
Frontiers in Microbiology | www.frontiersin.org 1 February 2022 | Volume 13 | Article 845137

REVIEW
published: 14 February 2022

doi: 10.3389/fmicb.2022.845137

Edited by: 
Cao Yong Chang,  

Sun Yat-sen University, China

Reviewed by: 
Zheng Chen,  

Jiangxi Agricultural University,  
China

Puxian Fang,  
Huazhong Agricultural University,  

China

*Correspondence: 
Sutian Wang  

wstlyt@126.com
Jianfeng Zhang  

zhang-jianfeng@139.com

Specialty section: 
This article was submitted to  

Virology,  
a section of the journal  

Frontiers in Microbiology

Received: 29 December 2021
Accepted: 13 January 2022

Published: 14 February 2022

Citation:
Zhang K, Lin S, Li J, Deng S, 
Zhang J and Wang S (2022) 

Modulation of Innate Antiviral Immune 
Response by Porcine Enteric 

Coronavirus.
Front. Microbiol. 13:845137.

doi: 10.3389/fmicb.2022.845137

Modulation of Innate Antiviral 
Immune Response by Porcine 
Enteric Coronavirus
Kunli Zhang 1,2, Sen Lin 3, Jianhao Li 1, Shoulong Deng 4, Jianfeng Zhang 2,5*  
and Sutian Wang 1*

1 State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, 
Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China, 2 Institute of Animal Health, 
Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, 
Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, 
Ministry of Agriculture and Rural Affairs, Guangzhou, China, 3 Sericultural & Agri-Food Research Institute, Guangdong 
Academy of Agricultural Sciences, Guangzhou, China, 4 Institute of Laboratory Animal Sciences, Chinese Academy of 
Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China, 5 Maoming Branch, 
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China

Host’s innate immunity is the front-line defense against viral infections, but some viruses 
have evolved multiple strategies for evasion of antiviral innate immunity. The porcine enteric 
coronaviruses (PECs) consist of porcine epidemic diarrhea virus (PEDV), porcine 
deltacoronavirus (PDCoV), transmissible gastroenteritis coronavirus (TGEV), and swine 
acute diarrhea syndrome-coronavirus (SADS-CoV), which cause lethal diarrhea in neonatal 
pigs and threaten the swine industry worldwide. PECs interact with host cells to inhibit 
and evade innate antiviral immune responses like other coronaviruses. Moreover, the 
immune escape of porcine enteric coronaviruses is the key pathogenic mechanism causing 
infection. Here, we review the most recent advances in the interactions between viral and 
host’s factors, focusing on the mechanisms by which viral components antagonize 
interferon (IFN)-mediated innate antiviral immune responses, trying to shed light on new 
targets and strategies effective for controlling and eliminating porcine enteric coronaviruses.

Keywords: porcine enteric coronaviruses, innate immunity response, immune evasion, PEDV, PDCoV, TGEV, 
SADS-CoV

INTRODUCTION

As the largest positive-sense RNA viruses that exist widely in nature, coronaviruses have 
genetic diversity and host diversity. Specific coronavirus populations have been found in 
humans, mice, bats, pigs, chickens, cows, cats, dogs, and many other animals, some of 
which are zoonotic and pose serious threats to human health and livestock safety. Due to 
the mild clinical manifestations after infection, coronaviruses have long been ignored by 
people. However, the outbreak of Severe Acute Respiratory Syndromes (SARS) in 2003 
caused a total of 8,000 cases of infection worldwide, including 774 deaths, with a mortality 
rate of about 10% (Drosten et  al., 2003). Even worse, the worldwide spread of the Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) since 2019 caused hundreds of 
millions of infections and millions of deaths. Its high infectivity and transmission speed 
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TABLE 1 | Characteristics of porcine enteric coronaviruses.

Viruses (Genera) Year of emergence Mortality in neonatal piglets Pathogenicity for other 
species

Clinical symptoms

PEDV (Alphacoronavirus) 1970s Almost 100% No report Vomiting, watery diarrhea, 
dehydration, and weight loss

PDCoV (Deltacoronavirus) 2009 50%–100% Humans, Calves, chickens, and 
turkeys

Vomiting, watery diarrhea, 
dehydration, and weight loss

TGEV (Alphacoronavirus) 1946 Up to 100% No report Vomiting, watery diarrhea, 
dehydration, weight loss, and 
abortion

SADS-CoV (Alphacoronavirus) 2016 More than 90 in pigs ≤ 5 days 
of age

No report Acute diarrhea, acute vomiting, 
and acute death

and the lack of specific medicines and vaccines caused a 
worldwide panic. In the past few decades, with the continuous 
development of the breeding mode, various coronavirus, 
including porcine epidemic diarrhea virus (PEDV) and 
infectious chicken bronchial virus, have been world-widely 
prevalent and pose great challenges to the health and safety 
of the breeding industry. Some animals have been proved 
to carry coronaviruses that can spread from one species to 
another. A most recent research has revealed a surprising 
result showing that porcine deltacoronavirus (PDCoV) strains 
exist in plasma samples of three Haitian children with acute 
undifferentiated febrile illness (Lednicky et al., 2021). Therefore, 
systematic analysis of animal coronavirus, especially porcine 
enteric coronavirus (PEC), appeared to be extremely necessary.

