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Microsporidia are obligate intracellular, spore-forming parasitic fungi which are grouped
with the Cryptomycota. They are both opportunistic pathogens in humans and emerging
veterinary pathogens. In humans, they cause chronic diarrhea in immune-compromised
patients and infection is associated with increased mortality. Besides their role in
pébrine in sericulture, which was described in 1865, the prevalence and severity of
microsporidiosis in beekeeping and aquaculture has increased markedly in recent
decades. Therapy for these pathogens in medicine, veterinary, and agriculture has
become a recent focus of attention. Currently, there are only a few commercially available
antimicrosporidial drugs. New therapeutic agents are needed for these infections and
this is an active area of investigation. In this article we provide a comprehensive
summary of the current as well as several promising new agents for the treatment
of microsporidiosis including: albendazole, fumagillin, nikkomycin, orlistat, synthetic
polyamines, and quinolones. Therapeutic targets which could be utilized for the design
of new drugs are also discussed including: tubulin, type 2 methionine aminopeptidase,
polyamines, chitin synthases, topoisomerase IV, triosephosphate isomerase, and lipase.
We also summarize reports on the utility of complementary and alternative medicine
strategies including herbal extracts, propolis, and probiotics. This review should help
facilitate drug development for combating microsporidiosis.

Keywords: microsporidia, microsporidiosis, therapeutic targets, fumagillin, chitin synthase

INTRODUCTION

Microsporidia are a diverse group of obligate intracellular pathogens phylogenetically related to
the Cryptomycota, they form a basal branch on the phylogenic tree of fungi (James et al., 2013).
The host range of microsporidia extends from protists to vertebrates (James et al., 2013). These
organisms have several adaptations to intracellular life including having mitochondrial remnants

Abbreviations: A. algerae, Anncaliia algerae; A. penaei, Agmasoma penaei; AIDS, acquired immune deficiency syndrome;
A. mellifera, Apis mellifera; Enc. cuniculi, Encephalitozoon cuniculi; Enc. hellem, Encephalitozoon hellem; Enc. intestinalis,
Encephalitozoon intestinalis; Ent. bieneusi, Enterocytozoon bieneusi; EHP, Enterocytozoon hepatopenaei; F. hepatica, Fasciola
hepatica; MetAP1, methionine aminopeptidase type 1; MetAP2, methionine aminopeptidase type 2; N. apis, Nosema apis;
N. bombycis, Nosema bombycis; N. ceranae, Nosema ceranae; S. cerevisiae, Saccharomyces cerevisiae; V. corneae, Vittaforma
corneae.
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termed mitosomes (Williams et al., 2002), small ribosomes with
fewer component proteins and rRNA with reduced domains
(Peyretaillade et al., 1998), an unstacked type of Golgi apparatus,
and a lack of peroxisomes (Beznoussenko et al., 2007; Vavra
and Lukes, 2013). All microsporidia have a dormant extracellular
spore stage with a limiting spore wall and the spore contains a
specialized invasion organelle (the polar tube) and the infective
sporoplasm. Upon appropriate environmental stimulation, the
polar tube extrudes (germinates) allowing the microsporidia to
inject the sporoplasm into host cells and start to proliferate
intracellularly (Weidner, 1976).

Horizontal transmission of these infectious spores primarily
relies on the fecal-oral route. Another route of transmission
is through contact of spores with eye, mucosa, or broken
skin. Several microsporidia can also be vertically transmitted
to the offspring of infected animals. Depending on the species
of microsporidia some can switch hosts across disparate
taxa, while other species are relatively host specific (Solter
and Maddox, 1998; Andreadis et al., 2012). Symptoms due
to infection can vary from asymptomatic carriage to death.
Many microsporidia alter host cell biology and infection can
result in the development of xenomas, juvenilization of the
host, and metabolic changes in infected cells. Microsporidia
have been classified by the National Institutes of Allergy
and Infectious Diseases (NIAID) and the Centers for Disease
Control and Prevention (CDC) as Category B biodefense priority
pathogens.1

Microsporidiosis is usually self-limiting or asymptomatic in
the general human population, but more severe in immune
deficient patients. The importance of microsporidia in humans
came into focus with the emergence of the acquired immune
deficiency syndrome (AIDS). In humans severe infection has
been seen in patients with AIDS, patients following organ
transplantation, and in patients taking immune suppressive
drugs or immune modulatory antibodies (Han and Weiss,
2017; Dumond et al., 2021; Dumortier et al., 2021). Most
commonly infection results in a diarrheal syndrome; however,
patients may also suffer from encephalitis, ocular infection,
sinusitis, myositis, or disseminated infection (Weber et al.,
1994; Weiss and Keohane, 2010; Ziad et al., 2021). Among
the approximately 1,500 microsporidian species, 17 species can
infect humans. Enterocytozoon bieneusi is the most frequently
reported species causing gastrointestinal disease in immune-
deficient individuals, followed by Encephalitozoon intestinalis
(Garcia-Torres et al., 2018; Li et al., 2019). Less common human-
infecting microsporidian species include Anncaliia, Vittaforma,
Trachipleistophora, and Pleistophora (Shadduck et al., 1990; Field
et al., 1996; Cali and Takvorian, 2003; Cali et al., 2010; Boileau
et al., 2016; Anderson et al., 2019). Livestock animals are the
most frequently identified reservoir hosts, transmission can occur
from livestock excreta and wastewater that contain spores or
via spore-contaminated livestock products (Li et al., 2020; Ruan
et al., 2021). Some zoonotic microsporidia transmission cases
have been caused by infections in companion animals, such
as cats and dogs, which may become potential public health

