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Continuous cropping obstacles have increasingly become an important phenomenon 
affecting crop yield and quality. Its harm includes the deterioration of soil basic physical 
and chemical properties, changes of soil microbial community structure, accumulation of 
autotoxins, weakness of plant growth, and aggravation of diseases and pests. In this 
review, the evolutionary trend of soil microbial structure driven by continuous cropping 
was generalized, while drivers of these changes summed up as destruction of soil microbial 
living environment and competition within the community. We introduced a microorganism 
proliferation and working model with three basics and a vector, and four corresponding 
effective measures to reshape the structure were comprehensively expounded. According 
to the model, we also put forward three optimization strategies of the existing measures. 
In which, synthetic microbiology provides a new solution for improving soil community 
structure. Meanwhile, to ensure the survival and reproduction of soil microorganisms, it 
is necessary to consider their living space and carbon sources in soil fully. This review 
provided a comprehensive perspective for understanding the evolutionary trend of the 
soil microbial community under continuous cropping conditions and a summary of 
reshaping measures and their optimization direction.

Keywords: soil ecosystem, continuous cropping obstacles, microbial community structure, management 
measures, evolutions

INTRODUCTION

Although China has more than 5.28 million square kilometers of agricultural land, its population 
has already reached 1.41 billion, needing more safe food. Therefore, scientists and farmers are 
seeking safety, quality, and high yields while exploiting the land’s capacity to produce more 
food (Wang et  al., 2018a). However, limited by various geographical factors, farmers seldom 
adopt a rotation system, but rather more continuous planting. Finally, continuous cropping 
obstacles have formed, bringing about various ecological and environmental problems.
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Continuous cropping obstacles refer to the phenomenon 
that the same crop or its related species are continuously 
planted on the same plot, and even under normal management 
conditions, the yield and quality of products are still reduced, 
and the diseases and insect pests become serious (Yan et  al., 
2012; Xi et  al., 2019; Chen et  al., 2020; Wang et  al., 2020c). 
Continuous cropping obstacles are also known as “avoid land,” 
“replanting disease,” “hate land problem,” and “repeat crop”(Zhou 
and Wu, 2012; Wang et  al., 2015). Continuous cropping can 
lead to the decrease of soil available nutrients contents (Li 
et  al., 2019), the imbalance of nutrient elements proportion 
(Yu et  al., 2017), the decline of soil enzyme activity, the 
deterioration of physical and chemical properties (Du et  al., 
2017), the changes of microbial population, and the aggravation 
of diseases and pests (Zhang et  al., 2017; Zeng et  al., 2020; 
Figure  1). The decline of crop yield and quality is the final 
result and manifestation of the above hazards and also indicates 
the decrease of farmers’ income (Zhang, 2015; Chen et  al., 

2018c), which makes the alleviation or removal of continuous 
cropping obstacles become a major problem in the process of 
planting, and also a most challenging problem to solve.

Microorganisms are another kind of material and energy 
carrier besides plants and animals in the soil (Maier et  al., 
2018; Macik et al., 2020). Their existence can efficiently transform 
all kinds of energy (Victoria et al., 2013; Venkatesh and Pradeep, 
2016) and effectively impact the soil structure and quality (Jangir 
et  al., 2019; De Corato, 2020). Microorganisms also play an 
important role in crop growth and health (Schippers et  al., 
1987; Judith and Donald, 2020) and become an essential indicator 
to measure soil health (Syrie et al., 2017; Johannes et al., 2020). 
Long-term continuous cropping of the same plant or the same 
family plants causes changes in the quantity, diversity, and 
richness of soil microorganisms (Li and Liu, 2019; Liu et  al., 
2020a,c), and the occurrence of continuous cropping obstacles 
is closely related to the imbalance of soil microbial community 
structure (Zhang et  al., 2019; Liu et  al., 2021b).

