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Nitrogen is an essential component of major cellular macromolecules, such as DNA and 
proteins. Its bioavailability has a fundamental influence on the primary production of both 
terrestrial and oceanic ecosystems. Diverse marine microbes consume nitrogen, while 
only a limited taxon could replenish it, leaving nitrogen one of the most deficient nutrients 
in the ocean. A variety of microbes are involved in complex biogeochemical transformations 
of nitrogen compounds, and their ecological functions might be regulated by viruses in 
different manners. First and foremost, viruses drive marine nitrogen flow via host cell lysis, 
releasing abundant organic nitrogen into the surrounding environment. Secondly, viruses 
can also participate in the marine nitrogen cycle by expressing auxiliary metabolic genes 
(AMGs) to modulate host nitrogen metabolic pathways, such as nitrification, denitrification, 
anammox, and nitrogen transmembrane transport. Additionally, viruses also serve as a 
considerable reservoir of nitrogen element. The efficient turnover of viruses fundamentally 
promotes nitrogen flow in the oceans. In this review, we summarize viral contributions in 
the marine nitrogen cycling in different aspects and discuss challenges and issues based 
on recent discoveries of novel viruses involved in different processes of 
nitrogen biotransformation.
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INTRODUCTION

Nitrogen cycle is an integral feature of marine nutrient cycles. As one of the most abundant 
elements in organic compounds, nitrogen affects the biosynthesis of pivotal cellular components, 
the activities of cellular metabolism, and the functioning of diverse ecosystems (Zehr and 
Kudela, 2011; Ward and Jensen, 2014). Nitrogen undergoes complex biogeochemical transformations 
in a cycle, which facilitate its bioavailability for a large variety of microbes in marine environments. 
Marine nitrogen cycle maintains the nitrogen homeostasis and connects with biogeochemical 
cycles of other elements, such as carbon, oxygen, and phosphorus (Gruber, 2008; Kuypers 
et  al., 2018).

Nitrogen availability has a strong influence on the photosynthetic capacity, thus was considered 
as one of the major factors regulating marine primary production (Evans, 1989; Herbert, 
1999). Nitrogen is not uniformly distributed across different biogeographic provinces or water 
columns in the ocean. Patterns of nitrogen vary from coastal estuaries to open ocean, from 
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sunlit euphotic zone to the dark ocean (Saino and Hattori, 
1987). In general, nitrogen is relatively low in the surface 
water, limiting primary productivity in the vast expanse of 
the pelagic ocean (Tyrrell, 1999). In contrast, estuary and coastal 
waters usually have higher primary productivity due to 
anthropogenic nitrogen inputs (Herbert, 1999).

The nitrogen atom owns five valence electrons which can 
be  flexibly arranged on electron orbitals in several stable 
oxidation states, ranging from −3 to +5 (Figure  1). In the 
marine environment, nitrogen could be  commonly found in 
several chemical forms, such as ammonium (NH4

+, −3), hydrazine 
(N2H4, −2), hydroxylamine (NH2OH, −1), dinitrogen gas (N2, 
0), nitrous oxide (N2O, +1), nitric oxide (NO, +2), nitrite (NO2

−

, +3), and nitrate (NO3
−, +5; Figure 1). Microbes evolve diverse 

mechanisms for nitrogen uptake and transformation, including 
nitrogen fixation, nitrification, denitrification, anammox, and 
ammonification, and others (Zehr and Kudela, 2011; Kuypers 
et  al., 2018; Hutchins and Capone, 2022; Figure  1), which are 
mainly happening in tiny microbial cells but have tremendous 
influence on the marine nitrogen budget. Despite dinitrogen 
gas being the most abundant nitrogen species on earth, it is 
only available to relatively a limited but diverse set of microbes 
that can fix N2 into biologically available ammonium. Ammonium, 

in which the nitrogen atom is fully reduced, is also the breakdown 
product during the decomposition or ammonification of organic 
matter. It is estimated that there is about 340–3,600 Tg nitrogen 
stockpiled in the form of ammonium in the ocean (Canfield 
et al., 2005; Gruber, 2008). Ammonium can also be transformed 
into other bioavailable oxidized nitrogen species, such as nitrite 
and nitrate through nitrification. Nitrate is also a crucial 
bioavailable form of nitrogen, which is particularly abundant 
in coastal waters where riverine inputs are significant, or where 
deep water is frequently brought to the surface layer by vertical 
advection processes. Acting as either electron donor or acceptor, 
nitrite could also be  oxidized to nitrate by marine nitrifiers 
(Hutchins and Fu, 2017; Shafiee et  al., 2019) or reduced to 
gaseous forms of nitrogen (N2O and N2) by denitrifiers (Kartal 
et  al., 2007; Otte et  al., 2019). N2O is another common form 
of nitrogen that is mostly produced by denitrifying (Zumft 
and Kroneck, 2007; Prosser et al., 2020) and ammonia oxidizing 
microbes (Shen et  al., 2012; Jung et  al., 2014). In addition to 
its ozone-depleting role, N2O is also a notorious greenhouse 
gas with a higher capability of trapping atmospheric heat than 
CO2, and its atmospheric concentration has been increasing 
mainly owing to anthropogenic emissions (Tian et  al., 2020). 
In addition, there are a variety of organic compounds containing 

