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COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects
in patients. The disease has a detrimental impact on respiratory and cardiovascular
systems. One early symptom of infection is anosmia or lack of smell; this implicates
the involvement of the olfactory bulb in COVID-19 disease and provides a route into
the central nervous system. However, little is known about how SARS-CoV-2 affects
neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that
converge on pathways that impact psychological symptoms. This systemic review
discusses the ways involved by coronavirus infection and their impact on mental health
disorders. We begin by briefly introducing the history of coronaviruses, followed by
an overview of the essential proteins to viral entry. Then, we discuss the downstream
effects of viral entry on host proteins. Finally, we review the literature on host factors
that are known to play critical roles in neuropsychiatric symptoms and mental diseases
and discuss how COVID-19 could impact mental health globally. Our review details
the host factors and pathways involved in the cellular mechanisms, such as systemic
inflammation, that play a significant role in the development of neuropsychological
symptoms stemming from COVID-19 infection.

Keywords: SARS-CoV-2, mental disorders, depression, schizophrenia, psychosis

INTRODUCTION

Post-acute COVID-19 Syndrome, also known as long-COVID, is a significant concern for global
public health. The symptoms of long COVID range from length recovery from organ damage,
persistent symptoms lasting up to 6 weeks, to a patient presenting as asymptomatic or experiencing
a period of healing only to see a return of symptoms that persist from 3 to 6 months, and even
sudden death up to 12 months post-infection (Raveendran and Misra, 2021). Neurological and
neuropsychiatric symptoms have also been observed in one-third of patients after COVID-19
infection (Schou et al., 2021). These symptoms include depression, anxiety, cognitive deficits, “brain
fog,” and fatigue, which have been reported in conjunction with infection by MERS-CoV and
SARS-CoV and previous pandemics such as the Spanish Flu (Schou et al., 2021; Stefano, 2021).

Studies have shown that some coronaviruses can invade the brainstem via a synapse-connected
route from the lungs and airways (Zhang et al., 2020). A few central mechanisms have been
proposed to explain neurological symptoms related to SARS-CoV-2 infection. The first theory,
the “indirect attack theory,” proposes that neurological effects are due to the immune impacts
triggered by infections, i.e., the cytokine storm (Wu et al., 2020b). The second suggests that the
virus gains entry to the central nervous system (CNS) via the olfactory pathway, or peripheral
route, and demonstrated in animal models of encephalitis induced by corona viral infection. The
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reports of deficits in taste, smell, and psychiatric symptoms
following coronavirus infection are consistent with the peripheral
route or the olfactory pathway as a route of entry for the
SARS-CoV-2 virus (Acharya et al., 2020; Butowt and von
Bartheld, 2020). Anosmia and other deficits in sensation are
features of several mental disorders, including post-traumatic
stress disorder (PTSD), major depression disorder (MDD), SCZ,
bipolar disorder (BPD), and neurodegenerative disorders. The
third route of entry for SARS-CoV-2 into the CNS involves
exosomes. Several studies have noted that the cytokine storm
cannot explain CNS damage since the inflammatory markers seen
in SARS-CoV-2 cases are less abundant than seen in other cases
of a viral infection such as H1N1 influenza. Additionally, the
lack of detected viral gene expression in the CNS casts doubt
on the hypothesis that the cytokine storm is causing or leading
contributor to the neurological damage and neuropsychiatric
symptoms seen in some SARS-CoV-2 cases. Exosomes have been
previously reported to aid in viral pathogenesis (Estrada, 2021).

Viral entry of the coronavirus is mediated by the spike (S)
protein, which has two subunits, S1 and S2. The S1 component
binds to the host cell receptor, and the S2 subunit mediates the
fusion of the virus with the host’s cell membrane. The key to the
entry of the SARS-CoV-2 virus into host cells is the angiotensin-
converting enzyme 2 (ACE2) receptor, which is expressed in
many tissues, including the respiratory system and neurons, and
brain endothelium (Hamming et al., 2004; Sheraton et al., 2020).
However, viral entry is also dependent on the priming of the S
protein by host proteases such as transmembrane serine protease
2 (TMPRSS2) and FURIN. Several virion components linked
to the pathology of coronaviruses have also been previously
linked to mental health disorders. Coronavirus proteins such
as the envelope (E) and nucleocapsid (N) proteins have also
been demonstrated to bind to post-synaptic density-95 (PSD-
95) and retinoic acid-inducible gene-1 (RIG-1) proteins. The
envelope protein of SARS CoV-2 has also been reported to
have a PSD-95 binding motif. PSD-95 is a scaffolding protein
that plays an essential role in excitatory neurons and viral
pathogenesis (Javier and Rice, 2011). Previous investigations have
shown that the N protein of SARS-CoV-1, 90% similar to that
of SARS-CoV-2, halts cell cycle progression in vitro (Li et al.,
2005a,b; Dutta et al., 2020). Additionally, the SARS-CoV-2 N
protein has been shown to possess a RIG-1 binding domain
and inhibit RIG-1-like pathways (Oh and Shin, 2021). Rig-1 is
a gene that recognizes viral infection, such as in Toxoplasma
gondii. The Rig-1 gene has also been found to be associated
with schizophrenia (SCZ) diagnosis (Carter, 2009). Additionally,
the N-protein activates the cyclooxygenase-2 (COX-2) promoter.
Thus, it plays a role in increased inflammation associated
with coronavirus infection (Yan et al., 2006). Host receptor
ACE2 serves as the point of entry for SARS-CoV-2 via the
attachment of the S glycoprotein (Krassowski et al., 2018).
A genome-wide association study of 1980 patients infected
with SARS-CoV-2 found two loci 3p21.31 and 9q34.2 with
genome-wide significance to be associated with severe symptoms.
The significant association at the 3p21.31 locus was driven
by solute carrier family 6 member 20 (SLC6A20), leucine
zipper transcription factor-like 1 (LZTFL1), C-C chemokine