FIGURE 1 | Interactions between the soil microbial community and the manifestation of continuous cropping obstacles. Continuous cropping results in 
deterioration of soil physical and chemical properties, which further affects the survival, proliferation, and working of soil microorganisms, and destroys soil microbial 
community structure. When it comes to plants, it is the abnormal growth state, the aggravation of diseases and insect pests, and the weakened and preferred 
absorption of nutrients. At the same time, the autotoxins secreted by plants affect the soil microorganisms in turn.
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In this review, the evolutionary trend of soil microbial 
community structure driven by continuous cropping and drivers 
of the evolution were generalized. Meanwhile, we  raise a 
microorganism proliferation and working model and management 
measures to overcome the continuous cropping obstacles. Finally, 
improvements to existing measures were also proposed. We hope 
this review provides a comprehensive landscape for 
comprehending the soil microbial community under continuous 
cropping conditions and supports the final mitigation of 
continuous cropping obstacles.

EVOLUTIONS OF THE ASSEMBLY OF 
SOIL MICROBIAL COMMUNITY DROVE 
BY CONTINUOUS CROPPING

Soil microbial community structure affects plant health and can 
also be  used as an indicator of soil health (Zhou and Wu, 
2012; Dong et  al., 2016). High-throughput sequencing analysis 
showed that long-term continuous cropping could reduce soil 
bacterial biomass and increase fungal biomass (Dong et  al., 
2016; Liu et  al., 2016, 2020a), while longer-term continuous 
cropping could increase the bacterial diversity to suppress soil-
borne diseases by forming bacteriostatic soil (Shen et  al., 2018; 
Zhang et  al., 2020). Studies have shown that the higher the 
ratio of bacterial to fungal in soil, the better condition of the 
soil ecosystem, the more stable the structure of bacteria, and 
the stronger the resistance of soil to disease (Liu et al., 2015a,b). 
After continuous cropping, the dominant microorganism in soil 
changed from bacteria to fungi, while the number and diversity 
of fungi was negatively correlated with the soil health status 
(Han et  al., 2010). Among the proliferative fungi in the soil, 
some fungi can directly kill plant cells or produce metabolic 
toxins (Zhu et  al., 2014; Manici et  al., 2017). These fungi also 
directly affect the health of the whole plant by destroying root 
growth and physiological activities (Yim et  al., 2013; Emmett 
et  al., 2014). Continuous cropping of common buckwheat 
significantly increased the number of rhizosphere fungi, decreased 
soil nutrient content, enzyme activity, feedback for agronomic 
traits, and root index decreased significantly (Wang et al., 2020c). 
After planting apple seedlings in continuous cropping fields, 
the root system showed necrosis of epidermal cells, root tip 
rot, lateral root development retarded, and functional root hairs 
decreased due to the action of fungi in soil (Mazzola and Manici, 
2012; Yim et  al., 2013; Emmett et  al., 2014; Weiβ et  al., 2017).

With the increase in continuous cropping years, the diversity 
and richness of the rhizosphere microbial community changed 
greatly, the number of functional strains (Wang et  al., 2018b), 
such as aerobic bacteria and nitrogen-fixing bacteria, decreased 
significantly, and the diversity index of soil fungi and bacteria 
declined, which destroy the balance of original soil microbial 
community structure and effected plant growth (Larkin, 2008; 
Mikkel et al., 2015). Some bacteria, which belong to plant growth 
promoting rhizobacteria (PGPR), can secrete antibiotics to inhibit 
pathogenic microorganisms. Still, continuous cropping reduces 
bacteria-secreted antibiotics (Zhang et al., 2020) and the inhibition 

of pathogenic bacteria (Tan et  al., 2017) and then causes an 
increase in plant diseases incidence. Meanwhile, the secondary 
metabolites secreted by harmful microorganisms recruit 
microorganisms that are beneficial to themselves, further damaging 
the soil microecology, evolving in a direction conducive to the 
survival of those, and aggravating the obstacles of continuous 
cropping (Chen et al., 2018a; Pascale et al., 2019; Bakker et al., 2020).

DRIVERS OF CHANGES IN SOIL 
MICROBIAL COMMUNITY STRUCTURE 
UNDER CONTINUOUS CROPPING

The ability of soil microorganisms to survive, proliferate, and 
work in an environment requires certain specific foundations. 
To sum up, there are three basics and one vector. We constructed 
them into a microorganism proliferation and working model 
(Figure  2). The first basic is carbon sources, the essential 
nutrient for microbial life activities. The second is the living 
environment, including living space and living conditions. The 
last one is other nutritional and functional substances, which 
are other substances necessary for the survival and working 
of microorganisms. These three basics exist in a common vector, 
the soil. The deterioration of any one of the three basics will 
lead to the retardation of proliferation or working of 
microorganisms. According to this model, we  analyzed the 
drivers of microbial evolution trends under continuous cropping.