FIGURE 1 | Biogeochemical transformations of nitrogen compounds in marine microorganisms. The nitrogen cycle consists of the transformations, including 
nitrogen transport nitrogen fixation, nitrification, denitrification, assimilation, ammonification, and anammox. The relevant cell localizations of these pathways are 
divided by a cytomembrane (Gray dotted line). These pathways are found in different microorganisms rather than limited to one single cell. The main pathways in 
nitrogen cycle and the participating enzymes and transporters are indicated in different colors. The oxidation valences of nitrogen atom, ranging from −3 to +5, in 
different compounds are indicated in a linear axis.
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nitrogen in the forms of amino and amide groups in the 
oxidation state of −3. For example, urea and amino acids exist 
in the marine environment at low concentrations but can 
be  rapidly recycled since they could be  easily assimilated by 
both autotrophic and heterotrophic organisms (Baker et al., 2009).

Marine microbes constitute more than 90% of the living 
biomass in the ocean and are responsible for half of the 
global primary productivity (Field et  al., 1998; Caron, 2005; 
Sogin et  al., 2006; Bar-On et  al., 2018). Viruses, the most 
abundant biological entities in the ocean, have also drawn 
extensive attention due to their roles in biogeochemical cycles 
since the discovery of significant viral contribution to microbial 
community turnover (Proctor and Fuhrman, 1990; Suttle, 1994). 
Lysogenic viruses can modulate microbial biodiversity and 
genome evolution through genetic exchange within and between 
hosts, while lytic viruses exert remarkable influence on microbial 
community structure and marine food web (Fuhrman, 1999; 
Wilhelm and Suttle, 1999) by turning infected host cells into 
dissolved and particulate organic matter (POM), which can 
then be  utilized by other microbes (Middelboe et  al., 1996; 
Middelboe and Lyck, 2002; Middelboe and Jorgensen, 2006). 
Although viral ecology is still in its infancy stage and 
quantification of the viral contribution to host mortality remains 
coarse and vague in natural environments, marine viral 
biodiversity has received considerable attention in recent years. 
There is a growing consensus that viruses act as crucial players 
in marine nutrient cycling and are indispensable for the 
maintenance of stable natural microbial communities and the 
functioning of ecosystems (Suttle, 2007; Jurgensen et al., 2021). 
Here, we  review viral contribution to marine nitrogen cycling 
and present potential challenges and issues based on recent 
discoveries of novel viruses involved in different processes of 
nitrogen biotransformation.

VIRAL SHUNT PROMOTES MARINE 
NITROGEN FLOW ALONG WITH 
MICROBIAL LOOP

The Interconnection of Viral Shunt With 
Microbial Loop in Marine Environment
About 40 years ago, the concept of “Microbial Loop (ML)” 
was introduced into the field of biological oceanography by 
Azam et  al. (1983), pointing out the crucial role of marine 
microbes in bridging the gap between Dissolved Organic 
Matter (DOM) and classic marine food chain. DOM released 
by phytoplankton exudation, viral cell lysis, and zooplankton 
sloppy feeding was not directly available for marine 
macroplankton, but can be  reutilized by marine microbes for 
proliferation. Microbes were further predated by larger marine 
organisms at higher trophic levels (such as protists) for growth; 
thus, nutrients can be  recycled and transferred in the marine 
food chain with the help of microbes (Calbet, 2008; 
Fenchel, 2008).

Viruses were recognized as a new functional group responsible 
for material transfer and energy flow in the marine system 

(Proctor and Fuhrman, 1990; Bratbak et  al., 1992; Thingstad 
et  al., 1993). Virus-induced microbial mortality was termed 
as Viral Shunt (VS) by Wilhelm and Suttle (1999), describing 
the important role of viruses in breaking down microbial into 
DOM, which can be  easily taken up by other microorganisms 
(Figure  2). Marine viruses lead to 20%–40% of microbial 
mortality in the surface ocean (Wommack and Colwell, 2000), 
and it was estimated that viral shunt contribute to over 25% 
of carbon recycling within the microbial loop in the global 
oceans (Wilhelm and Suttle, 1999).