receptor 1 (CCR1), FYVE coiled-coil domain-containing protein
1 (FYCO1), CXC motif chemokine receptor 6 (CXCR6), and X-C
motif chemokine receptor 1 (XCR1), and the gene contributing
to the significant association in the 9q34.2 locus was the histo-
blood group ABO system transferase (ABO) (Severe Covid-19
GWAS Group et al., 2020). Additionally, five genes that seem to
facilitate infection of the SARS-CoV2 virus are glycogen synthase
kinase 3 beta (GSK-3β), furin protease, TMPRSS2, a disintegrin
and metalloprotease 17 (ADAM17), and neuropilin-1 (Heurich
et al., 2014; Cantuti-Castelvetri et al., 2020; Coutard et al., 2020;
Nowak and Walkowiak, 2020).

With this in mind, we must now consider how these
viral pathways can activate mental health disorders, as links
between infectious disease and mental health disorders have
been previously reported. Increased risk of developing SCZ,
for example, has been linked to several contagious agents
such as Chlamydia spp., T. gondii, Human Herpesvirus, and
Cytomegalovirus (Arias et al., 2012). Coronavirus infection
could lead to injury and inflammation, the exacerbation of
neuropsychiatric symptoms. Studies of the olfactory epithelia
have demonstrated its utility in studying psychiatric disorders
as well as neurodevelopmental processes. Deficits in olfactory
functioning have been reported in depression and other affective
disorders (Taalman et al., 2017; Kamath et al., 2018). Therefore,
several proteins affected by coronavirus infection, such as ACE2
and dipeptidyl peptidase 4 (DPP4), are enriched in the epithelia
of the respiratory tract (Hamming et al., 2004; Jia et al., 2005;
Solerte et al., 2020). Previous work has also reported several genes
that may be related to increased susceptibility or resistance to
SARS-CoV-2 infection (Wei et al., 2021). And there are several
suggested mechanisms by which SARS-CoV-2 may affect the
CNS, such as “viral encephalitis, systemic inflammation, organ
dysfunction, and cerebrovascular change” (Heneka et al., 2020).
This suggests that investigating genes enriched in the respiratory
tract or found to be important in SARS-CoV-2 infection may help
to understand how coronavirus infections may impact mental
health (Wei et al., 2021).

Depression is among the top five leading causes of disability
worldwide. Mental health disorders have a significant impact
on the global economy, costing as much as 2.5 trillion dollars
per year and rising (GBD 2016 Disease and Injury Incidence
and Prevalence Collaborators, 2017; The Lancet Global Health,
2020). Therefore, particularly imperative to understand how
infectious diseases might be converging with social, economic,
and life stressors that are perturbed during global pandemics.
Fear, social isolation, anxiety, sleep disturbances, unemployment,
and housing insecurity can compound ongoing or predisposed
mental health issues. For example, it has been reported in
Wuhan, China, that more than half of the residents experienced
symptoms of depression and or anxiety (Clemente-Suárez et al.,
2021). Many recovered COVID-19 patients have been reported
to experience neurological symptoms such as parkinsonism,
intracranial hemorrhaging, and strokes. Long-term psychological
symptoms such as dementia, anxiety, and psychosis have also
been reported (Taquet et al., 2021a). A retrospective cohort
study of 62,354 patients showed that hazard ratios for psychiatric
diagnoses were higher than influenza, skin infections, and
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respiratory tract infections for the first 14–90 days following
COVID-19 diagnosis (Taquet et al., 2021b). In a retrospective
study of 236,379 patients, the authors found that the incidence
of neurological and psychological symptoms in the 6 months
following COVID-19 diagnosis was between 33 and 62%. Many
of these patients were diagnosed with these symptoms for the first
time, with an estimated incidence of 1–84% (Taquet et al., 2021a).
Additional studies have found that patients with long-COVID
have exhibited imbalance, vertigo, hallucinations, headaches,
memory deficits, and depression (Mehandru and Merad, 2022).

Despite the production of several SAR-CoV-2 vaccines, the
SARS-CoV-2 virus will likely become endemic (Shaman and
Galanti, 2020; Veldhoen and Simas, 2021). We, therefore, must
study and develop an understanding of how infectious diseases
like SARS-CoV-2 may contribute to long-term conditions such
as mental health. The following review aims to highlight genes
perturbed by a corona viral infection that are also implicated
in mental disorders, emphasizing the effects of the SARS-
CoV-2 virus. We begin by discussing host proteins vital to
viral entry, a discussion of host proteins and factors that are
affected downstream. Finally, we conclude by discussing how
these host proteins relate to the etiology of mental health
disorders (Figure 1).

