0/767 (0) 0/194 (0) 0/122 (0) ND#

WU 1/447 (0.2) 0/725 (0) 0/270 (0) 0/399 (0) 0/434 (0) 0/258 (0) 0/767 (0) 0/72 (0) 0/122 (0) ND

H6 15/542 (2.8) 0/370 (0) 24/380 (6.3) 0/211 (0) 1/334 (0.3) 164/2212 (7.4) 0/638 (0) 0/72 (0) 0/53 (0) 0/33 (0)

H7 4/559 (0.7) 0/441 (0) 26/300 (8.7) 0/211 (0) 1/334 (0.3) 41/1347 (3) 1/646 (0.2) 0/72 (0) 0/53 (0) 0/33 (0)

TS 0/447 (0) 1/457 (0.2) 0/148 (0) 0/211 (0) 1/426 (0.2) 5/890 (0.6) 0/559 (0) 0/73 (0) 0/47 (0) ND

H9 0/475 (0) 0/413 (0) 0/260 (0) 0/399 (0) 0/280 (0) 2/618 (0.3) 0/629 (0) 1/100 (1) ND ND

H10 8/363 (2.2) 0/569 (0) 0/141 (0) 0/211 (0) 0/157 (0) 13/271 (4.8) 0/638 (0) 0/34 (0) ND ND

STL 0/269 (0) 0/473 (0) 0/130 (0) 0/202 (0) 0/143 (0) 1/246 (0.4) 0/638 (0) 0/34 (0) ND ND

H12 0/269 (0) 0/326 (0) 0/130 (0) 0/202 (0) 0/143 (0) 0/317 (0) 0/590 (0) 0/72 (0) ND ND

NJ 0/269 (0) 0/326 (0) 0/130 (0) 0/202 (0) 0/143 (0) 1/82 (1.2) 0/590 (0) 0/72 (0) ND ND

LI ND 0/2 (0) ND ND 0/58 (0) 0/17 (0) 0/329 (0) 0/34 (0) ND ND

Q ND 0/2 (0) ND ND 0/58 (0) 0/3 (0) 0/329 (0) 0/34 (0) ND ND

See text and Supplementary Table 1 for details and references. *Number of samples positive of total number of samples tested (%).
#Not done.

and TSPyV VP1 seroprevalence in immunocompetent patients
with keratinocyte carcinomas (including cutaneous SCC and
basal cell carcinoma) revealed that viral infection did not predict
subsequent development of keratinocyte carcinoma, suggesting
that these viruses do not play a major role in this cancer
(Amorrortu et al., 2021). These finding were confirmed in a
cohort of Australian cutaneous SCC patients. Comparing KIPyV,
WUPyV, HPyV6, HPyV7, TSPyV, HPyV9, and HPyV10 VP1
seroprevalence in 226 individuals that developed cutaneous SCC
with 462 controls showed no significant differences. The authors

also tested for antibodies against HPyV7, TSPyV, and HPyV10
LT-ag and did not find statistically significant differences between
the cancer patients and healthy controls. The presence of viral
DNA in tumor tissue was not investigated (Antonsson et al.,
2018). Likewise, no statistically significant difference in KIPyV,
WUPyV, HPyV6, HPyV7, TSPyV, and HPyV10 VP1 and LT-ag
seroprevalences were found between lung cancer patients and
healthy controls (Malhotra et al., 2016). Another study failed
to detect TSPyV LT-ag antibodies in sera from 370 healthy
control and in sera from 357 chronic lymphocytic leukemia
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patients (Robles et al., 2015). Antibodies against KIPyV, WUPyV,
HPyV6, HPyV7, and TSPyV VP1 were also examined in this
study. High VP1 seroprevalence was found (77-99%) for all
viruses in the healthy population, but a statistically significant
decrease in seroprevalence for all viruses was detected in the
patient group (Robles et al., 2015). The presence of viral DNA
in tumor cells was not examined. Song et al. (2020) showed
that KIPyV, WUPyV, HPyV6, and TSPyV, VP1 seropositivity was
inversely associated with AIDS-related non-Hodgkin lymphoma,
whereas seropositivity for HPyV7, HPyV9, and HPyV10 VP1
were non-significantly higher. Work by Bassig et al. (2018) with
three different cohorts from China confirmed that TSPyV VP1
seropositivity was not associated with a risk of non-Hodgkin
lymphoma, although an increased risk was apparent for higher
antibody levels for TSPyV in the subjects of one of the cohorts.
However, a study with 199 AIDS-NHL cases and matched HIV
infected controls found seropositivity for the TSPyV to be
associated with a 1.6-fold increased risk of AIDS- related non-
Hodgkin lymphoma (Halec et al., 2019). VP1 serology indicated
that glioma risk was unrelated to infection with HPyV6 (Egan
et al., 2021). In conclusion, all these studies show that infection
with nHPyVs as determined by VP1 serology has limited value as
a marker for cancer.