Viruses are also important players of long-term marine 
carbon storage. Photosynthesis sequestrated carbon in the surface 
ocean support the marine food web, and a fraction of the 
surface fixed organic matter is eventually exported to the ocean 
interior and seafloor sediments by Biological Pump (BP; 
Figure  2). This vertical downward transfer mainly occurs 
through migrations of zooplankton and gravitational settling 
of microorganisms and POM (Boyd et  al., 2019). Besides, a 
substantial fraction of organic matter does not reach the deep 
sea, but is remineralized in the water column by heterotrophic 
microbes, resulting in depletion of labile carbon and accumulation 
of recalcitrant carbon. This process was proposed as microbial 
carbon pump (MCP; Jiao and Zheng, 2011). Viruses are important 
participants in these “pumping processes.” First, viral infection 
can affect the sinking rates of microbial cells (Janice and Curtis, 
2004) via enrichment of infected cells in sinking aggregates 
(Vincent et  al., 2021). Moreover, virus can also influence the 
MCP-induced carbon sequestration by promoting microbial 
mortality (Vincent et  al., 2021). Marine nitrogen flow is also 
affected by biological or microbial pumping processes. Particulate 
organic nitrogen (PON) can also sink into the deep ocean or 
can be  converted back into ammonium by remineralization 
and subsequently used by microbes through nitrification (Jetten, 
2008). The recycling of carbon and nitrogen is interactional 
as the fluctuating carbon-to-nitrogen ratios in the environment 
have a considerable impact on the microbial metabolism 
(Goldman et  al., 1987; Shelford et  al., 2012). Considering viral 
shunt is continuously changing the carbon/nitrogen ratio in 
the marine environment, viral contribution to nitrogen recycling 
seems to be  more complicated to quantitatively estimate.

Viruses Promote Nitrogen Recycling by 
Host-Specific Cell Lysis
Viruses exhibit multifaceted effects on nitrogen flow by controlling 
the biomass and bioactivity of diverse microbes involved in 
different nitrogen biogeochemical processes. Generally, viruses 
accelerate ammonification and assimilation by providing organic 
matter from lysates. Ammonification, the degradation process 
of organic nitrogen releasing ammonium, is widely found in 
bacteria, fungi, and algae, and its rate is mainly controlled by 
the abundance and composition of microbial communities, and 
by the availability of dissolved organic nitrogen. Dissolved low 
molecular weight organic compounds including amino acids, 
urea, amino sugars, and nucleotides are substrates for 
ammonification. These substrates can be  first released from 
the depolymerization of macromolecules and are further 
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transferred into bioavailable nitrogen by ammonification. On 
the contrary, assimilation can be  briefly interpreted as the 
multi-step transformation of nitrogen from simple inorganic 
forms (NO3

−, NO2
−, and NH4

+) into cellular biomass, such as 
amino acids and other organic compounds. The release of 
organic nutrients upon viral lysis may stimulate the growth 
of non-infected or unrelated microbes, which is crucial for 
the recycling of bio-limiting elements and structuring microbial 
communities. For example, viral lysates of Vibrio caused an 
increase in metabolic activity and cell production of the 
non-infected bacterioplankton, particularly in phosphorus-limited 
conditions (Middelboe et al., 1996). Isotope mass spectrometry 
analysis showed that viral lysis of Phaeocystis globosa enhanced 
13C and 15N assimilation of Alteromonas by about 2.5-fold, and 
viruses enhanced bacterial substrate assimilation and indirectly 
shaped North Sea bacterial diversity (Sheik et al., 2014). Similarly, 
the degradation of Phaeocystis pouchetii lysates caused by virus 
PpV was reported to be associated with significant regeneration 
of inorganic N, which had strong positive effects on the 

abundance of heterotrophic bacteria and nanoflagellates, 
suggesting an efficient transfer of organic material from 
P. pouchetii to other microbes through viral lysis (Haaber and 
Middelboe, 2009).

Increasing evidence support the crucial functions of viruses 
in regulating nitrogen fixation by controlling the turnover of 
diazotrophic cyanobacteria. The significance of N2 fixation has 
been historically underestimated according to biogeochemical 
analysis (Michaels et  al., 1996; Gruber and Sarmiento, 1997) 
even after the discovery of widespread diazotrophs, such as 
tropical/subtropical cyanobacterium Trichodesmium spp. (Capone 
et  al., 1997) and symbiotic cyanobacterial species of some 
diatoms (Villareal, 1994) in the ocean. Convergent estimates 
indicate that microbial fixation of N2 delivers approximately 
163 Tg N year−1 globally, which is far more than atmospheric 
deposition and riverine input (Wang et  al., 2019). The amount 
of nitrogen fixed by Trichodesmium per year was estimated to 
be  about 60–80 Tg N year−1 globally (Capone et  al., 1997; 
Mahaffey et  al., 2005; Westberry and Siegel, 2006), making 