Changes in Soil Physical and Chemical 
Properties Rebuild the Living Environment 
of Microorganisms
The changes of soil physical and chemical properties directly or 
indirectly lead to the formation of continuous cropping obstacles 

FIGURE 2 | Three basics and a vector for proliferating and working of soil 
microorganisms.
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and rebuild the living environment of microorganisms. Studies 
have shown that continuous cropping and excessive use of chemical 
fertilizers and pesticides lead to a decline in soil pH (Serpil, 
2012; Hvězdová et  al., 2018), which accelerates the colonization 
of pathogenic microorganisms and aggravates plant diseases (Joseph 
et al., 2018). At the same time, the absorption of nutrient elements 
by single crops is biased, resulting in the imbalance of soil nutrients, 
which accelerates the evolution of microbial communities (Pan 
et al., 2014; Wang et al., 2017). Excessive use of chemical fertilizers 
and pesticides also leads to salinization and hardening (Liu et al., 
2015b; Shen et al., 2016), which will further increase soil osmotic 
potential, decrease buffer capacity, reduce aggregate structure, and 
decline the water holding capacity and permeability (Serpil, 2012; 
Hvězdová et al., 2018). Meanwhile, soil catalase and other harmful 
enzymes accumulated with the increase of continuous cropping 
years, further destroying the living conditions of soil microorganisms 
(He et al., 2008; Huang et al., 2012). These changes will eventually 
lead to variations in the living environment of microorganisms, 
and some particular microorganisms will be  recruited or selected 
to adapt to the new rigorous environment and gradually change 
the soil microbial community.

Autotoxins Lead to a Decrease in 
Probiotics
Although plant root exudates varied in types and functions, 
autotoxins are another factor leading to the change of soil microbial 
structure in continuous cropping obstacles. Many plants can 
release some substances through aboveground volatilization, leaf 
leaching, eluviation, root secreting, and plant stubble decaying, 
which can inhibit the growth of this season crop or the next 
season crop of the same species or the same family of plants 
(Rial et  al., 2014; Hisashi et  al., 2017). This phenomenon is 
called autotoxicity or allelopathy inhibition (Friedman, 2017). 
These released substances are mainly secondary metabolites, known 
as autotoxins, primarily phenolic acids (Zhang et  al., 2007; Rial 
et  al., 2014). The autotoxins in tobacco that have been detected 
and verified included benzoic acid, p-hydroxybenzoic acid, vanillic 
acid, vanillina, etc., among which benzoic acid has the most 
significant allelopathy effect (Wu, 2010). With the addition of 
continuous planting years, the accumulation volume of autotoxins 
increases with soil acidification (Wang et  al., 2008; Wu et  al., 
2015). The inhibition effect on probiotics, related to element 
circulation and soil texture improvement, becomes more and 
more intense (Kumar et  al., 2017; Furtak and Gajda, 2018). At 
the same time, the accumulation of autotoxins provides carbon 
sources for pathogenic microorganisms, and the growth-promoting 
effects on pathogens begin to appear (Zhao et  al., 2015; Chen 
et  al., 2018b; Jia et  al., 2018). Finally, pathogens occupy more 
favorable ecological niches, disrupting the balance of small 
underground ecosystems.

Competition Between Pathogenic 
Microorganisms and Probiotics
The competition between pathogenic microorganisms and 
probiotics is another reason for the change of soil microbial 
community structure (Griffin et al., 2004; Stéphane et al., 2013). 