Interferons (IFNs) are key components of the host’s antiviral 
innate immunity. IFNs are consisted of type I  IFNs, type II 
IFNs, and type III IFNs. Type I  IFN is a non-glycosylated 
protein composed of 165–300 amino acids. Almost all cells 
can produce type I  IFNs when pattern recognition receptors 
(PRRs) recognize the microbial pathogen-associated molecular 
patterns (PAMPs). IFN-I binds to type IFN-I receptor (IFNAR) 
to induce a powerful antiviral defense program involving 
hundreds of interferon-stimulated genes (ISGs) by activating 
the JAK–STAT pathway. Furthermore, ISGs are capable of 
interfering with every step of viral replication (Schoggins and 
Rice, 2011). Like IFN-I, type III IFNs bind to the type III 
IFN receptor (IFNLR) and share the same pathway to induce 
a similar antiviral transcriptional program (Kotenko et  al., 
2019). It is now well-recognized that the IFN-λ-based antiviral 
system plays a major role in the antiviral protection of epithelial 
barriers. Due to the different expression of receptors, IFN-I 
signaling leads to a more rapid induction and decline of ISG 
expression. In contrast, IFN-III signaling induces the expression 
of ISGs in a more sustained way (Lazear et  al., 2019). IFNs 
establish the cellular state of viral resistance and activate the 
adaptive immune responses to viruses. However, some viruses 
have evolved quite complicated mechanisms to escape immune 
recognition and antagonize the effects of IFNs and ISGs. The 
mechanisms by which different components of these viruses 
antagonize immune responses are also different. In the present 
review, the characteristics of PEC biology are elucidated, the 
mechanisms by which viruses antagonize immune responses 
are illustrated, and finally, the potential targets and strategies 

effective for controlling and eliminating porcine enteric 
coronaviruses are discussed.

OVERVIEW OF PORCINE ENTERIC 
CORONAVIRUSES

In 2019, the International Committee on Taxonomy of 
Viruses  divided the Coronaviridae into Letovirinae and 
Orthocoronavirinae, containing five genuses: Alphacoronavirus, 
Betacoronavirus, Gammacoronavirus, Deltacoronavirus, and 
Alphaletovires. To date, there are six known swine coronaviruses, 
including four alphacoronavirus, one betacoronavirus, and one 
deltacoronavirus. Transmissible gastroenteritis coronavirus 
(TGEV), porcine respiratory coronavirus (PRCV), PEDV, 
and  swine acute diarrhea syndrome-coronavirus (SADS-CoV) 
belong to the alphacoronavirus. Porcine hemagglutinating 
encephalomyelitis virus (PHEV) belongs to the betacoronavirus, 
and PDCoV belongs to the deltacoronavirus. Furthermore, 
the evolutionary genetic analysis suggested that PEDV and 
SADS-CoV were thought to originate from the bat CoVs and 
PDCoV from a sparrow CoV (Zhou et  al., 2018; Wang et  al., 
2019), which suggested coronaviruses could spread from species 
to species. PEDV, PDCoV, and TGEV SADS-CoV can cause 
gastrointestinal infections and similar characteristics (Table 1). 
These porcine enteric coronaviruses mainly affect the digestive 
tract of piglets, and the clinical symptoms include weight 
loss, lethargy, vomiting, anorexia, watery diarrhea, and even 
death. The pathological features were necrosis and shedding 
of intestinal cells and intestinal villi injury (Jung et  al., 2014; 
Pan et  al., 2017; Suzuki et  al., 2018; Xia et  al., 2018). PEDV 
was first reported in the United  Kingdom in the 1970s but 
was not found in the United  States until 2013 (Wood, 1977; 
Stevenson et al., 2013). In the short time that followed, PEDV 
spread worldwide, with high morbidity and mortality rates, 
and caused huge economic losses to the global pig industry 
(Jung et  al., 2015). The incubation period of the virus is 
generally 5–8 days. In addition, PEDV can infect pigs of all 
ages, but the severity and mortality of infected pigs are inversely 
proportional to pigs. The morbidity and mortality of suckling 
piglets within 7 days were up to 100% (Li et  al., 2020). So 
far, PEDV has only been found to infect pigs and has no 
impact on public health.
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Since 2012, PDCoV has been detected in several countries, 
including China, the United  States, Japan, and Canada (Woo 
et  al., 2012; Wang et  al., 2014b; Ajayi et  al., 2018). PDCoV 
can cause diarrhea of piglets in different degrees and PDCoV 
disease, and the incidence and mortality of PDCOV disease 
in suckling piglets are about 50%–100%. The ability to spread 
across species is the most obvious feature of coronavirus. 
Researchers believed that PDCoV could only infect chickens 
and calves but not humans for a long time. Furthermore, the 
virus does not cause serious health problems in these animals 
(Jung et al., 2017; Liang et al., 2019; Boley et al., 2020). However, 
a research team has identified porcine deltacoronavirus strains 
in plasma samples of three Haitian children with acute 
undifferentiated febrile illness (Lednicky et  al., 2021). This 
discovery makes us aware that these porcine coronaviruses 
may cause threats to public health.

Transmissible gastroenteritis coronavirus was first reported 
in the United  States in 1946 and then broke out worldwide 
(Doyle and Hutchings, 1946; Kim et al., 2000). TGEV infection 
mainly causes infectious gastroenteritis, which leads to vomiting, 
watery diarrhea, and even death in piglets (Garwes, 1988). 
TGEV infection is fatal to piglets born less than 1 week, since 
the mortality rate can reach high up to 100%. Although the 
mortality rate of infected pigs over 2 weeks old is low, their 
growth and development are slow, which can cause economic 
losses to the pig breeding industry (Saif, 1999; Penzes et  al., 
2001). Significantly, TGEV is a highly contagious disease with 
a short incubation period (usually 1–3 days) and can quickly 
affect the entire pig population (Liu and Wang, 2021). Pigs 
are the only host of TGEV, and no human infection has been 
reported to date. SADS-CoV was first reported in the southeast 
of China in 2016, which is the sixth porcine coronavirus 
identified so far. The SADS-CoV infection leads to acute 
diarrhea, acute vomiting, and even acute death in piglets, and 
the mortality rate of virus infection in piglets within 5 days 
of age is more than 90% (Zhou et  al., 2018). Tests on 35 
people who had close contact with infected pigs found no 
evidence of human infection, suggesting the virus may not 
be  capable of transmitting to humans.