SARS-CoV-2 STRUCTURAL PROTEINS
AND THEIR ROLES IN VIRAL ENTRY

SARS-CoV-2 exploits several proteins, including host proteases
and host receptors, to gain entry to cells. The S protein, by which
the virion enters host cells, must be cleaved by host proteases.
Once the S protein has been primed, the protein can then

FIGURE 1 | Host factors involved in SARS-CoV-2 entry and related mental
disorders.

bind host receptors, and the virion can then fuse with the host
membrane. These host proteins vary in their spatial-temporal
expression, but they each play a role in inflammatory responses,
among other physiological effects. Understanding the functional
functions of these entry proteins is crucial in understanding their
role in the SARS-CoV-2 infection (Table 1).

Host Proteases
The SARS-CoV-2 S protein must be primed by host proteases
before it can bind to host receptors and infect cells. The
host proteases that have been identified in helping aid in the
binding of the S protein to host receptors include TMPRSS2,
ADAM10/17, and Furin (Hussain et al., 2020). TMPRSS2 was
found to increase viral entry into host cells significantly and
is expressed in astrocytes and oligodendrocytes (Heurich et al.,
2014; Dong et al., 2020). Previous work has demonstrated that
camostat mesylate, a TMPRSS2 inhibitor, resulted in the blockage
of SARS-CoV-2 into TMPRSS2+ cells (Hoffmann et al., 2020).
ADAM-10/17 (A disintegrin and metalloprotease 10 and 17) are
proteases that cleave the extracellular domain of ACE2. However,
they are reportedly less efficient than TMPRSS2 (Heurich et al.,
2014; Aljohmani and Yildiz, 2020). FURIN also aids SARS-CoV-
2 entry. The FURIN protein is an endoprotease and is expressed
in hippocampal and cortical neurons (Yang et al., 2018). FURIN
cleaves proteins within a specific motif (R/K)-(2X) n-(R/K) and
plays a role in priming the SARS-CoV at the S1/S2 site (Coutard
et al., 2020). This cleavage allows the virus to shed the spike
protein and enter the host cell. The use of the protease is thought
to be a key component of the pathogenicity of many viruses,
including SARS-CoV-2 infection (Coutard et al., 2020; Fitzgerald,
2020). Of the known pathogenic beta coronaviruses, only the
SARS-CoV2, MERS-CoV, and HCoV-OC43 viruses possess the
FURIN cleavage complex motif. This protease also plays a role in
apoptosis, inflammation of the vasculature, and lipid metabolism
(Liu et al., 2020).

Essential Host Proteins That Interact
With SARS-CoV-2
ACE2 is a part of the renin-angiotensin-aldosterone system
(RAAS), and it is the principal host receptor used by SARS-
CoV-2 (Motaghinejad and Gholami, 2020). The RAAS functions
to maintain blood pressure by regulating fluid and electrolyte
balance and vascular diameter (Wiese et al., 2020). The SARS-
CoV-2 infection leads to the downregulation of ACE2, leading
to what is referred to as Angiotensin II intoxication (Sfera et al.,
2020; Wiese et al., 2020). ACE2 is expressed throughout the
epithelia of the respiratory tract. However, the expression of
ACE2 can be described as a gradient, where it is highest in the
proximal nasal epithelia and attenuates as one proceeds to the
epithelia of the lower respiratory tract (Hou et al., 2020). Within
the central nervous system, the ACE2 receptor is expressed in
both neurons and glial cells (Venkatakrishnan et al., 2020). It
is also important to note that the expression of ACE2 and
TMPRSS2 also increases with age, according to an investigation
of temporal expression profiles in mice at ages 2 months and
2 years (Bilinska et al., 2020).
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TABLE 1 | Host genes involved in SARS-CoV-2 infection and mental disorders.

Gene Symptom/disorder Summary References

Entry proteins

TMPRSS2 Depression TMPRSS2 is implicated in depression associated with prostate cancer. Rice et al., 2018; Wang et al.,
2020

ADAM-10/17 Schizophrenia, depression,
bipolar disorder, and conduct
disorder

Increased levels of ADAM17 are associated with the diagnosis of
schizophrenia in post-mortem brain tissue and CSF. A SNP located in
ADAM10 was significantly associated with conduct disorder.

Jian et al., 2011; Qian et al.,
2016; Hoseth et al., 2017

FURIN Alzheimer’s disease,
Schizophrenia

rs4702 was significantly associated with schizophrenia was detected
both by GWAS and eQTL analyses. This SNP is also associated with
reduced FURIN and BDNF expression.

Fromer et al., 2016; Hou et al.,
2018

ACE2 Anxiety, depression, cognitive
impairment

ACE2 is implicated in the dysregulation of the HPA axis following
SARS-CoV-2 infection.

Steenblock et al., 2020

DPP4 PTSD, depression, other
neuropsychiatric illnesses

NPY is a ligand for the DPP4 or CD26 receptor and has been a
proposed biomarker for these illnesses.