However, an increasIn conclusion, all these studies show that
infection with novel HPyVs as determined by VP1 serology has
limited value as a marker for cancer.

EXPERIMENTAL EVIDENCE FOR
ONCOGENIC PROPERTIES OF THE
NOVEL HUMAN POLYOMAVIRUSES

Novel Human Polyomaviruses and Cell
Proliferation
A group headed by Becker examined the presence of MCPyV,
HPyV6, HPyV7, TSPyV, HPyV9 and HPyV10 in 16 BRAF
inhibitor-associated epithelial proliferation samples from six
different patients. No or low DNA levels were detected for these
HPyVs, except HPyV6, for which a relatively high HPyV6 DNA
load and VP1 expression was monitored. The majority (10/16;
i.e., 63%) of the BRAF inhibitor-associated epithelial proliferation
samples contained mutations in the RAS gene, whereas six
samples did not contain such mutations. The authors suggested
that the high viral load and viral expression may contribute to
the epithelial proliferation in the samples with wild-type RAS
gene (Schrama et al., 2014). The expression of LT-ag and sT-ag
was not analyzed in the samples and the mechanism of HPyV6-
induced epithelial proliferation in wild-type RAS cells is not
known. MWPyV LT-ag was unable to stimulate the growth of
human diploid fibroblast IMR90 cells. The authors speculated
that this was due to the instability of LT-ag (Berrios et al., 2015).

Novel Human Polyomaviruses and
Transforming Activity
Expression of TSPyV LT-ag in mouse fibroblast NIH3T3
cells induced colony formation in soft agar, underscoring the

transforming properties of this LT-ag (Nako et al., 2020). In fact,
colonies of TSPyV LT-ag were detected more frequently than in
SV40 LT-ag-transfected cells, suggesting a higher transforming
activity of TSPyV LT-ag compared to SV40 LT-ag, despite
neglectable binding to p53.

An emerging role of HPyV7 in thymic epithelial tumors has
been reported (Rennspiess et al., 2015; Klufah et al., 2021), and
inactivation of the cyclin dependent kinase inhibitor 2A (also
referred to as p16INK or p14ARF) plays a role in progression
of thymoma (Hirabayashi et al., 1997). Still, no correlation was
found between the presence of HPyV7 LT-ag and p16 levels in
thymic tumors (Keijzers et al., 2015).