FIGURE 2 | Schematic of viral participation in the marine nitrogen cycle. Virus-mediated lysis of microbial cells (viral shunt) and the degradation of viruses can 
release particulate organic matter (POM) and Dissolved Organic Matter (DOM) into the microbial loop. POM and DOM can be brought to different water columns 
through vertical ocean circulation, waves, and eddies pumping while a part of POM can also be sedimented to deep oceans by biological carbon pump. Upon 
infection, viruses can also regulate hosts’ nitrogen metabolism by encoding relevant auxiliary metabolic genes (AMGs).
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up more than ⅓ of the annually fixed N2 in the global ocean 
(~100–200 Tg N year−1 according to Karl et al., 2002). However, 
the past estimates were based on the assumption that all species 
in the Trichodesmium genus were capable of fixing N2, which 
was overthrown by a very recent metagenomic study showing 
abundant yet non-diazotrophic Trichodesmium species are 
widespread in the open ocean (Delmont, 2021). This decoupling 
of functional traits from taxonomic lineages alerts further 
endeavors are needed to decipher Trichodesmium community 
composition, which likely affect the estimate of their contribution 
to global nitrogen balance. Viral infection of diazotrophic 
cyanobacteria, such as Trichodesmium, could result in large 
perturbations of dissolved and particulate organic matter in 
the surface ocean, leading to a shift in nitrogen availability 
for co-occurring microbes (Rodier and Le Borgne, 2010). Viral 
lysis is a crucial cause of the rapid collapse of Trichodesmium 
aggregations (Hewson et  al., 2004). The appearance of virus-
like particles in mitomycin C-treated Trichodesmium cells 
revealed that Trichodesmium harbor viruses that could enter 
the lytic cycle under some specific but as-yet undefined conditions 
(Ohki, 1999; Hewson et  al., 2004). Collapse of Trichodesmium 
aggregations can lead to large releases of particulate and DOM 
from dying cells for co-occurring microbes in the environment 
(Rodier and Le Borgne, 2010). The bloom-forming diazotrophic 
filamentous cyanobacteria Aphanizomenon flos-aquae are often 
devoid of zooplankton grazing due to its toxin production 
(Rollwagen-Bollens et  al., 2013). Viral based top down control 
may play a significant role in suppressing Aphanizomenon flos-
aquae especially in eutrophic ecosystems (Simis et  al., 2005). 
Previous studies found two cyanophages, Vb-AphaSCL131 and 
Vb-AphaM-CL132, belonging to Siphoviridae and Myoviridae, 
respectively, in the purified lysates of Aphanizomenon flos-aquae 
(Gelzinis et  al., 2015; Sulcius et  al., 2019). After cell lysis by 
Vb-AphaSCL131, substantial release of ammonium into the 
culture medium was detected (Kuznecova et al., 2020). Although 
the growth of Aphanizomenon flos-aquae was significantly 
inhibited by Vb-AphaSCL131 infection, nifH gene expression 
level and the nitrogen fixation rates are barely altered, as 
cyanophage replication and progeny production within vegetative 
cells does not interfere with the N2 fixation process in heterocysts. 
Intriguingly, Vb-AphaSCL131 can also reduce the transport of 
fixed nitrogen from heterocysts to vegetative cells, which leads 
to nitrogen accumulation at the poles of heterocysts (Kuznecova 
et  al., 2020).

Viral lysis of nitrifying bacterium and ammonia oxidizing 
archaea (AOA) can also affect ammonia metabolism. Nitrification 
is the primary process of producing oxidized nitrogen species, 
such as NO3

−, NO2
− , and N2O, from reduced nitrogen (NH3 

or NH4
+). Nitrification widely occurs in the surface, subsurface, 

deep layer, and sediments in the ocean (Camila Fernandez 
and Patrick, 2007; Yool et  al., 2007; Hutchins and Capone, 
2022). The nitrification process is mainly performed by different 
microbes, including ammonia oxidizing bacteria (AOB), AOA, 
and nitrite-oxidizing bacteria (NOB; Ward, 2013). Besides, 
specific species of the bacterial genus Nitrospira are capable 
of performing both of the nitrification steps, called complete 
ammonia oxidation (Comammox; Daims et  al., 2015;  

Van Kessel et al., 2015; Molina et al., 2018). The most common 
AOB in natural environments belong to the Nitrosomonas, 
Nitrosospira, and Nitrosococcus genera (Purkhold et  al., 2000). 
AOA belong to the class Nitrososphaeria within the phylum 
Thaumarchaeota, which could be known as Nitrososphaerales, 
Nitrosopumilales, Ca. Nitrosotaleales, and thermophilic Ca. 
Nitrospina spp. (Stieglmeier et  al., 2014). AOA from the 
phylum Thaumarchaeota play a prominent role in ammonia 
metabolism. Viral infection is suggested to represent a key 
mechanism controlling the turnover of archaea, especially 
AOA, in deep-sea sediments (Danovaro et  al., 2016). Three 
Nitrosopumilus spindle-shaped viruses are isolated from 
suspended particulate matter-rich seawater samples and 
characterized to efficiently infect autochthonous Nitrosopumilus 
strains, leading to inhibition of AOA growth, accompanied 
by severe reduction in the rate of ammonia oxidation and 
nitrite reduction (Kim et  al., 2019). Similarly, it was reported 
that the infection of a specific phage CM-1 induced rapid 
decline of the heterotrophic nitrifying bacterium Lutimonas 
sp. H10 and reduced the efficiency of ammonia removal in 
marine aquaculture (Fu et  al., 2009).