Canneva et al., 2015; Gołyszny
and Obuchowicz, 2019

XCR1 Traumatic brain injury XCR1 expression increased significantly in the thalamus and
hippocampus beginning 24 h post-injury

Ciechanowska et al., 2020

HMGB1 Schizophrenia SCZ patients exhibited increased expression variability in HMGB1 and
several other genes.

Huang et al., 2020

Bipolar disorder Serum levels of HMGB1 were significantly high in the bipolar patients
compared to the controls.

Marie-Claire et al., 2019

Neuropilin Major depressive disorder Authors found increased NRP-1 expression in the post-mortem PFC
samples from patients diagnosed with MDD than in controls.

Goswami et al., 2013

Downstream of entry: inflammation

GSK-3β Schizophrenia and bipolar
disorder

Increased levels of GSK-3β were found in nasal biopsies of bipolar
patients and the blood, serum, and CSF of patients with SCZ.

Narayan et al., 2014;
Mohammadi et al., 2018

HLA Schizophrenia Several HLA genes, including HLA-A10, HLA-B, and HLA-DRB1, have
been linked to SCZ

Carter, 2009

TLR (7/8) Depression Increased mRNA expression of TLR3 and TLR4 in the brains of
depressed non-suicidal and suicidal subjects

Pandey et al., 2014

Interleukins Autism Schizophrenia IL-23 and IL-17 are implicated in immune dysregulation seen in patients
with schizophrenia and experimental models of autism.

Debnath and Berk, 2017; Alves
de Lima et al., 2020

CXCR6 Anxiety Meningeal γδ T cells expressing CXCR6 were shown to influence
anxiety in mice

Alves de Lima et al., 2020

CCR1 Bipolar and schizophrenia Greater expression of CCR1 and 28 other genes were found in patients
diagnosed with schizophrenia when compared to patients diagnosed
with bipolar disorder

de Baumont et al., 2015

Downstream of entry: cell survival

Histone complex H3.3 Depression H3.3 was found to be elevated in the Nucleus Accumbens of
depressed humans.

Lepack et al., 2016

SWI/SNF complex genes Major depressive disorder and
schizophrenia

The SWI/SN subunit, BRM (SMARCA2), has been associated with
self-reported MDD and schizophrenia.

Amare et al., 2020; Wu et al.,
2020a

ARID1A/B Craniofacial abnormalities Mutations in ARID1A are associated with craniofacial abnormalities,
while mutations in ARID1B are associated with autism spectrum
disorder and SCZ.

Son and Crabtree, 2014;
Pagliaroli and Trizzino, 2021

BDNF Schizophrenia Decreased BDNF expression has been associated with schizophrenia. Bar-Yosef et al., 2019;
Suchanek-Raif et al., 2020

Anxiety, Major Depressive
Disorder

A common SNP of BDNF, rs62265, is a missense mutation that has
been associated with anxiety, major depression and suicide, and
neurodegenerative disease, as has dysregulation of mTOR signaling

Dincheva et al., 2016; Youssef
et al., 2018

SLC6A20 Schizophrenia and
schizoaffective disorder

Hyperprolinemia has been reported in conjunction with SCZ and
schizoaffective disorder.

Jacquet et al., 2005; Clelland
et al., 2011

Downstream of entry: autophagy

FYCO1 Senescence A significant decrease in FYCO1 expression was associated with
senescence

Cheng et al., 2007

Neurodegenerative disorders FYCO1 is involved in the clearance of α-synuclein aggregates. Saridaki et al., 2018

CTSB/L Alzheimer’s disease Traumatic
brain injury

Increased levels of cathepsin B in the cytosol, plasma, and CSF have
been associated with cognitive dysfunction in Alzheimer’s and traumatic
brain injury.

Hook et al., 2020

CALM/CaMKII Schizophrenia Calmodulin levels were reportedly altered in postmortem lysates taken
from ACC, CC, and the temporal lobe in patients with schizophrenia.

Vidal-Domènech et al., 2020

(Continued)
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TABLE 1 | (Continued)

Gene Symptom/disorder Summary References

Downstream of entry: endocrine signaling

Estrogen receptor Schizophrenia Increased polymorphisms in ERα have been associated with SCZ. And
circulating levels of estrogen have been associated with psychosis.

Min et al., 2012; Brzezinski-Sinai
and Brzezinski, 2020

Androgen receptor Depression Bipolar Increased levels of AR expression were reported in patients with bipolar
disorder.

SHBG pathway Depression Positively and statistically significantly associated with depression risk
(p = 0.003) in all women.

Colangelo et al., 2012

Schizophrenia In a study of schizophrenic male patients and a group of undiagnosed
adults, both treated and untreated patients had lower serum levels of
SHBG than undiagnosed controls.

Costa et al., 2006

Mental disorders

TGF-beta Schizophrenia and psychosis TGF-Beta plays a role in the immune-inflammatory response and the
compensatory immune-regulatory reflex system, which contribute to
the etiology of schizophrenia.