1http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/pages/cata.aspx

risks (Cama et al., 2007; Karim et al., 2014; Wan et al., 2016;
Ruan et al., 2021). Wild animals are also potential pathogen
reservoirs, like monkeys, foxes, raccoons, beavers, and dolphins
(Sulaiman et al., 2003; Desoubeaux et al., 2018; Zhao et al., 2021).
Several outbreaks of microsporidiosis in healthy individuals
have also been reported (Kwok et al., 2013; Lam et al., 2013;
Wang et al., 2018). It is likely that microsporidiosis is a
common infection but is self-limited or asymptomatic in healthy
hosts. To this end, microsporidia have been identified in up
to 20% of children with diarrhea in underdeveloped countries
(Gumbo et al., 1999).

Microsporidiosis caused by Nosema bombycis in silkworm,
i.e., pébrine, is one of the most deadly diseases seen in
the sericulture industry. Transmission of this infection can
occur both horizontally and vertically, causing heavy losses
or even total crop failure. Historically pébrine caused a
collapse of the French and Italian silk industry in the mid-
19th century, until Pasture was able to develop preventative
methods and save the silkworm industry (Bhat et al., 2009;
Hukuhara, 2011). This disease continues to be an important
concern for silkworm growers and scientists in sericulture
practicing countries around the world and remains a major
threat to sericulture.

Honey bees are key pollinators of both wild plant communities
and agricultural crops, they are important to the environment
as well as the food supply (Calderone, 2012). Nosema ceranae
and Nosema apis are major causes of microsporidiosis in honey
bees (Higes et al., 2008; Fries, 2010). N. ceranae is now the
predominant microsporidium species seen in the western honey
bee (Apis mellifera), which is the most important bee species
for honey production and animal-mediated pollination (Williams
et al., 2014). While the antimicrosporidian drug fumagillin
continues to be effective against N. apis, it has not been as effective
for infections due to N. ceranae (Williams et al., 2008). N. apis
and N. ceranae have recently been redefined as Vairimorpha apis
and Vairimorpha ceranae based on a molecular phylogenetics
analysis of the Nosema and Vairimorpha clades (Tokarev et al.,
2020). For the purposes of this review the Nosema Genus
will still be used.

Shrimp aquaculture is an important long-term sustainable
industry for many developing countries (Flegel, 1997).
Microsporidiosis is the most common and harmful eukaryotic
pathogen to shrimp, and directly threatens shrimp aquaculture
(Morado, 2011; Tang et al., 2015). Enterocytozoon hepatopenaei
(EHP) and Agmasoma penaei are well-known species which
cause economic losses in shrimp aquaculture. A. penaei can
infect muscle and connective tissues of giant tiger shrimp
Penaeus monodon and pacific white shrimp Litopenaeus
vannamei. Infected shrimp are called “cotton shrimp” or “milk
shrimp” due to the whitish or milky appearance seen on various
parts of the body (Pasharawipas and Flegel, 1994; Prasertsri
et al., 2009). Infected shrimp are not able to be sold leading
to economic losses. EHP infects the hepatopancreas of shrimp
damaging the functions of this critical organ and causing
slow or stunted growth in infected shrimp (Thitamadee et al.,
2016). In addition, EHP infection increase the susceptibility
of shrimp to acute hepatopancreatic necrosis disease caused
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by Vibrio (Aranguren et al., 2017). EHP has been widely found
in Asia and other parts of the world, severely impacting
aquaculture production.

Various types of medicinal regimes have been used to
treat microsporidiosis, the results of therapy have ranged from
disappointing to promising. Previous reviews have summarized
the drugs and therapeutic targets for the treatment of
microsporidiosis in humans (Conteas et al., 2000; Han and Weiss,
2018). The objective of this review is to summarize recent studies
on new drugs and targets for the treatment of these infections in
both vertebrates and invertebrates.

CURRENT MICROSPORIDIAN
THERAPIES AND THEIR TARGETS

As microsporidia were once considered “primitive” protozoa,
many anti-protozoan drugs have been tested as therapeutic
agents. The majority of these anti-protozoan drugs have not
been effective for the treatment of microsporidiosis. The widely
used anti-protozoan and anti-bacterial agent trimethoprim-
sulfamethoxazole has minimal activity against either Ent. bieneusi
or Enc. intestinalis (Conteas et al., 2000). While metronidazole
was shown in vitro to inhibit the germination of Enc.
intestinalis, clinical studies demonstrated it was ineffective against
microsporidiosis (Canning and Hollister, 1990; Orenstein, 1991;
He et al., 1996). Studies on the effectiveness of paromomycin
have also been disappointing, and sequence data has shown that
microsporidia lack the rRNA binding site for this drug (Beauvais
et al., 1994). The target of many antifungal drugs is the ergosterol
biosynthesis pathway, however microsporidia lack this typical
fungal pathway, thus amphotericin B has not been effective
(Beauvais et al., 1994; Albrecht et al., 1995). Atovaquone has
also been ineffective for therapy, consistent with the absence of
mitochondria in these pathogens. Itraconazole has demonstrated
some microsporidian growth inhibition in vitro; however it has
not been effective as a solitary agent in clinical microsporidiosis.
Itraconazole has been used in combination with other drugs
(e.g., fumagillin or albendazole) in several clinical cases.
Current recommended therapeutic options, which directly
inhibit microsporidian infections are quite limited, include only
two structural classes of drugs: benzimidazoles and terpenes.