Expression of MCPyV sT-ag in rat fibroblasts (Rat2 cell
line) and rodent cells transformed cells in vitro (Shuda et al.,
2011; Zhao et al., 2020). However, HPyV6 and HPyV7 sT-ag
were unable to generate colonies in soft agar when expressed
in Rat2 cells. Rather, expression of sT-ag of these two HPyVs
in primary foreskin fibroblasts, in keratinocytes, in the lung
adenocarcinoma cell line A549 and in BJ fibroblasts induced
senescence (Zhao et al., 2020). MCPyV sT-ag contains the
unique LKDYM sequence (aa 91-95), which is absent or poorly
conserved in sT-ag of HPyV6, HPyV7 and the other nHPyVs
(Supplementary Figure 2). This domain is referred to as
the LT-ag stabilizing domain (LSD) and has been shown to
inhibit the FBXW7 E3 ligase, resulting in the stabilization of
MCPyV LT-ag and other FBXW7 substrates such as c-MYC
and cyclin E (Kwun et al., 2013). The lack of this LSD in sT-
ag of HPyV6, HPyV7 may explain their inability to stabilize
c-MYC and to transform cells in vitro (Zhao et al., 2020).
Nevertheless, senescent fibroblast can promote proliferation and
metastasis of tumor cells through secretion proinflammatory
factors known as senescence-associated secretory phenotype
(Wang et al., 2020). Indeed, medium from HPyV6/7 sT-ag
expressing fibroblasts could rescue proliferation of non-growing
MCPyV LSD mutant sT-ag expressing cells (Zhao et al., 2020).
These results indicate that the sT-ags of HPyV6 and HPyV7 may
indirectly contribute to cancer by inducing senescence, resulting
in the production of senescence-associated secreted cytokines,
which may promote proliferation of cancer cells in the tumor
microenvironment.

Animal Models
To the best of our knowledge, apart from MCPyV, transgenic
animal models expressing LT-ag and/or sT-ag of the nHPyVs
have not been generated. The absence of a convincing
association between most nHPyVs and human cancer may
explain why scientists have been reluctant to generate transgenic
animals. Xenograft studies with nHPyV-positive tumor cells
are also lacking.

Novel Human Polyomaviruses and
Epigenetic Changes
Epigenetic changes, including DNA methylation, histone
modification, chromatin remodeling, and expression of non-
coding RNAs such as microRNA, long non-coding RNA
and circular RNA play a crucial role in the regulation of

Frontiers in Microbiology | www.frontiersin.org 10 February 2022 | Volume 13 | Article 834368

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-834368 February 14, 2022 Time: 16:7 # 11

Moens et al. nHPyVs and Cancer

gene expression, with aberrant epigenetic changes being
characteristic for cancer cells [for reviews see e.g. (Baylin and
Jones, 2016; Zhang et al., 2020)]. All human tumor viruses
can trigger epigenetic changes in the host cell (Pietropaolo
et al., 2021). SV40, BKPyV, JCPyV and MCPyV were found
to provoke epigenetic changes (Balakrishnan and Milavetz,
2017; Pietropaolo et al., 2021). Epigenetic dysregulation seems
to be a driving mechanism in MCPyV-positive MCC, with
altered DNA methylation, histone and chromatin modifications,
and microRNA regulation (Pietropaolo et al., 2021; Rotondo
et al., 2021). Little is known about the effect of the nHPyVs
on epigenetic changes in infected cells. Enhanced transcript
levels of histone methyltransferases were measured in MCPyV
sT-ag expressing BJ cells compared to HPyV6 and HPyV7 sT-ag
expression cells, this coincided with increased trimethylation
of histone H3 at lysine residue 4, which is associated with
transcriptional activity (Venkatesh and Workman, 2015; Zhang
et al., 2020). Recently, the group of Lui showed that the DnaJ
domain of MCPyV T-antigens recruited Hsc70, which then binds
to DICER mRNA, thereby leading to stabilization and increased
protein expression. Because DICER1 is a key factor in microRNA
biogenesis, the early proteins of MCPyV affects the expression
of mature microRNAs (Gao et al., 2021). The DnaJ domain is
highly conserved in the LT-ags and sT-ags of the other HPyV,
hence suggesting that other HPyVs can affect the microRNA
maturation process.