Roomruangwong et al., 2020

DPP4 is a ubiquitously expressed serine protease that plays
a role in inflammation energy metabolism and has also been
reported as a marker of senescence (Klemann et al., 2016; Kim
et al., 2017; Shao et al., 2020; Rohmann et al., 2021). The DPP4
protein is widely expressed in many cell types throughout the
CNS, including dopaminergic neurons, macrophages, and glia
(Venkatakrishnan et al., 2020). Although it is primarily known as
the host receptor utilized by the MERS-CoV virus, previous work
has shown that SARS-CoV-2 may also use as a point of entry.
A protein docking simulation and subsequent analysis of free
energy binding found that SARS-CoV2 bound firmly to DPP4
(Li et al., 2020). It is worth noting that the RAAS system and the
DPP4 receptor are dysregulated in diabetes, a risk factor in severe
COVID illness (Valencia et al., 2020).

Chemokine Receptors
Lymphopenia is one of the symptoms seen in patients with
COVID-19. This observation has led to the notion that SARS-
CoV-2 might also utilize other receptors, like XCR1, to facilitate
T-Cell entry (Mobini et al., 2021). A structural study of binding
affinity found that XCR1, in addition to several chemokine
and immune receptors, had a higher binding affinity for the
SARS-CoV-2 S protein than ACE2. XCR1 and other chemokine
receptors are present in many types of immune cells. The XCR1
gene is upregulated in response to traumatic brain injury (Mobini
et al., 2021). Several other chemokines, as well as their receptors,
have been linked to prognostic outcomes in SARS-CoV and
MERS-CoV infection (Khalil et al., 2021).

Neuropilin
Neuropilin is a host receptor that concretizes the overlapping
impacts of SARS-CoV-2 infection as it plays a role in the
inflammatory response, angiogenesis, and nerve growth, as well
as synaptogenesis (Cai and Reed, 1999; Mayi et al., 2021).
Investigators who used x-ray crystallography were able to
demonstrate that SARS-CoV-2 spike protein cleaved at the furin
site was able to bind with neuropilin (NRP1) (Daly et al.,
2020). Neuropilin is known to bind proteins cleaved by FURIN
protease. In an investigation of host cell entry, the authors

used HEK-293 T cells transfected with plasmids to permit the
expression of ACE2 and NRP1 (Cantuti-Castelvetri et al., 2020).
Furthermore, comparative analysis of postmortem olfactory
epithelium from COVID-19 patients and uninfected controls
showed that SARS-CoV-2 could infect NRP1 positive cells of the
olfactory epithelium (Cantuti-Castelvetri et al., 2020). Although
the levels of ACE2 in the cells of the olfactory epithelium
were relatively low, the authors found that expression levels of
high levels of NRP1 and oligodendrocyte transcription factor
(OLIG2), a marker for neuronal progenitors of the olfactory tract,
were higher by comparison (Cantuti-Castelvetri et al., 2020).

HOST MECHANISMS ACTIVATED BY
SARS-CoV-2 INFECTION

Once SARS-CoV-2 begins to proliferate and spread, innate
immunity is deployed as T lymphocytes, and dendritic cells are
activated by pattern recognition receptors like toll-like receptors
(TLRs) (Bai et al., 2021). However, this innate immunity is
overcome by viral suppressors of RNAi (VSRs) (Bai et al., 2021).
This leads to the release of inflammatory factors, which in severe
cases may lead to a cytokine storm, resulting in tissue damage to
organs such as the lungs and heart (Mortaz et al., 2020). These
inflammatory factors and cytokines cause adaptive immune cell
activation as CD4+ T-cells to act as antigen-presenting cells, and
CD8+ T cells are deployed to kill infected cells (Mortaz et al.,
2020). Viruses like SARS-CoV-2 have evolved methods of evading
host immunity and usurping cellular machinery involved in cell
survival, senescence, autophagy, mitophagy, etc., to enable their
proliferation (Alcock and Masters, 2021). These mechanisms are
further impacted by age as well as hormone signaling. In this
section, we explore the effects of SARS-CoV-2 entry and genes
involved in the downstream process (Table 1).

Inflammation
The TLRs are molecular pattern recognition receptors that help
to monitor the external cellular environment for pathogenic-
associated molecular patterns (PAMPs) and damage-associated
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molecular patterns (DAMPS) (Lim and Staudt, 2013; Kumar,
2019; Liu et al., 2019a). The activation of TLRs following
SARS-CoV-2 infection can incite a cytokine storm within
the respiratory endothelia. However, it is also capable of
activating glial cells of the CNS, releasing several inflammatory
factors such as interleukin-1 (IL-1), IL-6, IL-12, C-X-C motif
chemokine ligand 10 (CXCL10), C-C motif ligand 3 (CCL3),
CCL5, CCL2, TNF-alpha, CXCR6, XCR1, and CCR1, causing
chronic inflammation and brain damage (Bouças et al., 2020;
Coperchini et al., 2020; Jakhmola et al., 2020; Wu et al.,
2020b; Khanmohammadi and Rezaei, 2021). Several of these
chemokines and inflammatory factors are expressed in astrocytes,
glia, neurons, neural stem cells, and oligodendrocytes (Sowa and
Tokarski, 2021). The cytokine storm, particularly the release of
TNF-alpha, then leads to the suppression of B-cells and thus
antibody production (Kumar et al., 2021). One host protein that
is critically involved in the cytokine storm is GSK-3β.GSK-3β is a
serine-threonine kinase involved in the inflammatory response
to infectious disease and plays a role in the phosphorylation
of the SARS-CoV-2 N-protein. Inhibition of GSK-3β by drugs
such as lithium has been demonstrated to reduce viral replication
and enhance immune response (Taylor et al., 2016; de Souza
et al., 2020; Rana et al., 2021). Human Leukocyte Antigen (HLA)
also plays a key role in genes regulating the immune response
to pathogens through antigen presentation. However, the effect
of HLA variants on susceptibility and resistance in coronavirus
infection is less evident in the case of SAR-CoV-2 infection
(Saulle et al., 2021). For example, the HLA-A∗24:02 allele was
reported to be both a contributing factor to susceptibility and
resistance to SARS-CoV-2 infection in separate investigations
(Saulle et al., 2021).