THE GENOME STRUCTURE AND 
FUNCTION OF PORCINE ENTERIC 
CORONAVIRUSES

The PEDV genome is about 28 kb in length and consists of 
3′, 5′ untranslated regions (UTR) and seven open reading 
frames (ORFs). The ORF sequence is ORF1a, ORF1b, spike 
protein (S), ORF3, envelope protein (E), membrane protein 
(M), and nucleoprotein (N; Kocherhans et  al., 2001). ORF1 
occupies two-thirds of the length of the genome at the end 
of the 5′ UTR and encodes two proteins (pp1a and pp1ab), 
which can be  hydrolyzed by papain-like protease and serine 
type 3C-like protease to non-structural proteins (NSP) 1α, 
NSP1β, and NSP3-16. And then, these NSPs participate in 
virus replication, transcription, translation, and viral protein 
processing (Kadoi et al., 2002; Huang et al., 2013). The S protein 

of PEDV consists of S1 (1-789aa) and S2 (790-1383aa) subunits. 
The S1 helps PEDV bind to host receptors, and S2 induces 
membrane fusion and PEDV invasion (Liu et  al., 2015). In 
addition, PEDV S protein also induces neutralizing antibodies 
in the host body (Song and Park, 2012). PEDV ORF3 sits 
between the S and E genes and encodes ORF3 protein, which 
plays an essential role in virulence (Park et  al., 2011). The E 
gene of PEDV is only 231 nt in length and encodes E protein, 
which is essential for virus assembly and budding (Brian and 
Baric, 2005). The M gene of PEDV is 681 nt in length and 
can encode M protein (226aa), which is a transmembrane 
protein on the viral envelope (Narayanan et  al., 2000). It has 
been reported that M protein is involved in virion assembly, 
budding, and host innate immune induction (Utiger et  al., 
1995). The PEDV N protein is a highly conserved protein 
that consists of 441aa and is involved in the survival of the 
virus (Wang et  al., 2020c).

The TGEV genome is about 28.5 kb in length, consisting 
of 3′, 5′ UTR, and seven open reading frames. The gene 
sequence arrangement is 5′-UTR-ORF1a-ORF1b-S-ORF3a-
ORF3b-E-M-N-NS7-3′-UTR (Figure  1). TGEV ORF1a and 
ORF1b encode pp1a and pp1b, respectively, which can 
be  hydrolyzed by papain-like protease and 3C-like protease to 
NSP1-16 (Van Reeth et al., 2002; Wang et al., 2018). Moreover, 
ORF3a/b and NS7 encode accessory proteins which are also 
involved in virus infection and virulence (Park et  al., 2008). 
The TGEV S gene is about 4,344 bp and encodes S protein 
(1447aa), which has multiple functions, including inducing 
neutralizing antibodies, influencing host cell affinity, and 
determining virus activity (Gack et  al., 2007). E protein of 
TGEV is a kind of membrane-associated small structural protein. 
A study has reported that 64-AYKNF-68 residues are the core 
sequences for binding E monoclonal antibodies (Yachdav et al., 
2014). The M protein of TGEV consists of 263aa, is a kind 
of glycosylated protein that plays an important role in virus 
assembly. TGEV M protein is involved in inducing interferons 
(Sawicki et  al., 2005). The N protein of TGEV is a conserved 
phosphorylated protein that binds to the genome to form an 
RNA complex. Because of its conserved nature, N is often 
used as an antigen for PEDV detection.

The SADS-CoV genome is approximately 27.2 kb in length 
and consists of 3′, 5′-UTR, and nine open reading frames, which 
are ORF1a, ORF1b, S, NS3a, E, M, N, NS7a, and NS7b in 
sequence (Pan et  al., 2017; Xu et  al., 2019a). SADS-CoV ORF1a 
encodes pp1a, which can be hydrolyzed to NSP 1–11. Moreover, 
ORF1b encodes pp1b, which can be  hydrolyzed to NSP  12–16. 
NS3a, NS7a, and NS7b encode accessory proteins that affect 
viruses’ virulence (Xu et  al., 2019a). The membrane protein 
interacts with the nucleoprotein of SADS-CoV during viral 
assembly and enhances viral transcription and assembly efficiency. 
The spike of SADS-CoV (1130aa) determines viral host range 
and tissue tropism. Notably, SADS-CoV S is highly homologous 
(95%) to bat α-coronavirus HKU2, which suggests that it may 
have the potential to spread across species (Yu et  al., 2020).