The Effect of Novel Human
Polyomaviruses on Signal Transduction
Pathways
The Mitogen-Activated Protein Kinase Pathways
The mitogen-activated protein kinase (MAPK) pathways consist
of the classical MAPK pathways referred to as the ERK
(extracellular-regulated kinase), JNK (c-Jun N-terminal kinase)
and p38MAPK pathways, in addition to the atypical pathways
represented by ERK3/4, ERK7/8, and Nemo-like kinases
(Cargnello and Roux, 2011). Few studies have addressed the
possible effect of nHPyVs on MAPK pathways. The group of
Tyring showed that ectopically expressed HPyV6 sT-ag as well
as HPyV7 sT-ag in HEK293 cells interacted with PP2A, thereby
leading to activation (phosphorylation) of the ERK components
mitogen/extracellular signal-regulated kinases MEK1/2 and
ERK1/2 (Wu et al., 2017b, 2019b). Moreover, HPyV6 and HPyV7
sT-ags increased protein levels and phosphorylation levels of
the transcription factor c-JUN. Mutant sT-ags unable to bind
PP2A did not activate the MAPK pathway and failed to induce
c-JUN phosphorylation. The sT-ag of the oncogenic MCPyV was
also reported to bind PP2A (Griffiths et al., 2013; Kwun et al.,
2015; Abdul-Sada et al., 2017; Cheng et al., 2017), but no ERK
phosphorylation was observed in 42/44 Merkel cell carcinoma
tumors with an unknown status of MCPyV, nor in HEK293
cells expressing MCPyV sT-ag (Houben et al., 2006; Wu et al.,
2016c). TSPyV sT-ag was found to phosphorylate ERK, MEK
and c-JUN when overexpressed in HEK293 cells, but whether
this occurred in a PP2A-dependent manner was not examined

(Wu et al., 2016d). The same group described that TSPyV
MT-ag could interact with PP2A and activate the MEK/ERK
cascade and phosphorylate the substrate MNK1, but not c-JUN
in a PP2A-dependent manner (Wu et al., 2017a). Although
not investigated, HPyV6, HPyV7, and TSPyV sT-ag may also
activate the JNK pathway because c-JUN is also a substrate
of this pathway (Cargnello and Roux, 2011). The biological
effect of HPyV6 and HPyV7 sT-ags and TSPyV sT/MT-triggered
MAPK activation was not investigated, nor has activation of
this pathway and phosphorylation of c-JUN in HPyV6, HPyV7
and TSPyV positive cancers been examined. Given the known
role of the aberrant MAPK pathway and c-JUN activity in
cancer and inflammation (Shaulian, 2010; Cargnello and Roux,
2011; Moens et al., 2013) and the emerging role of HPyV6 and
HPyV7 in human cancers (Klufah et al., 2021), HPyV6 and
HPyV7 sT-ag may participate in pathological processes. The
biological implication of the MWPyV sT:PP2A interaction was
not investigated (Berrios et al., 2015).

Novel Human Polyomaviruses and the NFκB Pathway
The NFκB pathway plays a pivotal role in inflammation and
contributes to immunity. This pathway is also involved in
cancer development and progression (DiDonato et al., 2012;
Xia et al., 2018) responses and is often targeted by viruses
to evade the immune system. The central components of the
NFκB pathway are members of the Rel family, which contains
the c-Rel, RelA (or p65), RelB, NFκB1 (or p105/p50), and
NFκB2 (or p100/p52). These proteins can form homo- and
heterodimers that act as transcription factors, and can regulate
the expression of several NFκB-responsive genes whose gene
products are involved in inflammatory and immunological
processes (Vallabhapurapu and Karin, 2009; Fullard et al., 2012).
RelA/p65 and NFκB1/p105/p50 are activated in the canonical
NFκB pathway, which has been linked to senescence, whereas
RelB and NFκB2/p100/p52 are implicated in the non-canonical
pathway, which bypasses cellular senescence (Vaughan and Jat,
2011; Capece et al., 2018). Human tumor viruses have evolved
strategies to evade and exploit the NFκB signaling cascades for
their benefit and to provoke cancer (Sun and Karin, 2008; Sun
and Cesarman, 2011; Zhao et al., 2015; da Costa et al., 2016;
Harhaj and Giam, 2018; Charostad et al., 2020). MCPyV sT-
ag was shown to inhibit the canonical NFκB pathway, but to
activate non-canonical NFκB signaling (Griffiths et al., 2013;
Berrios et al., 2016; Zhao et al., 2020). Expression of HPyV6 or
HPyV7 sT-ags in BJ cells activated the canonical NFκB pathway,
whereas MCPyV sT inhibited this pathway. Vice versa, MCPyV
sT-ag stimulated the non-canonical NFκB signaling, whereas
HPyV6/7 sT had no effect (Zhao et al., 2020). The effect of sT-
ags of other nHPyVs on canonical and non-canonical NFkB
signaling has not been investigated. Proteins of other human
oncoviruses can activate the non-canonical NFκB pathway,
suggesting that this may be a common feature for transforming
viruses (Sun, 2017).