Chromatin Remodeling
The pro-inflammatory High Mobility Group Box 1 (HMGB1)
is a non-histone protein that also provides an entry point
for SARS-CoV-2 (Andersson et al., 2020). HMGB1 is involved
in organizing chromatin but acts as a damage signal when
released by cells, such as neurons and glia, under conditions
of stress or inflammation (Paudel et al., 2018). When necrotic
cells release DAMP and PAMP molecules in the extracellular
milieu, they can bind with HMGB1. These complexes of HMGB1
and DAMP and PAMP signals are then taken up by the cell
through endocytosis and translocated to lysosomes. This activity
leads to increased proinflammatory effects by breaking down
the lysosomal membrane and releasing cytokines and other
factors into the cytosol (Andersson et al., 2020). The extent to
which chloroquine compounds may provide some benefit in
COVID infections is that they might prevent the transfer of
PAMPs and DAMPs containing SARS-CoV-2 RNA to the cytosol
(Andersson et al., 2020).

Previous reports have demonstrated correlations between
severe SARS-CoV-2 infection and cell cycle arrest in the S/G2
phase (Suryawanshi et al., 2021). For example, the C-terminus
of the E-protein of the SARS-CoV and SARS-CoV-2 shares a
very similar motif to the N-terminus of histone 3 (Gordon et al.,
2020). Recently several proteins involved chromatin remodeling
were identified in a genome-wide CRISPR screen in Vero-E6 cells

infected with SARS-CoV-2, MERS-CoV, bat HKU5 expressing
the SARS-CoV-1 S protein, and the vesicular stomatitis virus
expressing the SARS-CoV-1 S protein. The authors found that
AT-rich interactive domain-containing protein 1A (ARID1A)
was a pro-viral gene in the case of infection by SARS-CoV-2 and
MERS-CoV viruses (Wei et al., 2021). ARID1A/B is a component
of the mammalian BRG1/BRM (BAF) complex, involved in
chromatin remodeling and cell cycle arrest (Shigetomi et al., 2011;
Pagliaroli and Trizzino, 2021). ARID1A is ubiquitously expressed
in neural stem progenitor cells and throughout the brain (Liu
et al., 2021). Another cellular component found to be perturbed
by SARS-CoV-2 infection was the SWI/SNF (SWItch/Sucrose
Non-Fermentable) complex, which is responsible for ATP-
dependent chromatin remodeling. Interference with cell cycle
progression allows the SARS-CoV-2 to hijack cellular machinery
to increase viral replication (Kumar et al., 2021).

Cell Survival
Bone-derived neurotrophic factor (BDNF) is a growth factor
that plays a role in neurotransmission and neuroplasticity.
It is expressed throughout the brain, including in astrocytes,
Schwann cells, and neurons (Sakharnova and Vedunova, 2012).
BDNF binds to tyrosine kinase B (Trk B), initiating a signal
cascade that leads to the activation of the mechanistic target
of rapamycin (mTOR), which promotes survival, growth, and
differentiation of neurons (Bar-Yosef et al., 2019). SARS-CoV-2
has been demonstrated to enhance mTOR complex 1 (mTORC1)
activity (Bar-Yosef et al., 2019). Calmodulin is not only an
essential regulator of cellular activity, including apoptosis,
neurotransmitter release, etc. (Yu et al., 2002; Ando et al., 2013;
Schweitzer et al., 2021). Solute carrier family six-member 20
(SLC6A20) plays a role in the regulation of glycine as well as
N-methyl-D-aspartate (NMDA) signaling (Bae et al., 2021).

Senescence and Mitophagy
SARS-CoV-2, like many other viruses, is thought to induce
senescence in host cells through the increased binding of
Angiotensin II (ANGII) to the Angiotensin II Type 1 receptor.
ANGII acts as a toxin with respect to the host’s cells’
mitochondria through activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and the creation
of reactive oxygen species (ROS), H2Os (Chang et al., 2020).
This increase leads to the formation of hydroxyl radicals that
cause DNA damage and the activation of poly ADP-ribose
polymerases (PARPs), which are DNA damage sensors and
deplete stores of NAD+ and exacerbate both the dysfunction
of mitochondria. The depletion of NAD+ also results in the
reduced mitophagy the increased formation of ROS, which in
turn activates ADAM17 and inhibits nitric oxide (NO) synthesis
(Dikalov and Nazarewicz, 2013; Chang et al., 2020; Sfera et al.,
2020). ADAM17 is also a metalloprotease that has been reported
to prime the SARS-CoV-2 spike protein (Heurich et al., 2014).