Specifically, it is the competition between them for living space 
and resources (Amin et  al., 2020; Gu et  al., 2020). Under the 
ground, space and resources are common to both. The one 
that can reproduce quickly will take up more space and resources 
and occupy a reasonable ecological niche, especially for scarce 
resources, such as siderophores (Gu et  al., 2020). Accordingly, 
when the quantity of probiotics is artificially added to counter 
pathogens, the living environment should be  improved at the 
same time, and the reproduction of probiotics will be accelerated 
(Jin, 2010). However, there are still some factors in the soil 
that affect their competition, such as predators and plants. 
Predation behaviors reduce the survival of one of them, and 
the competition between them becomes more fierce (Rasit 
et al., 2021). To ensure the balance between them, plants recruit 
probiotics and fight against pathogens by secreting their products, 
intensifying their competition and even breaking the balance 
(Sassone-Corsi and Raffatellu, 2015; Liu et  al., 2021a). With 
the increase of continuous cropping years, all kinds of resources 
and space in the soil are gradually occupied by pathogens, 
probiotics lose their ecological niche, and crop growth status 
becomes worse and worse (Pervaiz et  al., 2020). However, if 
farmers continue to choose continuous cropping, likely, probiotics 
will gradually accumulate due to the recruitment of plants, 
and the living space and resources of pathogens will be squeezed 
continuously, eventually forming bacteriostatic soil.

IMPROVEMENT MEASURES OF SOIL 
MICROBIAL COMMUNITY STRUCTURE 
UNDER CONTINUOUS CROPPING

In recent years, the mitigation of continuous cropping obstacles 
has become a hot issue to be  solved urgently in production 
(Liu et  al., 2020a,c; Zeng et  al., 2020; Ding et  al., 2021). One 
of these methods that can mitigate continuous cropping obstacles 
is improving or recombining microbial community structure 
underground (Larkin, 2008; Han et  al., 2010; Liu et  al., 2015a, 
2021a; Chen et al., 2018c; Zhang et al., 2020). Special cultivation 
control measures can solve some problems of soil community 
structure caused by continuous cropping, but most of them 
have no feasible reduction techniques. At present, there are 
several ways or measures to improve the microbial community 
structure of continuous cropping soil (Figure  3).

Changing the Current Cropping System
The soil ecological damage caused by planting the same or 
the same family of plants for many years could be  changed 
by altering the existing planting system to carry out reasonable 
rotation cropping or intercropping, and the change of planting 
system can alter the structure of microflora (Larkin, 2008; Du 
et  al., 2017; Gao et  al., 2017; Zeng et  al., 2020). Changes or 
increases in crop species lead to changes in root secretions 
in soil (Galazka et al., 2017; Li et al., 2020). Thus, microorganisms 
that use the new secretions as a carbon source are increased 
or recruited, rebuilding the microbial community. Three kinds 
of crops, sweet potato, peanut, and wheat, were cropped 
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rotationally, and the results showed that the number of culturable 
bacteria in sweet potato, peanut rotation cropping field was 
increased compared with that in continuous cropping soil, the 
quantities of fungi and actinomycetes were decreased, and the 
contents of nutrient elements in the soil were changed (Fan, 
2019). At the same time, the quantities of culturable bacteria 
and fungi in the wheat field showed an increased tendency, 
but a decreased trend of actinomycetes. However, the sweet 
potato–tobacco intercropping increased the dominant microflora 
at the phylum level and changed the microflora structure. The 
soil microecological system in the root zone became more 
and more benign. The intercropping between peanut and tobacco 
can also optimize the soil microecological structure in the 
peanut continuous cropping field (Gao et al., 2019). It is worth 
noting that regardless of whether crop rotation or intercropping 
cropping patterns are used, the choice of crops is critical, 
especially not to choose crops with co-morbidities (Chongtham 
et  al., 2017; Ouda et  al., 2018). To sum up, selecting suitable 
crops for rotation cropping or intercropping is very important 

for mitigating soil community structure and improving plant 
growth and yield quality.