Binding of viral dsDNA to the specific pattern recognition
receptor toll-like receptor 9 (TLR9) results in activation of NFκB
signaling and subsequent production of inflammatory mediators
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(Mogensen, 2009). While the early regions of KIPyV and WUPyV
could inhibit TLR9 promoter activity in a transient transfection
assay in the B lymphocyte RPMI-8226 cell line with a luciferase
reporter vector, no reduction in TLR9 mRNA levels was observed
in stable KIPyV (respectively, WUPyV) LT-ag/sT-ag expressing
naturally immortalized keratinocytes compared to control cells
(Shahzad et al., 2013). The reason for this cell-specific effect on
TLR9 expression is not known nor have the natural host cells
for KIPyV and WUPyV been identified, although evading the
innate immune system may help facilitate KIPyV and WUPyV
to establish a long-lasting viral infection, a prerequisite for a virus
to possibly induce cancer. Whether other nHPyV can modulate
TLR9 expression remains to be investigated.

Novel Human Polyomaviruses and the
Phosphatidyl-3-Kinase/AKT/Mammalian Target of
Rapamycin Pathway
The phosphatidyl-3-kinase (PI3K)/AKT/Mammalian Target
of Rapamycin (mTOR) pathway controls cell proliferation,
apoptosis, protein translation, and metabolic processes and
is often constitutively activated in cancers (Sato et al., 2010).
mTOR forms two complexes: mTORC1 and mTORC2 (Loewith
et al., 2002; Jhanwar-Uniyal et al., 2019). mTORC1 regulates
mRNA translation through phosphorylation of the eukaryotic
initiation factor 4E-binding protein 1 (4E-BP1). In its non- or
hyperphosphorylated form, 4E-BP1 binds eukaryotic initiation
factor 4E (eIF4E), hence resulting in the inhibition of cap-
dependent translation. However, hyperphosphorylated 4E-BP1
does not bind eIF4E, and therefore does not prevent translation
of 5’ capped mRNA (Musa et al., 2016). Inducible expression
of HPyV7 sT-ag in HEK293 cells enhanced phosphorylation of
4E-BP1 at Ser65, whereas overexpression of the sT-ags of TSPyV
and HPyV6 had no effect on 4E-BP1 phosphorylation (Wu
et al., 2015). HPyV7 sT-ag induced phosphorylation of 4E-BP1
in a PP2A dependent manner (Wu et al., 2019b). Interestingly,
inhibition of mTOR increased BKPyV, JCPyV, MCPyV, HPyV7,
and TSPyV LT-ag levels in HEK293 cells transfected with
expression plasmids for these LT-ags. Stimulation of LT-ag levels
by mTOR inhibitors was the result of an enhanced stability of
the protein and was mediated by the inhibition of the SKP2E3
ligase, which targets LT-ag. Inhibition of mTOR activated JCPyV,
MCPyV, HPyV7 and TSPyV replication (Alvarez Orellana
et al., 2021). Thus, while mTOR inhibitors have been used as
anti-cancer agent (Ciuffreda et al., 2010), it may not be suitable
for the treatment of HPyV positive tumors as it may stabilize the
LT-ag oncoprotein.

Novel Human Polyomaviruses and the Wnt Pathway
Perturbed Wnt signaling occurs often in cancer cells and human
tumor viruses can dysregulate the Wnt pathway (van Zuylen
et al., 2016; Zhan et al., 2017; Zhong et al., 2020). One of the major
components of this pathway is β-catenin, which is normally
cytoplasmic. Activation of the Wnt pathway leads to nuclear
translocation of β-catenin, where it will bind to transcriptional
activators and stimulate transcription of b-catenin target genes
(Zhan et al., 2017). The JCPyV LT-ag binds β-catenin through
an LT-ag central domain spanning residues 82 to 629 and