Autophagy
Autophagy plays an essential role in the homeostatic balance
between cell survival and cell death. Previous work has
shown that coronaviruses MERS-CoV and SARS-CoV can
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prevent autophagosomes from binding to lysosomes (Randhawa
et al., 2020). The SARS-CoV-2 infection has been shown to
reduce zinc finger FYVE and coiled-coil domain-containing
autophagy adaptor 1 (FYCO1) expression, which participates in
autophagosome maturation through the Rab7 effector protein,
a late endosomal GTPase (Cheng et al., 2007; Pankiv et al.,
2010; Randhawa et al., 2020). FYCO1 is expressed in several
different cell types within the cortex (Mestres et al., 2020).
The cysteine proteases cathepsin B (CTSB) and cathepsin L
(CTSL) have also been implicated, alongside TMPRSS2, in
the activation of the S proteins of the SARS-CoV-1, SARS-
Cov-2, and MERS-CoV coronaviruses. These proteases are
found in endosomes/lysosomes and participate in autophagy
and apoptosis (Pišlar et al., 2020). Cathepsins consists of
serine, aspartic, and cysteine proteases and are ubiquitously
expressed (Vidak et al., 2019). Although the cysteine cathepsins
are primarily located within the lysosome, where the acidic
environment maintains their stability, the excess secretion of
cathepsins is associated with inflammatory responses and disease
(Huang et al., 2006; Gomes et al., 2020; Pišlar et al., 2020).
Previous research has demonstrated host cell entry of corona-
pseudoviruses via CTSL dependent endocytosis, and cysteine
protease inhibitors effectively blocked viral entry (Simmons et al.,
2005, 2011; Zhou et al., 2011; Rabaan et al., 2017). Much like
ACE2 and TMPRSS2, CTSB/L is enriched in the lungs (Darbani,
2020). However, the gene expression of the CTSB/L in the cortex
and cerebellum was greater relative to the gene expression of
ACE2 and TMPRSS2, which were nearly undetectable in the same
tissue (Darbani, 2020).

Endocrine Signaling
Testosterone levels have emerged as a risk factor for severe
SARS-CoV-2 infection, and sex hormone signaling genes have
been identified in previous investigations as potential targets in
the treatment of SARS-CoV-2. Androgen receptors (ARs) are
expressed through the CNS; however, the cortical expression
of the AR is higher relative to other structures (Schumacher
et al., 2021). The receptor influences the expression of ACE2
and TMPRSS2. Previous investigations of the effects of anti-
androgenic drugs on the expression of genes related to the
pathogenesis of SARS found that AR is a transcriptional
regulator of ACE2, Furin, and TMPRSS2 (Samuel et al.,
2020; Wambier et al., 2020). The TMPRSS2 gene is a target
of the androgen receptor, which enhances transcription of
TMPRSS2 (Clinckemalie et al., 2013; Samuel et al., 2020). It
is, therefore, worth noting that hyperandrogenism in women
has been associated with a greater risk of severe complications
related to COVID-19 infection (Moradi et al., 2020). Previous
investigations have demonstrated that the estrogen receptor
(ER) is expressed by all neural cells and plays a role in
resistance to infection and influences cytokine and macrophage
activity (Seli and Arici, 2002; Villa et al., 2016). Interventions
targeting estrogen and estradiol have been proposed as potential
treatments for SARS-CoV-2 (Hussman, 2020). Sex-binding
globulin (SHBG) is produced and secreted by the liver, and it
binds sex hormones such as testosterone, and estrogen, thus
regulating their levels in the bloodstream (Colangelo et al., 2012).

An observational study of COVID-19 patients found lower SHBG
levels in patients who died.

POTENTIAL MECHANISMS OF
SARS-CoV-2 MEDIATED MENTAL
DISORDERS

Several of the host proteins genes that contribute to the
pathobiology of SARS-CoV-2 infection, such as those involved
in chromatin remodeling, are critical in the development of the
central nervous system (Moffat et al., 2019; Torres-Berrío et al.,
2019; Pagliaroli and Trizzino, 2021). Other host proteases and
cellular receptors are involved in neurodevelopment, cellular
proliferation, neurotransmitter release, sympathetic nervous
system activation, neuroinflammation, etc. (Seidah, 2011). For
example, factors involved in chromatin remodeling such as
SWI/SNF and HMGB1 the SWI/SNF complex are important
to embryonic and neurodevelopment. Dysfunction in genes
associated with this complex are associated with neuropsychiatric
disorders, neurodegenerative disorders, and intellectual disability
(Marballi et al., 2014; Son and Crabtree, 2014; Vogel-Ciernia
and Wood, 2014; Gozes, 2017; Paudel et al., 2018). Meanwhile,
markers of neuroinflammation like XCR1 and CCXR1 are
also implicated in stress, infection, and traumatic brain injury
(Ciechanowska et al., 2020). These conditions lead to the presence
of damage signals or antigens that can thereby be recognized
by receptors such as toll-like receptors. The binding of these
signal molecules then initiates signaling pathways, which lead to
increased expression of inflammatory cytokines. This, in turn,
leads to the activation of the hypothalamic-pituitary-adrenal
(HPA) axis and sympathetic nervous system and the release
of adrenaline, epinephrine, etc. (Canneva et al., 2015). The
SARS-Cov-2 infection has also been known to trigger Guillain–
Barre Syndrome, an autoimmune disorder characterized by
demyelination of peripheral nerve axons (Toscano et al.,
2020). Neuroinflammation and autoimmune disorders such as
rheumatoid arthritis and celiac disease have been linked to mental
health disorders such as BPD, SCZ, and psychosis (Eaton et al.,
2010; Bergink et al., 2014; Dasdemir et al., 2016; Goldsmith et al.,
2016; Hong et al., 2017; Milenkovic et al., 2019). A study of a
large cohort of 3.57 million births linked to the Psychiatric Care
Register in Denmark found that the relative risk for individuals
diagnosed with an autoimmune disorder to be diagnosed with
SCZ was 1.2 (Eaton et al., 2010). In this section, we examine
the host factors that play critical roles in the etiology of mental
disorders (Table 1).