Benzimidazole compounds share a bicyclic compound
consisting of the fusion of benzene and imidazole (Figure 1).
They exhibit various types of bioactivity, including anti-
inflammatory, anti-hypertensive, anti-bacterial, anti-parasitic,
and anti-fungal effects (Labanauskas et al., 2004; Navarrete-
Vazquez et al., 2010; Hosamani and Shingalapur, 2011).
Benzimidazoles are well-known therapeutic agents with broad-
spectrum anthelmintic ability and also activity against fungi
(in commercial applications where they inhibit mold growth),
they act mainly through inhibition of the microtubule assembly
(Lacey, 1990). Albendazole (1) has a broad spectrum of activity
against helminths with minimal host side effects. It has been
licensed for human use in various parts of the world (Horton,
2000). Albendazole has been shown to control microsporidiosis
caused by Encephalitozoon spp. and the β-tubulin sequences

of these Encephalitozoonidae confirms the presence of amino
acid residues associated with sensitivity to benzimidazoles (Li
et al., 1996; Didier, 1997). There are numerous case reports
demonstrating the efficacy of albendazole for microsporidiosis
caused by Encephalitozoon spp., including diarrhea caused
by Enc. intestinalis, chronic disseminated infection caused by
Enc. hellem and disseminated infection caused by Enc. cuniculi
involving the central nervous system (Lecuit et al., 1994; Dore
et al., 1995; Weber et al., 1997). In immunocompetent children
with diarrhea caused by microsporidium, albendazole therapy
seems effective in reducing microsporidial excretion in feces
(Tremoulet et al., 2004). Albendazole is also effective against
myositis caused by Trachipleistophora hominis, Anncaliia
algerae, and Anncaliia vesicularum (Field et al., 1996; Cali
et al., 1998; Watts et al., 2014; Sutrave et al., 2018). An in vitro
assay demonstrated that albendazole was less effective against
Vittaforma corneae than against Enc. intestinalis or Enc. cuniculi
(Didier, 1997; Franzen and Salzberger, 2008). Studies of patients
with diarrhea caused by Ent. bieneusi who were treated with
albendazole proved that the effect of albendazole is quite limited
(Dieterich et al., 1994; Leder et al., 1998). This is consistent
with the presence of amino acids associated with albendazole
resistance in the β-tubulins sequences of Enterocytozoon and
Vittaforma (Akiyoshi et al., 2007; Franzen and Salzberger,
2008). There are also some albendazole resistance variations in
different genotypes of Encephalitozoon (Kotkova et al., 2017).
Some research suggests that Enc. cuniculi genotype III show
elevated resistance to albendazole treatment in immune deficient
and immune competent mice (Sak et al., 2020). Based on
NIH’s guidelines, albendazole is recommended for treatment
of intestinal and disseminated microsporidiosis caused by
microsporidia other than Enc. bieneusi and V. corneae.

Benomyl (2) and carbendazim (3) are another type of
benzimidazoles that are wildly used as fungicide for fungal
diseases in field crops (Figure 1). They are also considered
as medicinal regimes for microsporidiosis in insects. Many
studies suggest that benomyl and its derivative compounds
are effective in controlling microsporidiosis in insects such
as Nosema heliothidis in Heliothis zea and Nosema kingi
in Drosophila willistoni (Armstrong, 1976; Brooks et al.,
1978). Ultrastructural evidence suggested that carbendazim
causes elongation, vacuolation, and depletion of cytoplasmic
contents of the of N. bombycis in meront and spore stages
(Jyothi et al., 2005). In China, carbendazim formulations
have been registered and commercially marketed to control
N. bombycis in silkworm seed production. However, due to its
hepatotoxicity and toxic effects in animal reproduction (Barnes
et al., 1983; Sakr et al., 2004), benomyl and carbendazim
have not been used for the treatment of mammalian
microsporidiosis.

Fumagillin (4), ovalicin (5), and their analogs are terpenes
share unique structures with a cyclohexane framework, two
epoxides and three or four contiguous stereogenic centers
situated on the cyclohexane ring (Figure 1). Originally isolated
from the fungus Aspergillus fumigatus, fumagillin was initially
utilized as a treatment for amebiasis (McCowen et al., 1951;
Killough et al., 1952). As more effective drugs for amebiasis
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FIGURE 1 | | Chemical structures of antimicrosporidial agents.