Scientific and Rational Fertilization
Scientific and reasonable fertilization strategy is the necessary 
measure to maintain the balance of soil nutrient elements and 
the living space of microorganisms, because continuous cropping 
amplifies the preference of the assimilation of elements, changes 
the physical and chemical properties of the soil, and destroys 
the living space and nutrients of soil microorganisms (Serpil, 
2012; Liu et  al., 2015a; Chen et  al., 2018c; Li et  al., 2019; Macik 
et  al., 2020). A rational choice of fertilization strategy based on 
soil conditions is the only option to stabilize soil physicochemical 
properties and maintain soil microbial nutrients (Zhao et  al., 
2014). But in production, farmers generally only pay attention 
to the application of fertilizers rich in macroelements, such as 
nitrogen, phosphorus and potassium fertilizer, ignoring the trace 
elements fertilizer and organic fertilizer (Michalojc and Buczkowska, 
2009; Shen et  al., 2016; Kicinska and Wikar, 2021). This disrupts 

FIGURE 3 | Improvement measures of soil microbial community structure under continuous cropping. The solid line indicates the measures currently used in 
agricultural production, and the dotted line indicates the measure that will be involved in the mitigation of continuous cropping obstacles in the future.
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the buffering capacity and ionic balance of the soil, lowers the 
pH value, reduces the effectiveness of certain nutrients, and leads 
to the lack of essential plant nutrients, such as Ca, Mg, B, Mo 
(Zhenli et  al., 2005; Amir et  al., 2019; Macik et  al., 2020). 
Ultimately, a variety of physiological and soil-borne diseases to 
crop plants happened. The reasonable addition of microelement 
fertilizers to the soil can alleviate nutrient deficiencies caused 
by preferential absorption of crops, help maintain stable soil 
physical and chemical properties and microbial communities, 
and enhance plant health and immune resistance.

Farmers also can use the competitive relationship between 
probiotics and pathogens, through the application of bacterial 
fertilizer, to increase the quantity of probiotics, but have better 
to create an appropriate living environment for the survival 
of probiotics at the same time, to promote their rapid reproduction 
(Zhang et  al., 2012; Liu et  al., 2015a; Chen et  al., 2018c; Li 
et  al., 2019; Sadikshya et  al., 2020). The combined application 
of organic fertilizer, microbial fertilizer, and chemical fertilizer 
can not only increase the contents of various nutrient elements 
and soil organic matter and improve the physical and chemical 
properties of soil to a certain extent, but also optimize the 
soil microbial population and structure, and increase the biomass 
of probiotics in soil (Miransari, 2013; Dubey et al., 2020, 2021). 
At the same time, combined application of fertilizers can balance 
the chemical composition of plants, increase the total content 
of inclusions and improve the quality of harvests (Dubey et al., 
2019, 2020). In conclusion, the compound application of all 
kinds of fertilizer has obvious effects on alleviating continuous 
cropping obstacles. In addition, specific plans for the application 
ratio of organic fertilizer, microbial fertilizer, and chemical 
fertilizer should be made according to local soil characteristics.

Adsorption and Degradation of Autotoxins
Reasonable planting system and fertilizer collocation are the 
first choice to degrade autotoxins, which is simple and labor-
saving. And reducing the content of autotoxins in the root 
zone is another method to improve microbial community 
structure (Zhang et al., 2016; He et al., 2021). Physical adsorption 
and biodegradation can also be  used to reduce autotoxicity 
and improve soil microbial community structure (Mao et  al., 
2010; Wu et  al., 2015; Xie and Dai, 2015; Xia et  al., 2019). 
The quickest way to overcome the deterioration of the microbial 
community caused by the accumulation of autotoxins is by 
using adsorbents to remove autotoxins from the root zone 
(Asao et  al., 2004; Palansooriya et  al., 2020). Biochar has been 
primarily used in agriculture in recent years, which is a solid 
product produced by pyrolysis of organic biomass at high 
temperatures in an anoxic environment (Elmer and Pignatello, 
2011; Xia et  al., 2019; Sadikshya et  al., 2020). Because of its 
large porosity and specific surface area, biochar can provide 
space for microorganisms to survive and proliferate while 
adsorbing harmful substances in the soil, so it is widely used 
for soil improvement (Fang et  al., 2020; Wang et  al., 2020a). 
The application of biochar reduced the content of autotoxins 
in the field, weakened the effects of autotoxins on plants’ 
growth, and increased the biomass, growth rate, and sporulation 
of probiotics (Wang et  al., 2020b; Ma et  al., 2021).