VIRUSES INFLUENCE MICROBIAL 
NITROGEN METABOLISM THROUGH 
ENCODING AUXILIARY METABOLIC 
GENES

Viruses can also modulate the marine nitrogen cycle by expressing 
auxiliary metabolic genes (AMGs) involved in host nitrogen 
metabolisms. Viruses encoded AMGs have been broadly 
discovered in different environments and are suggested to 
be  involved in several different biogeochemical processes, 
including nitrification, denitrification, anammox, ammonia 
assimilation, and nitrogen transport (Supplementary Table S1).

Viral-Encoded Enzymes Could Promote 
Marine Nitrification Process
Some viruses carrying AMGs can also modulate the nitrification 
pathway during infection. Genes like amoA/B/C, encoding for 
ammonia monooxygenase enzyme, catalyzing the first step of 
ammonia oxidation and have been regarded as biomarkers for 
nitrifiers in the oceans (Junier et  al., 2010). Ahlgren et  al. 
(2019) discovered 15 new genomically and ecologically distinct 
viral populations infecting marine Thaumarchaeota (potentially 
tailed viruses that share a common ancestor with related marine 
Euryarchaeota viruses). These viruses bear thaumarchaeal 
ammonia monooxygenase genes (amoC) in globally various 
marine habitats. Metagenomics provided evidence that viral 
amoC sometimes comprise up to half of total amoC DNA 
copies, indicating their potential roles in nitrification processes 
(Roux et al., 2016; Ahlgren et al., 2019). Similarly, two archaeal-
like amoC genes and one bacterial-like amoC were also identified 
in viruses isolated in Eastern Tropical South Pacific oxygen 
minimum zone (ETSP OMZ) waters while the functional roles 
remain to be  resolved (Gazitua et  al., 2021).
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Viral-Encoded AMGs in Denitrification 
Pathways
Canonical denitrification refers to several respiratory reactions 
that use organic nitrogen compounds as electron acceptors for 
the production of nitrite, nitric oxide, nitrous oxide, and 
dinitrogen gas, finally leading to the loss of N from the marine 
system. Denitrification occurs in specific habitats, such as the 
oxic–anoxic interface of benthic sediments, and suboxic or 
anoxic waters where nitrate is present but oxygen is deficient 
(Naqvi et  al., 2008). Nitrate is generally the first electron 
acceptor in the process of denitrification especially in hypoxic 
column while organic nitrogen can also be  reduced via 
heterotrophic denitrification. Microbes carry out different 
denitrification processes based on the availability of nitrogen 
resources and the redox gradients present in the environment 
(Tesoriero et  al., 2021). Periplasmic nitrate reductase (Nap), 
respiratory nitrate reductase (Nar), and assimilatory nitrate 
reductase (Nas) catalyze the reaction of dissimilatory nitrate 
reduction to nitrite. Subsequently, nitrite can be  reduced into 
nitric oxide by nitrite reductase (Nir). Nitric oxide (Nor) 
reductase induces the reduction of nitric oxide to nitrous oxide 
or dinitrogen gas. Nitrous oxide can be  an intermediate or 
end product during denitrification (Suntharalingam et al., 2000). 
Metagenomic analysis revealed a ferredoxin-nitrite reductase 
gene nirA, a copper-containing nitrite reductase gene nirK, 
and a nitric oxide reductase gene norB as viral-encoded AMGs 
in ETSP OMZ waters. For example, a nirA gene that is similar 
to the homolog in Prochlorococcus and Synechococcus exits in 
the genome of a potential T4-like cyanomyophage (Gazitua 
et  al., 2021). Viral NirA may attenuate their host’s need to 
compete for limited ammonia in some particular environments, 
such as Peruvian anoxic marine zone (AMZ; Lam et  al., 2009) 
and OMZ over the Omani Shelf (Jensen et  al., 2011; Ulloa 
et  al., 2012). Besides, contiguous nirK and norB are also 
identified in a unit within the genome of a myovirus according 
to the taxonomic annotation of the viral-like genes. Motif 
analysis and structural prediction indicate the functional activity 
of viral NirK and NorB revealing their participation in hosts’ 
denitrification processes during infection (Gazitua et al., 2021).