The length of the PDCoV genome is approximately 25.4 kb, 
which is the smallest known coronavirus. PDCoV genome 
consists of 3′, 5′ UTR, and eight open reading frames, which 
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are ORF1a, ORF1b, S, E, M, NS6, N, NS7a, and NS7  in order 
(Woo et al., 2010; Chen et al., 2015; Fang et al., 2017; Figure 1). 
PDCoV ORF1a and ORF1ab encode 1a polyprotein (3627aa) 
and 1ab polyprotein (6268aa), which can be  hydrolyzed to 
NSP  2–16. It is widely accepted that PDCoV did not encode 
non-structural protein 1 (nsp1). These NSPs are associated 
with virus transcription, replication, and host immune response 
(Zhang, 2016). In addition, there are two ORFs between the 
M gene and N gene and within the N gene, which encode 
NS6, NS7a, and NS7. When PDCoV infects host cells, they 
are located in the endoplasmic reticulum (ER) and mitochondria, 
respectively (Fang et  al., 2016; Choi and Lee, 2019). The 
structural analysis of PDCoV S protein showed that it was 
composed of S1 and S2 subunits. The N-terminal domain of 
PDCoV S1 recognizes carbohydrates as potential receptors, and 
the C-terminal domain of PDCoV S1 binds to receptors on 
the surface of mammalian cells (Shang et  al., 2018). PDCoV 
N protein is located in the cytoplasm and nucleus of the host 
cell and participates in viral RNA synthesis by interacting with 
ribosomal subunits or nucleoproteins (Lee and Lee, 2015). In 
addition, PDCoV N protein is also involved in influencing 
the immune response of host cells (Likai et  al., 2019).

INNATE RECOGNITION OF PORCINE 
ENTERIC CORONAVIRUS

Innate immunity is the first line of the host to defense against 
virus infection. The host cells recognize the invading pathogens 
through the interactions between PAMPs and host PRRs and 
induce the production of pro-inflammatory cytokines and 
interferons to elicit antiviral responses (Akira et  al., 2006). 

When  coronaviruses invade cells, PRRs, such as retinoic acid-
inducible gene I (RIG-I)-like receptors (RLR) and Toll-like receptors 
(TLRs), are essential for the innate recognition of viral RNAs 
and are involved in the restriction of viral replication and 
dissemination. RLR, a family of cytoplasmic RNA helicases, 
including RIG-I, melanoma differentiation-associated gene 5 
(MDA5), and Laboratory of Genetics and Physiology 2 (LGP2; 
Liu and Cao, 2016). Activation of RIG-I and MDA5 by double-
stranded RNA (dsRNA) from coronaviruses leads to recruitment 
of the caspase recruitment domain (CARD)-containing adaptor 
protein mitochondrial antiviral signaling (MAVS) protein to 
activate TANK-binding kinase 1 (TBK1)/inhibitor-kb kinase ε 
(IKKε) kinases (Seth et  al., 2005). Activated TBK1 and IKKε 
induce type I and type III IFNs production through phosphorylating 
interferon regulatory factors (IRFs; Meylan et  al., 2006).

Other RNA sensors, TLR3, TLR7, and TLR8, located in 
the endosomal membrane, also recognize viral nucleotides, 
among which TLR3 recognizes dsRNA, TLR7 and TLR8 recognize 
ssRNA. The expression of TLR7 was significantly upregulated 
in PEDV-infected IPEC-J2 cells (Wang et al., 2020a). Cao et al. 
(2015) reported that PEDV infection induces nuclear factor-κB 
(NF-κB) activation through the TLR2, TLR3, and TLR9 pathways 
in porcine intestinal epithelial cells. PDCoV infection also 
significantly upregulates the mRNA transcription level of TLR3 
and IFN-α in vivo (Xu et  al., 2019b). In addition, TLR7 
recognizes SARS-CoV, MERS-CoV, and MHV and induces 
IFN-a production in plasmacytoid dendritic cells (Cervantes-
Barragan et  al., 2007; Scheuplein et  al., 2015). The receptors 
that sit on the surface of certain cells, especially TLR4, recognize 
MHV, SARS-CoV, SARS-CoV-2, and respiratory syncytial virus 
(Kurt-Jones et  al., 2000; Khanolkar et  al., 2009; Choudhury 
and Mukherjee, 2020). It has been reported that TLR4 also 

FIGURE 1 | Schematic diagram of porcine enteric coronaviruses (PECs). (A) Genome structure of PDEV; (B) Genome structure of transmissible gastroenteritis 
coronavirus (TGEV); (C) Genome structure of swine acute diarrhea syndrome-coronavirus (SADS-CoV); (D) Genome structure of porcine deltacoronavirus (PDCoV). 
S, spike; E, envelope; M, membrane; N, nucleoprotein; and Ns, accessory genes.
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participates in PEDV infection-related pathogenesis (Huan et al., 
2017). Once TLRs recognize the PAMPs of the virus, the factors 
NF-κB signaling will be  activated to stimulate the production 
of pro-inflammatory cytokines and type I  IFNs.

ESCAPE FROM INNATE IMMUNITY BY 
PORCINE ENTERIC CORONAVIRUSES 
STRUCTURAL PROTEINS

The structural proteins of porcine enteric coronaviruses consist 
of spike protein, envelope protein, membrane protein, and 
nucleocapsid protein. These proteins are essential components 
of viral structure and play important roles in fighting against 
the host’s immune responses (Figure 2). It is generally believed 
that the S protein of coronaviruses mainly plays a key role 
in the invasion of host cells and the induction of neutralizing 
antibodies (Song and Park, 2012; Li, 2015; Guan et  al., 2020). 
However, a study has found that compared with other structural 
proteins and NSPs of PEDV, S protein has the strongest ability 
to induce apoptosis. Similarly, the S protein of TGEV can also 
strongly induce Vero-E6 cells apoptosis (Chen et  al., 2018). 
Studies have suggested that some viruses actively induce apoptosis 
to promote the release of virus progeny and spread to neighboring 

cells for further invasion (Favreau et al., 2012; Lan et al., 2013). 
Thus, S protein probably helps these porcine enteric coronaviruses 
evade the host immune response by regulating apoptosis, 
although the exact mechanism is unclear. Moreover, another 
recent research has found that PEDV S protein directly interacts 
with epidermal growth factor receptor (EGFR) and activates 
EGFR downstream signal transduction, inhibiting IFN and 
exacerbating viral infection (Yang et  al., 2018). Still, more 
evidence is needed to explore whether porcine enteric 
coronaviruses S protein is directly involved in viral immune 
escape or S protein mediates NSPs to realize virus immune escape.