were developed, it was abandoned. Researchers subsequently
discovered that fumagillin had both antimicrosporidial and
anti-angiogenesis activities (Lefkove et al., 2007). Fumagillin
selectively and covalently binds to methionine aminopeptidase
type 2 (MetAP2), however, it does not inhibit methionine
aminopeptidase type 1 (MetAP1) (Sin et al., 1997). As removal of
an N-terminal methionine is often essential for protein function
and post-translational modification, inhibition of methionine
aminopeptidase can affect eukaryotic cell survival. Mammalian
cells possess both MetAP1 and MetAP2 while genome data
from Enc. cuniculi and other microsporidian indicate that
microsporidia lack MetAP1; hence fumagillin could selectively
inhibit the growth of microsporidia in mammalian cells. MetAP1
can compensate for the inhibition of MetAP2 by fumagillin
for the eukaryotic host cells, but inhibition of MetAP2 in
microsporidia inhibits an essential enzyme in the pathogens.
Unlike albendazole, fumagillin has been shown to be effective
against Ent. bieneusi. Intestinal infection patients with dosages of
60 mg/day exhibited completely clearing of Ent. bieneusi (Molina
et al., 2000; Molina et al., 2002). In a pediatric case of digestive
microsporidiosis in a liver-kidney transplant child, treatment
with fumagillin alone successfully eliminated the parasite
(Desoubeaux et al., 2013). Fumagillin and a semisynthetic analog
TNP-470 (6) are also effective against Enc. cuniculi, Enc. hellem,
Enc. intestinalis, and V. corneae (Diesenhouse et al., 1993;
Didier, 1997; Coyle et al., 1998). In a case of disseminated
A. algerae infection, after failure of albendazole-based therapy,
combined use of albendazole and fumagillin treatment resulted
in clinical response and patient survival (Boileau et al., 2016).

Oral treatment with fumagillin or TNP470 was also shown to
control Loma salmonae or Nucleospora salmonis infection in
the Chinook salmon (Oncorhynchus tshawytscha) (Higgins et al.,
1998). Fumagilin-B soluble powder, a water soluble preparation
containing bicyclohexylammonium fumagillin, is widely used to
control N. apis in infected honeybees around the world. There
are concerns about the toxicity of fumagillin and, consequentially,
many countries outside of the Americas (including the European
Union) have banned fumagillin for agricultural use (European
Commission, 2010). In humans, treated for microsporidiosis,
fumagillin has caused reversible thrombocytopenia as well as
aseptic meningitis (Molina et al., 1997; Audemard et al., 2012).

Nitazoxanide (7) was developed and commercialized as
an antiprotozoal drug against a broad range of parasites
including protozoa, nematodes, cestodes, and trematodes
(Rossignol and Maisonneuve, 1984; Cabello et al., 1997;
Doumbo et al., 1997). Subsequently, it was also identified
as a broad-spectrum antiviral drug, e.g., clinical trials found
that oral administration of nitazoxanide reduced the duration
of clinical symptoms caused by influenza (Haffizulla et al.,
2014). An in vitro assay of nitazoxanide demonstrated that
it had moderate activity in inhibiting the growth of Enc.
intestinalis and V. corneae (Didier et al., 1998). Two case
reports demonstrated that nitazoxanide therapy treatment
successfully inhibited microsporidiosis in patients (Bicart-See
et al., 2000; Saffo and Mirza, 2019). While the mechanism
of action of nitazoxanide is not fully known, the most
accepted nitazoxanide target is pyruvate: ferredoxin; however,
microsporidia lack pyruvate:ferredoxin oxidoreductase and use
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pyruvate dehydrogenase in its place (Keeling, 2001; Hoffman
et al., 2007). Nitazoxanide also has other targets and a possible
nitazoxanide target in microsporidia is protein disulfide
isomerase (Muller et al., 2008). In general, more trials are
required to evaluate the possible role of nitazoxanide in treating
microsporidiosis.

EXPERIMENTAL ANTIMICROSPORIDIAL
COMPOUNDS AND THEIR
THERAPEUTIC TARGETS

Commonly known as putrescine, spermidine and spermine,
polyamines are low molecular weight organic chemicals with
more than two amino groups. Polyamines play an important
role in cell growth and differentiation by binding to nucleic
acids through electrostatic forces and hydrogen bonding
interactions. Due to their important roles in cellular physiology
the intracellular concentrations of polyamines are strictly
controlled through uptake, synthesis, interconversion, and
degradation (Feuerstein et al., 1991; Casero, and Pegg, 1993;
Marton and Pegg, 1995; Bacchi et al., 2003). Polyamine
concentrations are elevated in tumors compared to normal
tissue and, therefore, many researchers have focused on the
development of polyamine analogs as anti-cancer therapeutic
agents (Hayes et al., 2014). Enc. cuniculi has polyamine
pathways that include synthesis and back-conversion (Bacchi
et al., 2001; Ma et al., 2020). Isotope label studies indicate
that the intracellular polyamine levels of pre-emergent Enc.
cuniculi spores are dependent on uptake and interconversion
rather than synthesis (Yarlett and Bacchi, 1988), indicating
that synthetic polyamines targeting interconversion enzymes
like spermidine spermine, N-acetyl transferase and polyamine
oxidase are potential therapeutic agents for microsporidiosis. N′,
N′′-bis (ethyl) norspermine (BE-3-3-3) (8), a polyamine analogue
that induces spermidine spermine N-acetyl transferase and
down-regulates polyamine metabolism, inhibited Enc. cuniculi
growth in RK-13 cells (Coyle et al., 1996; Figure 1). In vivo
therapeutic studies in immunosuppressed mice demonstrated
that synthetic polyamine analogs SL-11144 (9) and SL-11158
(10) are able to cure microsporidiosis due to Enc. cuniculi
(Bacchi et al., 2002; Figure 1). In a SCID mouse model, the
synthetic polyamine analogues were shown to have superior
efficiency against Ent. bieneusi to that of fumagillin (Feng
et al., 2009). Due to the reliance on uptake rather than
synthesis of polyamines, screening, or developing new polyamine
analogs appears to be a useful future direction for the
development of new therapeutic agents for the treatment of
microsporidiosis.