Viruses May Compensate Ammonium 
Oxidation of Anaerobic Hosts
Along with denitrification, the anaerobic oxidation of ammonium 
(anammox) is another anaerobic process that removes bioavailable 
nitrogen from the water. Anammox bacteria obtain energy 
and electrons from ammonia oxidation anaerobically. In an 
anammox reaction, ammonium and nitrite are combined to 
form N2, generating NO and hydrazine (N2H4) as two key 
intermediates (Kartal and Keltjens, 2016; Soler-Jofra et  al., 
2021). In the first step, the one-electron reduction of nitrite 
to NO is catalyzed by nitrite reductases (NIR) which exist in 
many denitrifying microorganisms. The second reaction combines 
ammonium and NO to produce hydrazine which is catalyzed 
by hydrazine synthase (HZS) (Strous et  al., 2006). Finally, 
hydrazine is converted into N2 by hydrazine oxidoreductase 
(HZO; Dalsgaard et  al., 2014). So far based on isolation and 

metagenomic surveys, 19 species under six candidate genera, 
including Brocadia, Scalindua, and Kuenenia, have been reported 
in various natural and synthetic ecosystems, such as marine 
sediments, hydrothermal vents, sponges, and anoxic waters 
(Oshiki et  al., 2016; Zhang and Okabe, 2020). Nir genes were 
also detected as viral AMGs in the anoxic water column, 
indicating their functional roles in modulating anammox reaction 
by promoting NO production (Gazitua et  al., 2021). Viruses 
are believed to have compensation effects on the nitrogen 
metabolisms of their host cells. Viral nar genes are also identified 
in the samples from deep-sea hydrothermal vent sediment in 
the Southwest Indian Ocean. As revealed by the metabolic 
pathways in viromes and microbiomes studies, histidine kinase 
NarX, a nitrate–nitrite sensor, sensed the extracellular level of 
nitrate or nitrite and then activated the response regulator 
NarL, which leads to the gene expression inhibition of microbial 
nitrite reductase, including NarG, NarH, NarJ, and NarI subunits, 
in microbial nitrogen metabolism (He et  al., 2017). Metabolic 
compensation of hosts mediated by viruses may help hosts to 
adapt to extreme environments and may be  essential for 
host survival.

Viral-Encoded AMGs Influence Host 
Ammonia Assimilation
Ammonia assimilation is the process of incorporating ammonia 
into organic matter. The conversion of ammonium into amino 
acids (glutamate and glutamine) is initially catalyzed by glutamate 
synthetase and glutamine synthetase, respectively. Glutamate 
synthetase catalyzes the reaction of glutamate production from 
glutamine and 2-oxoglutarate (2-OG), and glutamine synthetase 
is responsible for the formation of glutamine by catalyzing 
the condensation of glutamate and ammonium. Viromes from 
the surface, oxycline, and anoxic zones in ETSP identified 
several viral AMGs, such as glutamate synthase and glutamine 
synthetase, revealing potential participation of these viruses in 
ammonia assimilation and nitrogen metabolism (Cassman et al., 
2012). Sullivan reported that 16 marine cyanobacterial myoviruses 
isolated from a variety of locations across tropical and subtropical 
oceans contain at least one and often numerous hypothetical 
proteins with possible phytanoyl-CoA-dioxygenase domains, 
which may act on 2-OG as oxidoreductases to regulate ammonia 
assimilation, while 14 of the marine cyanophages contained 
numerous 2-OG-FeII oxygenase superfamily proteins. Besides, 
all 16 genomes contain numerous NtcA binding sites, which 
are involved in promoting a diversity of both T4 phage and 
cyanophage genes. These pieces of evidence suggest that these 
cyanobacterial myoviruses can modulate 2-OG levels to influence 
ammonia assimilation and stimulate NtcA activity which is 
needed to promote phage genes expression (Sullivan et al., 2010).

Viruses Encode Diverse AMGs Involved in 
Nitrogen Transport
Microbes have evolved a range of strategies including effective 
nitrogen uptake and transport to optimize nutrient acquisition 
and adapt to environmental limitations. The transport of 
ammonium is mediated by the ammonium transporter/
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methylammonium permease/rhesus (Amt/Mep/Rh) family. Amt/
Mep/Rh family is responsible for the bidirectional diffusion 
of ammonium across the membrane and is necessary for 
microbial growth at low ammonium concentrations. A host-
derived ammonium transporter gene Amt was identified in 
the genome of a phytoplankton virus, which infects the small 
green alga Ostreococcus Tauri. The viral gene is demonstrated 
to be  transcribed during infection and the viral protein can 
transport ammonium, methylammonium, and potentially a 
range of alternative N sources (Monier et  al., 2017). Similarly, 
targeted metagenomics based on cell sorting revealed Amt/
Mep/Rh family genes in the genomes of two viral strains of 
giant Mimiviridae sampled from the North Pacific Ocean 
(Needham et al., 2019). Besides, three viral populations harboring 
the glnK gene followed by the amtB gene were also identified 
in the ETSP OMZ (Gazitua et  al., 2021). GlnK is a PII signal 
transduction protein linked to AmtB (ammonia channel protein). 
Under nitrogen-limiting conditions, GlnK is covalently modified 
by uridylylation to inhibit the interaction with AmtB and enable 
the uptake of ammonium (Gazitua et  al., 2021). Moreover, 
nitrite transporter gene (focA) was also previously detected in 
the viral genome of a potential T4-like cyanomyophage. FocA, 
a representative nitrite transporter from the formate/nitrite 
family is universally found in bacteria, proteobacteria, archaea, 
fungi, algae, and parasites (Wang et al., 2009). Potential expression 
of this gene during infection may promote nitrite uptake of 
the hosts (Gazitua et  al., 2021).