The nucleocapsid protein is the most abundant protein of 
the known porcine enteric coronavirus components. It performs 
various functions, including viral genome transcription, translation, 
viral replication, and virus assembly (McBride et  al., 2014). The 
PEDV N protein suppresses NF-κB nuclear translocation and 
further antagonizes Type II interferon production (Shan et  al., 
2018). Furthermore, the PEDV N protein targets TBK1 by direct 
interaction to inhibit IRF3 activation, further antagonizing type 
I interferon production. PDCoV N protein inhibits the activation 
of porcine IFN-β promoter by competing with dsRNA for porcine 
RIG-I binding (Chen et  al., 2019). Moreover, the N-terminal 
region (1-246aa) of PDCoV N protein is the key part of interacting 
with porcine RIG-I (Likai et al., 2019). In addition, the N protein 
of PDCoV and SADS-CoV mediates K63-linked ubiquitination 

FIGURE 2 | Potential mechanisms of porcine enteric coronavirus (PEC) structural proteins antagonize innate antiviral immune response. Different structural proteins 
of different porcine enteric coronaviruses used different strategies to antagonize the host’s immune responses. During PEC infection, interferons (IFNs) and pro-
inflammatory are activated to fight against invading virus. It is noteworthy that STAT, retinoic acid-inducible gene I (RIG-I), and nuclear factor-κB (NF-κB) signalings 
are involved in this structural proteins-induced immune evasion.  stands for negative regulation,  stands for positive regulation.
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of porcine RIG-I, thereby, inhibit the host IFN-β production 
(Likai et al., 2019; Liu et al., 2021). The expression of the TGEV 
N gene promotes the accumulation of p53 and p21 and suppresses 
the expression of cyclin B1, cdc2, and cdk2. Meanwhile, TGEV 
N protein induces Bax mitochondria translocation and results 
in the activation of caspase-3, leading to apoptosis (Eleouet 
et  al., 2000; Ding et  al., 2014). In contrast, another study found 
that TGEV N protein, located in mitochondria, may contribute 
to mitophagy and suppress oxidative stress and apoptosis (Zhu 
et  al., 2016). These different results may be  due to their use 
of different cell lines for infection. These studies also suggested 
that the N proteins of different porcine enteric coronaviruses 
used different strategies to antagonize the host’s immune responses.

The member protein of porcine coronaviruses is a kind of 
transmembrane glycoprotein, which plays an important role in 
virion assembly, budding, and host immune regulation (Nguyen 
and Hogue, 1997; Riffault et  al., 1997). Though the PEDV M 
protein affects cell cycle and interleukin 8 expressions, it does 
not induce ER stress and activation of NF-κB (Xu et  al., 2015). 
Moreover, the PEDV M protein can form a complex with heat 
shock protein 70, affecting the host’s innate immune response 
and virus replication (Park et  al., 2021). A recent study has 
identified 218 host cell proteins directly interacting with PDEV 
M protein. Moreover, these proteins were mainly associated with 
multiple biological processes such as immune response, apoptosis, 
and cell cycle (Wang et  al., 2020b). In addition, some researches 
have reported that M proteins of TGEV and PDCoV help virus 
replication, which may be related to its regulation of IFN expression 
(Riffault et  al., 1997; Gu et  al., 2019; Li et  al., 2019). So far, 
there are few studies on M proteins of porcine enteric coronavirus. 
M protein mediating porcine enteric coronavirus antagonism 
against host innate immune responses remains to be further studied.

The envelope protein is the smallest structural protein in 
porcine enteric coronavirus, involved in virus-host interactions. 
When the viruses invade the host cell, the E proteins are 
mainly located in the ER and play an essential role in virion 
assembly and budding (Xu et  al., 2013a; Mora-Diaz et  al., 
2019). Based on its specific location in the cell, a study has 
found that PEDV E protein-induced ER stress and NF-κB 
activation upregulate the expression of IL-8 and Bcl-2. On the 
other hand, PEDV E protein directly interacts with IRF3 to 
inhibit its nuclear translocation, which further antagonizes 
interferon-β production (Zheng et  al., 2021). The results of 
protein structure analysis suggest that porcine enteric coronavirus 
E protein may be  involved in inducing humoral and cellular 
immunity during viral infection (Escors et  al., 2001).