The degradation of autotoxins depends mainly on soil 
microorganisms, also known as autotoxins biodegradation (Mao 
et al., 2010; Xie and Dai, 2015; Wang et al., 2021). The bacteria 
isolated from soil had a certain ability to decompose the 
autotoxins secreted by plant roots, especially when fed back 
to the soil from which the bacteria isolated (Shen et  al., 2020; 
Wang et  al., 2021). Therefore, using beneficial microorganisms 
can also solve or alleviate autotoxicity. Meanwhile, exogenous 
microbial inoculation can also promote the breeding of many 
beneficial microbial communities in the rhizosphere of crops, 
inhibit the growth of harmful microorganisms and reduce the 
accumulation of pathogenic bacteria (Xie et al., 2020). However, 
biological control also has problems, such as high cost and 
unclear impact on the other organism.

Controlling the Biomass of Pathogens
The controls of pathogenic microorganisms in continuous 
cropping soil are the most direct improvement method for 
soil microorganisms. In recent years, chemical control and 
biological control have mainly been used in production (Liu 
et al., 2018; Goring, 2019; Dilzahan et al., 2020; Bindumadhavi 
and Gopi, 2021). The pathogens that cause continuous cropping 
diseases are mainly hidden in soil or crop residues over the 
winter. Thus, it can be  reduced by fumigation treatment with 
chemical agents (Bindumadhavi and Gopi, 2021). Taking soil-
borne diseases controls in the tobacco field as an example, 
researchers found that under the condition of inoculation and 
common field, the control effect of chloropicrin fumigation 
on the black shin and root knot nematode disease reached 
68.00% ~ 84.29, 80.66% ~ 92.49, 75.16% ~ 88.15, and 
53.60% ~ 65.70%, respectively (Wang et al., 2010). Three extracts 
from medicinal crops were used to control the tobacco black 
shank, and the results showed whether used alone or in 
combination, the antifungal effect was obvious (He et al., 2017). 
In actual production, because of the broad-spectrum of chemical 
controls, the controls of soil-borne diseases are more in favor 
of biological control. Biological controls can reduce the number 
of pathogenic organisms through probiotics (Liu et  al., 2018) 
or promote soil microorganisms gathering around plant roots 
to form a sticky layer, which effectively prevents the spread 
of pathogens later, and reduces the invasion of those to plant 
roots (Ren et al., 2015; Wu et al., 2019). Many types of bacteria 
are used for biological control, such as Bacillus sp. and 
Pseudomonas sp. for tobacco cultivation (Ma et  al., 2017). For 
example, three strains of endophytic bacteria 001, 009 and 
011, isolated from tobacco stems, had a good control effect 
on tobacco bacterial wilt. Among them, strain 001 was Bacillus 
subtilis, and strain 009 and strain 011 were Bacillus brevis. 
The average control effect of the three strains on tobacco 
bacterial wilt was 82.5, 100 and 84.5%, respectively (Yin et  al., 
2004). A new organic fertilizer with Pseudomonas aeruginosa 
NXHG29 could more effectively decrease the disease incidence 
of tobacco bacterial wilt and tobacco black shank (Ma et  al., 
2018). Biocontrol bacteria XE01 and X23 could reduce the 
incidence and severity of tobacco bacterial wilt (Zhou et  al., 
2016), and endophytic bacteria LSN02 and LLGJ04 were used 
to control soil-borne diseases of tobacco with results showed 
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that root irrigation by endophytic bacteria was effective and 
had a significant effect on the control of black shack (Liu 
et  al., 2019). Arbuscular mycorrhizal fungi (AMF) are also 
widely used probiotics. After applying Panax quinquefolius in 
a continuous cropping field, soil microbial community structure 
was improved, with functional strains increased and pathogenic 
microorganisms decreased (Liu et  al., 2020b). The plate 
confrontation test showed that AMF could inhibit the growth 
of Verticillium dahliae and improve the resistance to Verticillium 
Wilt in cotton fields (Zhang et  al., 2018).