promotes stabilization. Besides this, the LT-ag triggered β-catenin
nuclear translocation, with subsequent enhancement of c-myc
expression (Enam et al., 2002; Gan and Khalili, 2004; Ripple
et al., 2014). Although the JCPyV LT-ag:β-catenin interaction
was described in mouse medulloblastoma and in glioblastoma
cell lines, it has been recently detected in human colorectal
carcinoma, in which β-catenin and Wnt pathway are frequently
increased (Enam et al., 2002). This suggests a role of JCPyV in
colorectal malignancy through activation of the Wnt pathway,
although JCPyV detection is frequent in both normal colorectal
and colorectal cancer tissues [(Shavaleh et al., 2020; Shoraka
et al., 2020); Supplementary Table 1]. Infection of human
bladder cancer cells with BKPyV activated the β-catenin signaling
pathway, but an interaction between LT-ag and β-catenin was not
investigated (Zeng et al., 2020). Ectopic expression of SV40 sT-ag
in HEK293 upregulated several genes encoding proteins involved
in the Wnt signaling (Ali-Seyed et al., 2006). Several proteins
of the Wnt pathway were overexpressed in MCC compared to
carcinoid tumors of the lung, but the presence of MCPyV in MCC
was not determined (Shao et al., 2013). It is unknown whether the
early proteins of the nHPyVs interact with β-catenin or stimulate
the β-catenin/Wnt pathway.

Novel Human Polyomaviruses and
Immune Evasion and Inflammation
The apolipoprotein B messenger RNA-editing, enzyme-catalytic,
polypeptide-like 3 (APOBEC3) protein is a ssDNA cytosine-to-
uracil deaminase that restricts viral replication as part of the
innate immune response (Bonvin and Greeve, 2008; Romani
et al., 2009; Cheng et al., 2021). APOBEC3 can also deaminate
genomic DNA and is responsible for mutations in many different
cancers (Burns et al., 2015). The LT-ags of BKPyV, JCPyV, and
MCPyV were shown to upregulate expression and activity of
APOBEC3 (Verhalen et al., 2016). The mechanism by which
these LT-ags upregulate APOBEC3 is not known, nor has it
been determined whether the LT-ags of other HPyVs have the
same property. For human papillomavirus (HPV) it was shown

TABLE 2 | Indication pro and contra for a role of the novel HPyVs in cancer.

Pro Contra

Putative or proven conserved
• p53 binding motif
• pRb binding motif
• PP2A binding motif
• DnaJ motif
• Cul7 motif

Absent or rare detection of viral
sequences and protein in tumors

Activation of oncogenic signaling
pathways in vitro

Incidence in tumor tissue comparable
with normal tissue

Infection early in life: long incubation
time

Low viral genome copy numbers in
tumors

Alternative early proteins with similarity
to the MT oncoprotein of other PyVs

No correlation between LT-ag/sT-ag
seropositivity and cancer

TSPyV LT-ag has transforming
properties in vitro

Viral oncoproteins do not induce cell
proliferation in vitro

HPyV6 and HPyV7 sT-ag lacks
transforming properties in vitro
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that E6 upregulates APOBEC3 by inactivating p53. This may
not be the case for HPyVs because MCPyV LT-ag cannot bind
p53 (Cheng et al., 2013). Because expression of the enzyme is
upregulated in HPV-related cancers (Warren et al., 2017), LT-
ag-induced APOBEC3 expression may also contribute to HPyV-
mediated tumorigenesis.

BKPyV- and JCPyV-encoded microRNA downregulates
expression of the UL16 binding protein 3 (ULBP3), a protein
recognized by the killer receptor NKG2D, thereby reducing the
destruction of virus-infected cells by natural killer cells (Bauman
et al., 2011). SV40 infection of the breast cancer MCF2 resulted
in a decrease of ULBP1 levels (Bauman et al., 2016). Different
from BKPyV and JCPyV, SV40 microRNA was not involved in
the reduction of ULBP1 expression. The mechanism by which
SV40 inhibits ULBP1 expression remains elusive. It remains
unverified as to whether the nHPyVs can evade the innate
immune system by modulating the expression of ULBP1 and/or
ULBP3, nor has the existence of microRNA encoded by the
nHPyVs been demonstrated.