RESEARCH PROGRESS ON 
ACCESSORY PROTEINS OF PORCINE 
ENTERIC CORONAVIRUSES 
ANTAGONIZING ANTIVIRAL INNATE 
IMMUNE RESPONSES

The porcine coronavirus accessory proteins are unique kinds 
of protein with special functions. Different numbers of 

accessory proteins are scattered in different porcine coronavirus 
genomes. Although they are unnecessary for virus proliferation, 
they play key roles in regulating innate immunity and viral 
pathogenicity (Fang et  al., 2018; Wu et  al., 2020b). PEDV 
has only one accessory protein, the ORF3. A study showed 
that ORF3 could suppress IFN-β and IRF3 promoter activities, 
but a detailed analysis of the certain mechanism is lacking 
(Zhang et al., 2016). Several studies have reported that PDEV 
ORF3 can interact with the host’s immune cells. PDEV ORF3 
antagonizes the host’s antiviral innate immunity mainly by 
regulating NF-κB signaling pathway activity. PEDV ORF3 
inhibits phosphorylation of IκBα and nuclear factor p65 and 
interfering p65 nuclear translocation, which in turn reduces 
the production of pro-inflammatory cytokines such as IL-6 
and IL-8 (Wu et  al., 2020b). Interestingly, ORF3 directly 
interacts with the IκB kinase β and upregulates the IκB 
kinase β-meditated NF-κB promoter activity. However, PEDV 
ORF3 suppresses the IκB kinase β-meditated IFN-β production 
(Kaewborisuth et  al., 2020). Moreover, PEDV ORF3 induces 
ER stress via the PERK-eIF2α signaling pathway by 
upregulating the expression of GRP78, and then inducing 
autophagy, which benefits viral replication and affects the 
production of various inflammatory cytokines (Guo et  al., 
2017; Zou et  al., 2019). In addition, conflicting studies have 
shown that proteins can inhibit or promote apoptosis, which 
is involved in viral replication and immune escape (Favreau 
et  al., 2012; Si et  al., 2020). Cells infected with Ns7-deletion 
mutant TGEV (TGEV-Δ7) showed an increased cytopathic 
effect by activation of caspase signaling. Further research 
found that the C-terminus of accessory protein 7 bound to 
protein phosphatase 1 catalytic subunit and regulated 
dephosphorylation of eukaryotic translation initiation factor 
2 to counteract the host’s cell defenses (Cruz et  al., 2011). 
Moreover, innate immunity genes such as IL-15, C–C motif 
chemokine 2/4/5, C–X–C motif chemokine 9/11, tumor 
necrosis factor, and IFN-β were upregulated during TGEV-Δ7 
infection. In vitro and in vivo results suggested that the 
absence of TGEV accessory protein 7 increased innate 
immunity responses and acute tissue damage, which proved 
its antagonistic function from the opposite angle (Cruz et al., 
2013). PDCoV accessory protein NS6 cannot prevent RIG-I, 
MDA5, and their downstream molecules from activating the 
IFN-β promoter. However, PDCoV NS6 can directly interact 
with the carboxyl terminus domain of RIG-I and the helicase 
and carboxyl terminus domains of MDA5 to inhibit dsRNA 
binding RIG-I/MDA5 and thus antagonize IFN-β production 
(Fang et  al., 2018). PDCoV NS7a can also function as an 
IFN antagonist. Unlike NS6a, the NS7a inhibits RIG-I, MDA5, 
and their downstream molecules to activate the IFN-β promoter. 
Furthermore, NS7a can compete with TRAF3 and IRF3 for 
binding to IKK, thereby, reducing RLR-mediated IFN-β 
production. Moreover, the kinase and the scaffold dimerization 
domains of IKKε are key regions that can directly bond to 
NS7a (Fang et  al., 2020). From those researches, the 
mechanisms by which different accessory proteins of porcine 
enteric coronaviruses suppress host antiviral innate immunity 
are different.
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MECHANISM OF NON-STRUCTURAL 
PROTEINS OF PORCINE ENTERIC 
CORONAVIRUSES ANTAGONIZING 
INNATE IMMUNE RESPONSE

Non-structural proteins are the earliest expression proteins 
essential for the virus replication process. They usually act as 
viruses evade, circumvent, or subvert the host innate immune 
system roles. During the process of porcine enteric coronavirus 
infection, NSP1, NSP3, NSP5, NSP15, and NSP16 have been 
observed to play additional roles in host immune-modulatory 
functions. Of 16 PEDV NSPs, NSP1, NSP3, NSP7, NSP14, 
NSP15, and NSP16 were found to inhibit the IFN-β and IRF3 
promoter activities (Zhang et  al., 2016). In addition, these 
porcine coronaviruses NSPs are also involved in downregulating 
the NF-κB activity (Zhang et  al., 2017). In 2018, NSP1, NSP3, 
NSP5, NSP8, NSP14, NSP15, and NSP16 of PEDV were found 
to suppress type III IFN activities (Zhang et  al., 2018). Here, 
we  review the detailed mechanism of these non-structural 
proteins that antagonize interferon production.