Lipids are vital metabolites for multiplication and
differentiation in eukaryotes. The formation of membranous
structures is highly reliant on the amount of available
lipids. Orlistat (11) is a derivative of lipstatin (isolated from
Streptomyces toxytricini) which can irreversibly and efficiently
block pancreatic and gastric lipase (Figure 1). It is minimally
absorbed when given orally and its effect is due to inhibition
of lipases in the gastrointestinal tract. Orlistat was approved

in 1999 by the FDA (United States) for obesity management
(Derosa and Maffioli, 2012). Interestingly, orlistat has also been
shown to have activity against Giardia intestinalis (duodenalis),
Trypanosoma brucei, and Mycobacterium tuberculosis (Parker
et al., 2009; Yang et al., 2012; Hahn et al., 2013). In mice
infected with either Ent. bieneusi or Enc. intestinalis, orlistat
treatment was shown to decrease the amount of spores seen
in stool and the intestinal spore load (Abou-El-Naga et al.,
2019). The effect seen was similar to that observed with
fumagillin or albendazole treatment. Orlistat may affect these
pathogens directly by inhibiting their lipid metabolizing
enzymes or indirectly by affecting the lipid supply through
inhibition of host enzymes (McClendon et al., 2009; Hahn
et al., 2013). Genome analysis of microsporidia indicates that
microsporidia lack many genes required for the biosynthesis of
many important metabolites including lipids (Nakjang et al.,
2013), to this end the antagonistic effect of orlistat on growth
may be due to inhibition of the breakdown of lipids by the
host, limiting the available lipid precursors for uptake by the
microsporidia in the gut. Microsporidia have been shown to
have an intact phospholipid metabolic pathway for synthesizing
membrane phospholipids and this pathway is different from
that of other eukaryotes (i.e., host cells). As phospholipids
account for 60% of the total lipids in microsporidia and
phosphatidic acid has been proved to be a limiting host
metabolite for the proliferation of Tubulinosema ratisbonensis in
Drosophila (El Alaoui et al., 2001a,b; Franchet et al., 2019), their
phospholipid biosynthesis pathway may also be a promising
therapeutic target.

Chitin is a carbohydrate polymer which provides high
resistance to the environment and confers structural rigidity
to the spore wall of microsporidia. Chitin is synthesized
by a large family of chitin synthase enzymes which can be
clustered into seven discernable classes (Roncero, 2002). As
chitin is not found in mammalian cells and is an essential
component of the microsporidian spores, chitin synthase is
a promising target for antimicrosporidial drug development.
Nikkomycin and polyoxin are peptide-nucleoside antibiotic
which block chitin synthesis and fungal growth (Figure 1).
They have structural similarity to UDP-N-acetylglucosamine,
a ubiquitous and essential metabolite for chitin synthesis,
which allows them to competitively inhibit chitin synthases
that use UDP-N-acetylglucosamine to synthesize linear chitin
molecules (Groll et al., 1998). Nikkomycin Z (12) inhibited
the growth of Enc. hellem in fetal bovine lung fibroblast
cells and the infectivity of any spores that developed in
drug-treated cultures (Bigliardi et al., 2000). Polyoxin D
(13) and nikkomycin Z were shown to reduce the number
of parasitic foci in Enc. cuniculi infected monkey kidney
cells (Sobottka et al., 2002). The non-specific chitin synthase
inhibitor lufenuron was shown to inhibit the in vitro growth
of Enc. intestinalis and V. corneae (Didier et al., 1998).
Fungi have different classes of chitin synthases with distinct
functions. For example, Saccharomyces cerevisiae has three chitin
synthases with distinct functions in cell wall expansion, septum
formation, and budding, while filamentous fungi generally
have seven or eight distinct chitin synthases (Brosson et al.,
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FIGURE 2 | | Mechanism of action of therapy and therapeutic targets for microsporidiosis. The names of therapeutic targets are presented in bold. The mode of
action of orlistat and nitazoxanide are to be determined and are not shown in this figure.

2005). This property hindered the application of existing
chitin synthase inhibitors, such as polyoxin or nikkomycin,
because they usually inhibit one class of chitin synthases, but
show less efficiency against other classes of these enzymes.
In contrast, microsporidia possess a single type of class
IV chitin synthase (Brosson et al., 2005). Drugs that are
specifically targeting this type of chitin synthase may be sufficient
to inhibit the growth of microsporidia. Microsporidia are
obligate intracellular pathogens, unlike many fungi, and thus
transportation across the plasma membrane may be the major
factor influencing the effectiveness of hydrophilic compounds
like nikkomycin and polyoxin.