VIRUSES PROVIDE CONSIDERABLE 
RESERVOIRS OF NITROGEN ELEMENT

Viral particles are also a considerable reservoir of nitrogen 
element given their high abundance in the ocean. It is predicted 
that a bacterial cell contains at least two orders of magnitude 
more carbon than a virus particle (Bertilsson et  al., 2003). 
However, the relative content of nitrogen in viruses is quite 
different compared with their hosts, since a virus particle is 
predominantly composed of a capsid (mostly protein) and core 
genetic materials (nucleic acids). The carbon/nitrogen/phosphorus 
(C/N/P) ratio was estimated to be 106/16/1 for marine plankton 
(Redfield et  al., 1963; Jiao et  al., 2010, 2011). This ratio vary 
greatly among different organisms, which is about 69/16/1  in 
marine heterotrophic bacteria (Suttle, 2007), about 46/10/1  in 
Prochlorococcus sp. MED4 and 301/49/1  in Synechococcus sp. 
WH8013 under phosphorus-limited conditions (Bertilsson et al., 
2003). However, the C/N/P ratio in Paramecium bursaria 
Chlorella virus 1 (PBCV1) was estimated to be  17/5/1 (Clasen 
and James, 2007), highly enriched in nitrogen and phosphate 
in bacteriophages (Jover et  al., 2014). Marine viruses are 
estimated to contain 0.055–0.2 fg carbon per virus particle in 
different studies (Wilhelm and Suttle, 1999; Suttle, 2005, 2007; 
Steward et al., 2007), and nitrogen content is estimated ranging 
from 0.0078 to 0.02 fg (Jover et al., 2014). The viral contribution 
to the DON pool could range up to 7% in the marine system 
if the virus densities can reach up to 1011 per liter.

The viability of viruses is tightly controlled in the marine 
environment. For example, solar radiation (especially UV-B 
irradiation) is considered as a causative factor responsible for 
defective viruses in the surface ocean (Suttle and Chen, 1992; 
Noble and Fuhrman, 1997). Full sunlight can lead to an average 
loss of viral infectivity of 20%/h for a diverse range of marine 
virus isolates (Mojica and Brussaard, 2014). Temperature and 
salinity are also responsible for differences in viral growth rate 
and delay of infection (Mojica and Brussaard, 2014). Moreover, 
extracellular enzymes produced by microorganisms can also 
degrade viral particles into dissolved organic nitrogen. 
Additionally, viral particles can also be absorbed onto particles 
and then vertically sink to the deep ocean or are transported 
laterally with the ocean currents (Wommack and Colwell, 2000; 
Weinbauer, 2004). These activities account for the exchange 
of free-living viral particles in different water columns, making 
viruses not restricted to the local biogeochemical cycling.

CHALLENGES AND PROSPECTS

The topic of viral implications on the cycling of organic matter 
in the marine ecosystem caught the early attention of researchers 
and has been widely studied globally for over half a century. 
However, the ecological roles of diverse marine viruses in the 
nitrogen cycling or other host metabolism are generally 
understudied, particularly in the context of virus–host 
interactions. Difficulties in sampling over the large temporal 
and spatial scales, and the dependence of cultured hosts for 
viral isolation and culture, especially from less accessible 
environments, such as hydrothermal vents or anoxic waters, 
hindered the study of their participation in the nitrogen cycle 
and other ecological functions, despite metagenomics and 
mathematical modeling have been proved to be  helpful to 
identify and characterize viral diversity and to explore the 
mechanism of interactions between viruses and their hosts. 
Isolation and cultivation are necessary for quantifying viral 
and host physiological capabilities; however, beyond the limitation 
of host availability, it is also arguable that virus–host interactions 
in the laboratory might be different from the natural environment, 
where population size and abiotic factors might affect 
their interactions.