Non-structural protein 1 is only characterized in 
alphacoronaviruses (α-CoVs) and betacoronaviruses (β-CoVs; 
Woo et  al., 2010). Under the catalysis of the proteasome, the 
NSP1 of PEDV interrupted the enhanceosome assembly of IRF3 
and CREB-binding protein (CBP) by degrading CBP to antagonize 
IFN-I production (Zhang et  al., 2016). The CBP is the key 
molecular for the activated IRF3 to induce the transcription 
of IFN-I genes. After IRF3 phosphorylation and dimerization 
into the nucleus, IRF3 interacts with CBP to form the IRF3-CBP 
complex. And then, the complex binds to the positive regulatory 
domain (PRD) I–IV regions of the IFN-β promoter to assemble 
the enhanceosome with NF-κB and other factors to turn on 
the transcription of IFN-I genes (Honda and Taniguchi, 2006; 
Dragan et  al., 2007; Panne et  al., 2007). Another target gene 
for NSP1 to inhibit innate immunity is IRF1. IRF1 is the key 
adaptor protein for type III IFNs production. PEDV NSP1 
blocked the nuclear translocation of IRF1 and reduced the 
number of peroxisomes to suppress IRF1-induced type III IFNs 
(Zhang et  al., 2018). PEDV inhibited both NF-κB and 
pro-inflammatory cytokines production in porcine epithelial 
cells. Zhang et al. (2017) found that NSP1 was the most effective 
NF-κB antagonist among all proteins of PEDV. Moreover, NSP1 
suppressed the phosphorylation and degradation of IκBα and 
blocked the p65 activation (Zhang et  al., 2017). It is worth 
pointing out that the conserved residues of NSP1 were crucial 
to suppress IRF1-mediated IFN-λ and NF-κB mediated IFN-I 
and pro-inflammatory cytokines (Zhang et  al., 2017, 2018). In 
addition, Shen et  al. (2020) found that seven representative 
α-CoVs: SADS-CoV, PEDV, HCoV-229E, human NL63 CoV 
(HCoV-NL63), FIPV, TGEV, and PRCV NSP1s could significantly 
inhibit the phosphorylation of STAT1-S727 and interfere with 
the effect of IFN-I. The multiple functions of NSP1 to inhibit 
innate immune responses through different mechanisms suggest 
that it is one of the key molecules of porcine coronaviruses 
to escape innate immunity. Drugs targeting NSP1 conserved 
sites are likely to prevent and control these viruses.

NSP3 is the largest protein encoded by the porcine coronavirus 
genome and contains two domains of papain-like protease 
(PLP1 and PLP2). PLP2 has deubiquitinase (DUB) activity 
that recognizes and processes K-48 and K-63 linked polyubiquitin 
chains. Ubiquitin modification is a key mechanism to regulate 
the activity and stability of the antiviral innate immune. In 
recent years, several viral DUBs have been found to antagonize 
IFN-I production by deubiquitination of key host factors, such 
as the lead protease (Lbpro) of the foot-and-mouth disease 
virus (FMDV) and the NSP2 of Porcine Reproductive and 
Respiratory syndrome virus (PRRSV; Sun et  al., 2010; Wang 
et  al., 2011). Moreover, the DUB activity is conserved in all 
members of the arterivirus family. Both arteri- and nairovirus 
DUBs inhibit RIG-I mediated innate immune signaling (van 
Kasteren et  al., 2012). The PLP2 of HCoV-NL63 and PLPs of 
SARS-CoV also antagonize IFN induction through disruption 
of STING dimer and deubiquitination of RIG-I (Chen et  al., 
2007; Clementz et  al., 2010; Sun et  al., 2012a). Accordingly, 
PEDV PLP2 strongly inhibits RIG-I- and STING-activated IFN 
expression by deubiquitination and co-immunoprecipitating 
with RIG-I and STING (Xing et  al., 2013).

CoVs NSP5 and NSP3 genes encode 3C-like protease (3CLpro) 
and papain-like proteinase, respectively. These two proteinases 
can degrade the polyprotein into various non-structural proteins, 
which further facilitate virus replication. It has been found 
that many viruses’ 3C protease (3Cpro) antagonizes innate 
immune signaling pathways dependent on its protease activity. 
For example, encephalomyocarditis virus (EMCV) 3C protease 
cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 
complex, inhibiting IRF3 phosphorylation and IFN-I production 
(Huang et  al., 2017). Coxsackievirus B 3C protease cleaves 
MAVS and TRIF to attenuate IFN-I and apoptotic signaling 
(Mukherjee et  al., 2011). Enterovirus 71 3C protein induces 
TRIF cleavage to inhibit TLR-mediated antiviral responses (Lei 
et  al., 2011). Similar to the Hepatitis A virus and FMDV 
3Cpro, PEDV and PDCoV 3C-like proteases cleave NEMO to 
impair induction of IFN-β (Wang et  al., 2012, 2014a, 2016). 
The cleave site of NEMO has been identified at Gln231 both 
in PEDV and PDCoV, suggesting NEMO may be  a common 
target for coronaviruses (Wang et  al., 2016; Zhu et  al., 2017a). 
However, it cannot exclude the possibility that other non-active 
site residues of their NSP5 are also involved. Soon afterward, 
other target molecules of PDCoV NSP5 inhibit IFN-I signaling 
was revealed. Like NS5 protein of dengue virus (DENV), Zika 
virus (ZIKV) and the hepatitis C virus (HCV), PDCoV NSP5 
target the JAK–STAT pathway to antagonize IFN-I signaling 
(Lin et  al., 2006; Ashour et  al., 2009; Grant et  al., 2016). In 
PDCoV-infected cells, NSP5 cleaved STAT2 at glutamine 685 
(Q685) and Q758As to impair ISGs induction (Zhu et  al., 
2017b). As NSP5 is involved in the cleavage of the viral 
polyprotein, the inhibitors target its 3C-like protease domain 
that can suppress porcine enteric coronavirus infection, such 
as quercetin, GC376 (Zhou et  al., 2019; Ye et  al., 2020).