Novel Human Polyomaviruses and DNA
Damage Response
DNA damage and chromosome instability is a hallmark of cancer
(Hanahan and Weinberg, 2011). Cells have evolved a complex
system, the DNA damage response (DDR), to detect and repair
changes in the genome. The major pathways in DDR are the
ataxia telangiectasia mutated kinase (ATM), the ATM-related
and Rad3-related kinase (ATR), and the DNA-dependent kinase
(DNA-PK) (Awasthi et al., 2015; Blackford and Jackson, 2017).
BKPyV, JCPyV, and MCPyV early proteins can interfere with
the DDR pathway to support viral propagation at the cost of
host genome stability (Justice et al., 2015; Moens and Macdonald,
2019; Tahseen et al., 2020). Less is known about the effects of the
nHPyV on the DDR. The sT-ags of HPyV6, HPyV7, and TSPyV
provoke phosphorylation of ATM and its downstream effector
check point kinase 2 (CHK2), which in turn phosphorylates
histone H2 variant H2AX and tumor promoter p53 binding
protein 1 (p53BP1) (Wu et al., 2019a). A possible link between
HPyV6, HPyV7, or TSPyV-induced activation of the DDR and
oncogenesis is not known.

CONCLUSION AND FURTHER
DIRECTIONS

All PyVs encode LT-ag and sT-ag, proteins that have been shown
to be oncogenic in cell culture and animal models for some of
the PyVs. Some PyVs, including the HPyV MCPyV, can cause
cancer in their natural host. A causal role for HPyV6 and HPyV7
in human skin cancers is emerging, but the association of other
nHPyVs with human tumors is less obvious (Klufah et al., 2021).
Table 2 summarizes arguments pro and contra a role for the
nHPyVs in cancer. Several explanations can be suggested as
to why at present these viruses do not seem to cause cancer.
Although these viruses may establish a persistent infection, the
expression levels of LT-ag and sT-ag may be too low to be harmful
for the cell. Although the LT-ags and sT-ags of the nHPyVs can

potentially bind tumor suppressors like pRb, p53, and PP2A, their
interaction may not occur in vivo. One of the characteristics of
MCPyV-positive MCC tumors is integration of the viral genome
(Feng et al., 2008). Integration of the BKPyV genome has also
been reported in urinary tract cancers (Starrett and Buck, 2019).
The lack of integration and/or the expression of a truncated
LT-ag by nHPyVs may also explain their failure to transform
infected cells. Finally, the tumors associated with nHPyVs has not
been identified.

Cell culture and transgenic animal studies investigating the
transforming capacity of LT-ag and sT-ag are required to explore
the possible tumorigenic potentials of nHPyVs. The interaction
with p53, retinoblastoma proteins, PP2A and other tumor
suppressor proteins should be tested. Epidemiological studies
on more and different tumor samples (the genuine tumors
associated with nHPyVs may yet not have been investigated)
should be examined for the presence of viral sequences and
proteins. The viral genome copy number and possible integration
in tumors may also indicate whether the nHPyVs are involved
in cancer or not. Normal adjacent tissue should be included as
control. Immunodeficiency of the host may enhance the activity
of the virus and hence contribute. Consequently, nHPyVs may
play a contributing role in immunocompromised patients who
develop cancer. Seropositivity against LT-ag and sT-ag in HPyV-
positive and –negative cancer patients and healthy controls
may also provide a clue on the plausible implication of these
viruses in cancer.

In conclusion, convincing evidence is currently lacking
for a causal role of nHPyVs in human cancers, although a
hit-and-run mechanism, as suggested for MCPyV, cannot be
excluded (Houben et al., 2012). Transient expression of their
oncoproteins LT-ag and sT-ag may initiate neoplastic processes
resulting in tumor formation without evidence for the presence
of the virus at a later stage. Further research is required to
unambiguously determine whether these nHPyVs can contribute
to the development of cancer.
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