Some growth-limiting factors, such as temperature, oxygen, 
light, and nutrients, are proven to be  crucial for host–virus 
interactions. It is still an exciting but challenging problem to 
identify the factors controlling the temporal and spatial influence 
on the nitrogen cycle of viruses (Maat et  al., 2014). Nitrogen 
cycling is inevitably interconnected with many other elements, 
most notably, such as carbon, phosphorus, and sulfur. For 
example, increasing bioavailable nitrogen in the ocean can 
fertilize the ocean’s biosphere and enhance the uptake of CO2 
by photosynthetic microorganisms and phytoplankton. However, 
ocean acidification resulting from the mounting uptake of 
anthropogenic CO2 can exert huge effects on a variety of marine 
life (Langdon et  al., 2003; Kapsenberg and Cyronak, 2019; 
Melzner et  al., 2020) and lead to an uncharted disturbance 
of C/N ratio which is important for balance of marine ecosystem. 
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It was reported that ocean acidification could lead to enhanced 
photosynthesis (Riebesell et  al., 2007) and nitrogen fixation 
by Trichodesmium (Barcelos E Ramos et  al., 2007). According 
to a current meta-analysis incorporating 49 publications, 
diazotrophic nitrogen fixation is estimated to be  enhanced by 
29 ± 4% while nitrification processes are estimated to be reduced 
by 29 ± 10% under ocean acidification by 2,100 (Wannicke 
et  al., 2018). However, the viral participation in the coupling 
cycle of C/N is rarely studied. Considering the complicated 
flow of nitrogen with other elements, a combination of 
observational, experimental, and modeling approaches could 
provide more comprehensive information for our understanding 
of the viral effect on marine nitrogen cycle. Moreover, sulfur 
cycling, primarily driven by microbial reduction of sulfate to 
produce hydrogen sulfide, is also regarded as an influential 
biochemical process globally. Sulfate reduction is one of the 
major processes in deep-sea columns especially in marine 
sediments (Bell et  al., 2020). As a key agent in the sulfur 
cycle, viruses also alter sulfur metabolism within host cells 
during infection via expressing AMGs involved in relevant 
processes (Anantharaman et  al., 2014; Coutinho et  al., 2020; 
Flieder et al., 2020; Kieft et al., 2020, 2021). It can be speculated 
that the study of viral activities in coupled cycling of nitrogen 
and sulfur is another hot topic in the future.

The study of marine eukaryotic viruses is a less tapped 
field that deserves more attention. Single-celled microeukaryotes 
and small multicellular zooplankton accounting for a substantial 
fraction of the planktonic biomass in the ocean, and are 
discovered to be involved in various processes of biogeochemical 
cycles of major elements (Dortch and Packard, 1989; Gasol 
et  al., 1997; Barton et  al., 2013). Due to their large genomes, 
enormous diversity, and largely unexplored physiologies, the 
functional significance of marine microbial eukaryotes as well 
as viruses infecting them are difficult to investigate. A study 
of the samples from Tara Oceans using metatranscriptomic 
approach revealed an impressive number of genes without 
functionally characterized homologs in available databases 
(Carradec et  al., 2018). At-sea flow cytometry with staining 
and sorting seems to be an effective method to isolate eukaryotic 
viruses (Needham et  al., 2019), and a combination of 
metagenomics and metatranscriptomics approaches may provide 
more insight into the roles of marine eukaryotic viruses in 
the future.

Exploring the complete marine food web trophic continuum 
from viruses to top predators is ecologically important but 
not fully resolved, and the stable isotope method is a potentially 
useful method for further study (Cai et al., 2005). A promising 
new application of stable isotope technology is the visualization 
of isotope labeling at the cellular level through nanoscale 
secondary ion mass spectrometry (nanoSIMS; Finzi-Hart et al., 
2009; Taylor, 2019). Multiple stable isotopes can be distinguished 
in high-resolution images by NanoSIMS to track nitrogen 
transfer between cells or cell structures (Foster et  al., 2011; 
Thompson et  al., 2012; Bonnet et  al., 2016; Taylor, 2019).

The quantification of viral contribution to marine nitrogen 
cycling remains challenging due to the variable content of 
viral mass in different water column and dynamic interactions 

between viruses and the hosts. For example, marine viruses 
can affect the elemental assimilation rates of their infected 
hosts, while altered host post-infection metabolism can also 
influence the viral activities (Zeng and Chisholm, 2012). It is 
necessary to build different biophysical models to provide more 
insight into the potential dynamics in virus–host interactions. 
A biophysical scaling model based on sequence and structural 
information of different viruses is validated to quantify the 
elemental stoichiometry of marine viruses in the ocean (Jover 
et al., 2014). In summary, the conjunction of classic morphological 
(Lindell et  al., 2005), biophysical, and biogeochemical (Clasen 
et  al., 2008) techniques with deep metagenomics and 
metatranscriptomics analysis are considered to be  the rigorous 
method to quantify the relative contribution of viruses to the 
pools and fluxes of marine energy and materials.

CONCLUDING REMARKS

Viruses are the most abundant and diverse biological entities 
in the global ocean, yet their ecological roles and biogeochemical 
contributions in the marine environments are still not well 
understood due to limitations of sampling scales and research 
methods. Broadly, viruses fundamentally influence nitrogen 
recycling by inducing microbial mortality, and they also constitute 
a noteworthy part of marine nitrogen inventory. Intriguingly, 
viruses can also regulate biogeochemical nitrogen metabolisms 
in hosts via controlling AMGs expression. Future viral ecology 
requires more effort putting into large-scale and long-term 
sampling, new techniques for virus and host isolation, sorting, 
and culture, and more elaborate single viral genomics.
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