NSP15 is identified as a component of the coronavirus replication 
complex, which has endoribonuclease (EndoU) activity. The role 
of EndoU was revealed, which showed that EndoU mediates 
the evasion of viral double-stranded RNA recognition by host 
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sensors in macrophages. In previous studies, SARS-CoV NSP15 
was identified as an inhibitor of MAVS-mediated apoptotic 
responses (Lei et  al., 2009). MHV and HCoV-229E NSP15 
efficiently prevent simultaneous activation of host cells dsRNA 
sensors, such as MDA5, OAS, and PKR (Kindler et  al., 2017). 
A study has reported that the EndoU activity of PEDV NSP15 
is not required for virus replication. Still, PEDV NSP15 is important 
for suppressing the type I and type III IFN response in epithelial 
cells and macrophages. NSP15 facilitates virus replication, shedding, 
and pathogenesis in vivo (Deng et  al., 2019). With the study 
forward, the mechanism of PEDV NSP15 inhibits the host’s IFN 
response was found. PEDV NSP15 can directly degrade the 
mRNA of TBK1 and IRF3 dependent on its EndoU activity to 
suppress the production of IFN and ISGs, antagonizing the host 
innate response to facilitate its replication (Wu et  al., 2020a). 
PDCoV NSP15 is also an IFN antagonist. However, PDCoV 

NSP15 disrupts the phosphorylation and nuclear translocation 
of the NF-κB p65 subunit but does not antagonize the activation 
of transcription factor IRF3. Moreover, PDCoV NSP15 inhibits 
IFN-β production independent of EndoU activity (Liu et al., 2019).

NSP16 is one of the RNA modification enzymes involved in 
forming cap structures in PEDV (Chen et  al., 2011). Compared 
with NSP14, which is another methyltransferase in PEDV, NSP16 
is a more efficient regulator in the antagonist of innate immunity. 
Mechanistically, NSP16 downregulates the activities of RIG-I and 
MDA5 mediated IFN-β and ISRE dependent on the KDKE tetrad. 
Moreover, NSP10 enhanced the inhibitory effect of NSP16 on 
IFN-β (Shi et  al., 2019). However, whether NSP16 of PDCoV 
and SADS-CoV antagonizes interferon production is still unknown.

These studies suggest that the NSPs of porcine enteric 
coronaviruses antagonize the host’s innate immune responses by 
regulating IFN signaling pathways (Figure  3). Therefore, further 

FIGURE 3 | Non-structural protein (NSP) of porcine enteric coronavirus (PEC) antagonizes innate immune response. Retinoic acid-inducible gene I (RIG-I), 
melanoma differentiation-associated gene 5 (MDA5), and Toll-like receptors (TLRs) recognize the invading virus and induce pro-inflammatory cytokines, type I/III 
interferons (IFNs) by nuclear factor-κB (NF-κB) and (RIG-I)-like receptors (RLRs) signaling pathway, respectively. Extracellular Type I and III IFNs recognized by IFN-I 
receptor (IFNAR) and type III IFN receptor (IFNLR) to phosphorylate JAK1 and TYK2. And then, STAT1/2 is recruited and phosphorylated to form three STAT 
complexes. STAT1 and STAT2 form heterodimers and recruit IRF9 or IRF1. These complexes enter the nucleus and induce type I and III ISGs, inflammatory 
cytokines production. NSPs of PEC antagonize various steps of this antiviral response.  stands for negative regulation;  stands for type I IFN; and  stands for 
type III IFN.
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study of the biological functions of NSPs will help us elucidate 
the pathogenesis of coronaviruses and possibly provide new targets 
for developing antiviral vaccines and drugs.

CONCLUSION AND PERSPECTIVES

The host’s innate immune response protects itself from most 
pathogenic microorganisms, but some viruses have evolved 
strategies to antagonize innate immune responses. Coronaviruses 
are the largest positive-sense RNA viruses that exist widely in 
nature and are highly genetically variable. This review summarizes 
how porcine enteric coronaviruses evade the host’s innate 
immune responses. First, since IFN is the most important 
regulator of the antiviral innate immunity, these viruses typically 
inhibit IFN production by various means, including inhibition 
of RIG-I/TLR signaling and inhibiting dsRNA bind to RIG-I/
MDA5 or directly downregulates IFN promoter activity. Second, 
porcine enteric coronaviruses also attenuate inflammatory 
response by targeting the NF-κB signaling pathway. In addition, 
some porcine enteric coronaviruses can regulate apoptosis and 
evade ISGs to promote virus replication.

Also, some cellular physiological processes, such as autophagy, 
endoplasmic reticulum stress, programmed cell death, are probably 
involved in the evasion of the innate immune response of these 
viruses (Lin et  al., 2020; Sun et  al., 2021; Wei et  al., 2021). 
Some viruses use autophagy to evade the host immune response 
and hide in the autophagosome to accumulate RNA and proteins 
(Sun et  al., 2012b; Liu et  al., 2016). A recent study has reported 
that PEDV infection induced autophagy, which promotes virus 
replication. Moreover, NSP6 and ORF3 of the virus are two of 
the important inducers of autophagy. Further study showed that 
PI3K/Akt/mTOR pathway is the key signal of PEDV NSP6-induced 
autophagy (Lin et al., 2020). During porcine coronavirus infection, 

some of the viral proteins are located in the endoplasmic reticulum 
of host cells. E protein, N protein, and ORF3 of PEDV can all 
induce ER stress via PERK and IRE1 signaling and then upregulate 
inflammatory factors (Xu et  al., 2013a,b; Sun et  al., 2021). In 
addition, PEDV-induced ER stress facilitates autophagy (Zou 
et  al., 2019). Furthermore, TGEV infection in porcine intestinal 
epithelial cells can induce IL-1β release and pyroptosis, dependent 
on the expression and assembly of the NOD-like receptor protein 
3. The above evidence highlights the importance of investigating 
virus-host interactions to elucidate viral immune evasion. Some 
viruses would like to alter the intracellular environment to ensure 
their survival. Exploring these programs will help us further 
understand how porcine enteric coronaviruses evade innate immune 
responses and also provide us with new ideas for developing 
antiviral vaccines and drugs.
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