Quinolones contain a bicyclic core structure related to
the compound 4-quinolone. These drugs target type II
topoisomerases, DNA gyrases, and type IV DNA topoisomerases
of pathogens. They are broad-spectrum synthetic antibiotics
which are widely used for the treatment of bacterial infections
(Hooper, 2000; Andersson and MacGowan, 2003; Liu and
Mulholland, 2005). Fluoroquinolones were derived from
quinolones by modifying their structure with fluorine and
have the same mechanism of action as quinolones. Genome
sequence data demonstrates that V. corneae has a gene
with high level of identity with DNA topoisomerase IV C
subunit, an enzyme previously identified only from prokaryotes
(Mittleider et al., 2002). Therefore, researchers have examined
the efficacy of (fluoro) quinolones for inhibition of the
growth of V. corneae (Didier et al., 2005; Figure 1). Their
results indicate that gatifloxacin (14), lomefloxacin (15),

moxifloxacin (16), and nalidixic acid (17) could inhibit
V. corneae growth in vitro and in vivo, and that gatifloxacin,
lomefloxacin, norfloxacin (18), and ofloxacin (19) prolonged
survival of V. corneae-infected mice. Interestingly, gatifloxacin,
lomefloxacin, moxifloxacin, and nalidixic acid could also
inhibit Enc. intestinalis which does not have an identified type
IV topoisomerase in its genome, indicating that quinolones
may interact with other targets in addition to classic type
IV topoisomerases.

Porphyrins are ubiquitous aromatic heterocyclic compounds
in nature, they participate in many important biochemical
processes in living organisms, such as oxygen transport
and photosynthesis. Traditionally used against cancer, some
porphyrins show inhibitory effect against bacteria, viruses,
fungi, and protozoa (Jori et al., 2006; Allison and Moghissi,
2013). The synthetic amphiphilic protoporphyrin derivatives
TMePyP (20) and PPIX(Asp)2 (21) prevented N. ceranae
spore development in A. mellifera (Ptaszynska et al., 2018;
Figure 1). Protoporphyrin derivatives with other amino acid
moieties, PPIX[Lys-TFA]2 (22) and PPIX[Lys-Lys]2 (23), were
also shown to reduce spore loads in infected honey bees
(Buczek et al., 2020). In general, in response to light (or
radiation) porphyrins react with oxygen to produce cytotoxic
reactive oxygen species such as superoxide, hydrogen peroxide,
or hydroxyl radicals, and these highly reactive radicals react
with organic substrates to produce cytotoxicity (Castano
et al., 2004). However, the mechanism of inactivation of
microsporidia is currently not known, as light or radiation
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does not appear to be involved in the ability of porphyrins to
inhibit microsporidia.

OTHER PROMISING THERAPEUTIC
TARGETS

The mechanism by which microsporidia invade host cells is
unique. Under appropriate environmental conditions a spore
germinates shooting out its polar tube and transferring its
sporoplasm into a host cell through the extruded polar tube
(Han et al., 2017; Jaroenlak et al., 2020). This is a critical
process in the life cycle of these organisms and enzymes or
factors involved in spore germination are potential therapeutic
drug targets. The exact mechanism of spore germination and
polar tube discharge is not well-understood, and conditions
that activate spores vary widely among species, including pH
condition, cations, and calcium. Experimental evidence using
Glugea hertwigi has suggested that calcium flux plays an
important role in the initiation of spore discharge (Weidner
and Byrd, 1982). Displacement of calcium from the polaroplast
membrane is thought to trigger polaroplast contraction or
combine with the polaroplast matrix to cause polaroplast swelling
providing the propulsive force for germination (Weidner, 1982;
Weidner and Byrd, 1982). Both calcium antagonists (verapamil
and lanthanum) and calmodulin inhibitors (trifluroperazine
and chlorpromazine) have been demonstrated to prevent
spore germination in Spraguea lophii (Pleshinger and Weidner,
1985). The calcium channel blocker nifedipine inhibited the
germination of Enc. hellem and Enc. intestinalis spores in vitro
(Leitch et al., 1993; He et al., 1996). However, no in vivo
data exists regarding the use of calcium channel blockers in
microsporidiosis.

Based on the osmotic pressure theory of spore germination,
water flow across the spore wall and plasma membrane which
is accompanied by swelling of the polaroplasts and posterior
vacuole after germination, results in quickly increased osmotic
pressure and the corresponding eversion of the polar tube and
subsequent expulsion of the sporoplasm (Frixione et al., 1997).
To this end, aquaporins are also a potential target for inhibiting
spore germination, because they are critical proteins for water
flow across membranes (Ghosh et al., 2006a,b). The aquaporin
inhibitor HgCl2 has been shown to be effective in inhibiting
A. algerae spore germination (Frixione et al., 1997). However,
HgCl2 is highly toxic and has significant health risks, therefore,
while a proof of principle for aquaporin inhibition as a target for
inhibition of germination, it is not a useful drug for the treatment
of microsporidiosis.

Triosephosphate isomerase is a ubiquitous enzyme which
catalyzes the interconversion between triose phosphate
isomers dihydroxyacetone phosphate and D-glyceraldehyde-3-
phosphate. As the process triosephosphate isomerase catalyzes
is essential for the glycolytic pathway and many parasites
require this enzyme for efficient energy production, several
triosephosphate isomerase inhibitors have been studied in
various parasitic infections. A selective inhibitor of Trypanosoma
cruzi triosephosphate isomerase dramatically reduced parasites in

the blood of experimentally infected mice and greatly enhanced
their survival rate (Aguilera et al., 2016). Selective Fasciola
hepatica triosephosphate isomerase inactivators could kill the
juvenile form of F. hepatica in low concentration and showed
low host toxicity (Ferraro et al., 2020). In addition to its effect
on energy production, inhibition of triosephosphate isomerase
results in accumulation of dihydroxyacetone phosphate or
D-glyceraldehyde 3-phosphate, which can be cytotoxic (Han and
Weiss, 2018). It has been shown that thiol-reactive compounds
like sulbutiamine, rabeprazole, and omeprazole can effectively
inhibit the triosephosphate isomerase of Enc. intestinalis (Garcia-
Torres et al., 2018). As these drugs do not significantly inactivate
human triosephosphate isomerase (Garcia-Torres et al., 2016),
they may be considered as new potential drugs for treating
microsporidiosis.