PROSPECTS FOR THE 
RECONSTITUTION OF SOIL MICROBIAL 
STRUCTURE

The healthy growth of crops is inseparable from a healthy soil 
ecology. In which, the healthy soil microbial community structure 
is fundamental. The structure should generally be  a bacteria-
dominated community without microorganisms harmful to 
crop growth. Reasonable microbial population, high diversity 
and stable structure are also essential. Besides, sufficient and 
various nutrition, adequate living space and suitable living 
conditions are the premise of a stable community structure. 
The above measures are the targeted measures to reshape the 
soil microbial community structure commonly used in 
agricultural production at present.

However, the basis for the effectiveness of microorganisms 
is their ability to survive and proliferate in the soil, which 
requires carbon sources, living space and conditions, and other 
nutrients and functional substances (Figure 2). To fundamentally 
solve this problem, it is necessary to use more in-depth means 
or measures, such as synthetic microbiology, to reshape soil 
microbial community structure (Du et  al., 2020). Researchers 
have changed from using a single microbe for restoration to 
using a complex microbiome for reconstruction, which is the 
source of the formation of synthetic microbiology. With 
sequencing technology development, more and more high-
throughput synthetic microbial communities will be  applied 
to the functional study of soil microbial community structure. 
Results showed that a simplified synthetic community composed 
of three high-abundance bacteria and one low-abundance bacteria 
could control the root rot of Astragalus mongolicus (Li et  al., 
2021). It is inferred that synthetic microbial communities based 
on major components, functions, and phylogenetic relationships 
will be  generated soon to improve the microbial community 
structure under continuous cropping obstacles (Du et al., 2021).

The existence of organisms cannot be  separated from a 
reasonable and comfortable living space, so are the microorganisms 
in the soil. Appropriate living space is needed for both the 
probiotics in continuous cropping soil and the probiotics added 
artificially. Most common microbial fertilizers in the market do 
not fully consider the amount of biomass of active microorganisms 
after the application, leading to a large amount of bacterial 
fertilizer used for each season, but the effect is down to expectations. 
To ensure the survival of exogenous probiotics, their living space 
must be  fully considered. In the present application research, 

biochar provides reasonable space for probiotics to live, which 
is determined by the diversity of biochar space structure and 
the structural properties of the existence of voids. Subsequent 
production of biological fertilizer can use a combination of biochar 
and probiotics to increase the survival medium of microorganisms 
(Elmer and Pignatello, 2011; Fang et  al., 2020; Sadikshya et  al., 
2020; Wang et  al., 2020a,b; Ma et  al., 2021).

The survival of microorganisms also requires carbon sources. 
In the reshaping process of soil microbial community structure, 
adding carbon sources available to probiotics but unavailable 
to pathogens is an effective measure to control the direction 
of reshaping. Although continuous cropping recruited probiotics 
to resist pathogens, the use of specific carbon sources helped 
speed up the process of reshaping and control the reshaping 
direction (Yang et al., 2019; Du et al., 2021). In the production 
and application of agricultural microbial preparations, carbon 
sources should be added according to the metabolic characteristics 
of probiotics to improve the effectiveness of the preparations.

CONCLUDING REMARKS

Continuous cropping leads to a change in soil from bacterial 
type to fungal and reduces the probiotics biomass in soil. The 
drivers of these changes are the deterioration of soil physicochemical 
properties, the accumulation of autotoxins, the reduction of 
beneficial bacteria, and the multiplication of pathogens, further 
leading to the destruction of the microbial living environment 
and the increase of competition within the community. Nevertheless, 
more rigorous experiments should be  designed to verify the 
specific reasons for the changes in soil microbial community 
structure induced by continuous cropping. We  also put forward 
a microorganism proliferation and working model with soil as 
a vector. In view of the above drivers and the model, methods 
adopted in the production include changing the planting system, 
scientific and rational fertilization, adsorption and degradation 
of autotoxins, controls of pathogens colonization, and increases 
in probiotic biomass. Recently, scientists have begun to use 
complex microbial products, especially synthetic microbiology 
products, or in combination with other measures, to increase 
probiotics’ survival, improve soil community structure and relieve 
continuous cropping obstacles. This is also a direction of application 
in the future for a period of time. In conclusion, the mitigation 
measures for the deterioration of microbial community structure 
driven by continuous cropping can be  concluded as the timely 
reconstruction of soil microbial community structure after 
continuous cropping, while maintaining the living space and 
conditions suitable.
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