Analysis of the available sequenced microsporidian genomes
on MicrosporidiaDB.org suggests that they have obtained
several genes via horizontal gene transfer events, such as the
ADP/ATP translocase gene family transferred from Chlamydiae
and glutamate-ammonia ligase from an unknown prokaryotic
source (Pombert et al., 2012). Thymidine kinase is a ley
enzyme in the nucleic acid salvage pathway, it catalyzes the
phosphorylation of thymidine to thymidine monophosphate.
Thymidine kinase is thought to have been lost in the fungal
lineage shortly after it diverged from animals (Alexander
et al., 2014). However, two independent horizontal transfer
events of thymidine kinase have occurred in microsporidia,
including transfers of bacterial thymidine kinase genes into
several microsporidia taxa and transfer of a putative viral-
like thymidine kinase into Nematocida parisii (Alexander
et al., 2016). Several prodrugs specifically target thymidine
kinase, like 5-fluoro-2-deoxyuridine and acyclovir, and these
are widely applied to treat simplex virus and several types
of cancer cells (Furman and Barry, 1988; Simmons, 2002).
Heterologous expression of a microsporidian thymidine kinase
in S. cerevisiae can convert 5-fluoro-2-deoxyuridine into
fluorodeoxyuridine monophosphate, completely inhibited the
growth of the transgenic S. cerevisiae (Alexander et al., 2016).
It is reasonable to postulate that the microsporidia that have
thymidine kinase in their genomes maybe susceptible to such
thymidine kinase prodrugs.

ALTERNATIVE MEDICINE FOR
TREATMENT OF MICROSPORIDIOSIS

Most complementary and alternative medicine strategies for
the treatment of microsporidiosis focus on the treatment of
nosemosis in honey bees. This is because while fumagillin
is the only veterinary regiment recommended by the World
Organization for Animal Health for treating nosemosis in honey
bees it is no longer licensed in the European Union. As a result,
there is a need for alternatives to control this disease and several
“natural” products have been sold as veterinary treatments for
nosemosis such as Nosestat R© and Vitafeed Gold R©. Many of
these alternative strategies have now been proven by controlled
studies to be ineffective (Botias et al., 2013). More research
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is clearly needed to develop reliable and effective alternative
strategies for the treatment of nosemosis in bees. Experience
with these alternative strategies for treating nosemosis in bees
should also provide new therapeutic ideas for the treatment of
microsporidiosis in human or other animals.

Various plants have been used in traditional herbal remedies
around the world and are reported to have numerous
pharmacological activities, however, the mechanisms underlying
these reported effects and the active substance in the various
plant extracts is often unknown. Historically, plants have been
sources of pharmacologically active compounds against many
types of pathogens and plant extracts have been evaluated
and used for the treatment of infectious diseases caused by
bacteria, fungi, protozoa, and viruses (Ali-Shtayeh and Abu
Ghdeib, 1999; Yoshida et al., 2005; Thembo et al., 2010). Such
studies have resulted in new therapeutic agents such as the
use of artemisinin, an antimalarial compound derived from
Artemisia carvifolia. Various plant extracts have been evaluated
as therapeutic agents for microsporidiosis. Ethanolic extracts
of Laurus nobilis were demonstrated to inhibit N. ceranae
development in A. mellifera at a concentration of 1% in syrup
(Porrini et al., 2011). Decoction extracts from the Chinese herb
Andrographis paniculata significantly inhibited proliferation of
N. ceranae and improved the survival rate of infected bees in a
dose-dependent manner (Chen et al., 2021). In addition, extracts
of Aster scaber and Artemisia dubia were also demonstrated
to have anti-nosemosis activity and this activity was increased
when extracts from both plants were used together (Kim
et al., 2016). A study that examined methanolic extracts from
leaves used in traditional medicine in Indonesian found that
several Indonesian plants were able to inhibit microsporidia,
the extract from Diospyros sumatrana was shown in vitro to
inhibit Enc. cuniculi and its activity was similar to that of
albendazole against Enc. cuniculi (Sak et al., 2017). Sulfated
polysaccharides extracted from several algae strains significantly
reduced the parasite load of N. ceranae and improved the
survival rate of infected bees (Roussel et al., 2015). Given
these observations with various plant extracts that inhibit the
proliferation of microsporidia, further work now needs to focus
on the purification and structural identification of the key
antimicrosporidial compounds in these extracts.

Propolis is a hard resinous hive product collected by
honeybee workers from the juices of various plants. The
chemical composition of propolis is quite complicated, including
aldehydes, polysaccharides, ketones, terpenes, steroids, amino
acids, hydrocarbons, and several other compounds (Bankova
et al., 1983; Marcucci, 1995). Propolis exhibits anti-bacteria, anti-
virus, and anti-fungus activity. Several studies have examined
if propolis can control microsporidiosis. Ethanol extracts of
propolis obtained from propolis structures of the stingless bee
Trigona apicalis significantly reduced the N. ceranae infection
rate and bee mortality rate (Bankova et al., 1983). In addition,
this propolis extract treatment increased the trehalose levels and
hypopharyngeal gland protein content in treated bees compared
to an untreated control group (Suwannapong et al., 2018).
Dichloromethane extract of propolis from Upstate New York
greatly reduced N. ceranae spore loads in a dose-dependent

manner (Burnham et al., 2020). A study in Italy that evaluated
an ethanol extract of propolis from the honey bee A. mellifera
demonstrated that treatment decreased the spore load of
N. ceranae-infected worker bees (Mura et al., 2020). In addition,
the food consumption and longevity of the propolis treated group
increased. High performance liquid chromatography analysis
revealed that there are many organic compounds belonging to
flavones, flavonols, and simple phenols in the propolis extract
and the active antimicrosporidial compounds were not identified.
More research is needed on the application of propolis for
the control of microsporidiosis, including the purification and
identification of the active compounds in the ethanol extracts
as well as studies that examine the activity of these propolis
extracts against other microsporidia such as N. bombycis and
Encephalitozoon spp.

Probiotics have been used in both vertebrates and
invertebrates to modulate and maintain intestinal health,
and they have also been utilized as adjunctive therapy in the
treatment of gastrointestinal infections (Silva et al., 2020).
Lactobacillus kunkeei strains isolated from the gut of bees have
shown a potential beneficial effect of decreasing N. ceranae
infections (Arredondo et al., 2018). Enterococcus faecium
also significantly reduced N. ceranae load in infected bees
(Borges et al., 2021). The protective effect of probiotics
could be due to metabolites produced by bacteria, such as
bacteriocin and surfactin (Porrini et al., 2010; Mossallam et al.,
2014). Unfortunately, other studies have demonstrated that
probiotics are ineffective for the prevention and treatment of
microsporidiosis. Several commercial probiotics and prebiotics
have been demonstrated in controlled trials to be ineffective
in the treatment and prevention of nosemosis in N. ceranae
(Ptaszynska et al., 2016). A randomized placebo-controlled
study in AIDS patients with non-infectious diarrhea or
gastrointestinal symptoms caused by microsporidia indicated
that there were no significant differences in patients treated
with Lactobacillus rhamnosus compared to a placebo treatment
group (Salminen et al., 2004). The role of the microbiome
in infectious disease therapy and pathogenesis is a rapidly
evolving area of investigation. Future research on the isolation,
clinical efficacy, and antagonistic mechanisms of various
probiotics is clearly needed for the development of this
therapeutic approach.

CONCLUSION

Microsporidia have become not only important emerging human
pathogens in immune competent and immune-compromised
individuals, but are also major threats to industries such as
sericulture, apiculture, and aquaculture. The known therapeutic
targets for microsporidiosis mentioned are summarized in
Figure 2. The currently approved drugs for the treatment
of microsporidiosis are albendazole and fumagillin, which
target β-tubulin and MetAP2, respectively. Fumagillin has a
broader antimicrosporidial activity compared to albendazole as
it can inhibit Encephalitozoon spp., V. corneae, and Ent. bieneusi,
while albendazole has limited activity against V. corneae
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and Ent. bieneusi. Apart from these two well studied targets,
more therapeutic targets are still required for microsporidiosis
drug development. Chitin is a crucial component of the spore
wall. Microsporidia have been shown to have a single chitin
synthase gene in their genomes, making this an excellent potential
therapeutic target as vertebrates do not have this biochemical
pathway. Drugs that target the polyamine pathway have been
shown to inhibit microsporidia in vitro and to be effective
in experimental murine microsporidiosis. These polyamine
analogues are promising therapeutic agents that deserve further
study. Some studies have demonstrated that fluoroquinolones
can inhibit microsporidia, however, microsporidia lack type IV
topoisomerase which is the known target of fluoroquinolones.
Studies on the target of these drugs in microsporidia are
clearly needed to further the development of fluoroquinolones
as therapeutic agents against microsporidia. The effect of orlistat
on microsporidia in experimental murine models is intriguing.
This observation suggests that drugs that target lipid metabolism
could be useful therapeutic agents for microsporidiosis as well
as illustrates that non-absorbed drugs in the gastrointestinal
tract can still have activity against microsporidia. Several of
the previously mentioned chemicals or their derivatives are
already in wide use for other purposes. Investigators are also
screening FDA-approved drug libraries to repurpose them for
microsporidiosis. This approach holds promise to accelerate
development as these repurposed drugs do not require as
much of an investment as novel molecules. Complementary and
alternative medicine strategies for microsporidiosis need to be
carefully evaluated for efficacy as illustrated by controlled studies
that demonstrated that several widely used natural treatments
for nosematosis were ineffective. Extracts from medicinal plants
have been demonstrated to have antimicrosporidial activity and
the active component in these extracts need to be identified
in order to further develop these therapies. Microsporidia have

reduced genomes with corresponding reductions in anabolism
and catabolism providing opportunities for the development of
agents that target critical enzymes in these streamlined pathways.
Microsporidia also have a unique mechanism of invasion
requiring spore germination and extrusion of a unique organelle,
the polar tube, for successful infection transmission. Screening
compound libraries to identify compounds that interfere with
this unique invasion process could be a fruitful avenue of
investigation for the identification of new therapeutic agents.
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