Anxiety, Depression, and Suicide
SARS-CoV-2 entry protein, ACE2, exert neuroinhibitory
influence within brain regions such as the middle temporal gyrus
and posterior cingulate cortex (Chen et al., 2020). Angiotensin
(Ang) 1–7, a product of ACE2, decreases the synthesis and
reuptake of noradrenaline and increases its uptake (Gironacci
et al., 2014). ACE-2 and Mas protein regulate brain function and
release neurotrophic factors, like BDNF (Steenblock et al., 2020).
This factor has several critical roles, including the formation,
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development, and inhibition of degeneration of the neurons. It
also plays a role in stabilizing mood and in cognitive function.
Decreases in ACE-2 activity or expression have been known to
disturb normal neurologic functions. This inhibition of ACE2
and subsequent decrease in BDNF leads to neurodegeneration
and may cause mental disorders such as anxiety, depression, and
cognitive impairment (Steenblock et al., 2020). It is important
to note that the AR regulates the expression of ACE2 and
TMPRSS2. Both AR and TMPRSS2 are implicated in prostate
cancer, and some data suggests that there may be an association
between prostate cancer and depression and anxiety (Newby
et al., 2015; Rice et al., 2018; Wang et al., 2020).

Other host proteins such as neuropilin and DPP4 also relate to
depressive symptoms. The expression of neuropilin in olfactory
epithelia seems to be related to major mental disorders such as
MDD. In one investigation, the authors found a significantly
higher expression of NRP1 in post-mortem samples from the
PFC of patients diagnosed with MDD when compared to controls
(p < 0.001) (Goswami et al., 2013). Similarly, the expression of
neuropeptide Y (NPY), a ligand for the DPP4 receptor, has been
proposed as a biomarker for diagnosing PTSD, depression, and
other neuropsychiatric illnesses (Canneva et al., 2015; Schmeltzer
et al., 2016; Gołyszny and Obuchowicz, 2019). NPY has anxiolytic
effects, and in an investigation, NPY immunoreactivity was
significantly decreased in the cerebral spinal fluid (CSF) of
unmedicated patients with persistent unipolar depression (Heilig
et al., 2004). There is currently a clinical trial underway to
investigate the value of Vildagliptin, an anti-diabetic drug,
as adjunctive therapy to the SSRI, Escitalopram, and PDE3
inhibitor, Cilostazol, for the treatment of MDD (Clinical Trial ID:
NCT04410341). It is also worth noting that cathepsins play a role
in processing proneuropeptides like neuropeptide Y and have
been found to be moderately associated with higher cognitive
function following exercise training (Funkelstein et al., 2008,
2012; Moon et al., 2016).

Neuroinflammatory and immune responses are known to
contribute to the development of mental disorders. One
investigation of postmortem tissue taken from the dorsolateral
prefrontal cortex (DLPFC) found increased mRNA expression of
TLR3 and TLR4 and the increased presence of pro-inflammatory
factors in the brains of depressed non-suicidal, and suicidal
subjects (Pandey et al., 2014). Increased expression of TLR3
also results in reduced expression of disrupted in schizophrenia
1 (DISC1), which leads to aberrant neuronal morphology
(Chen et al., 2017). In fact, previous research has shown that
treatment with endotoxin to stimulate inflammatory cytokines
or even treatment with inflammatory kinases themselves can
lead to symptoms of depression in people who were previously
undiagnosed (Bonaccorso et al., 2002; Anttila et al., 2018).
Another investigation of the unfolded protein response in rats
found increased expression of TLRs 2, 4, 7, and 9 as well as
inflammatory cytokines within the hippocampus (Timberlake
et al., 2019). In patients with hepatitis C, interferon-alpha (IFN-α)
treatment can lead to clinical symptoms of depression, which can
be alleviated by antidepressant therapy. This finding suggests that
depression is caused by inflammation, and typical presentations
of depression may have some similar underlying mechanisms.

Expression of inflammatory markers, such as chemokine
CXCR6, by meningeal γδ T cells, has been shown to influence
anxiety in mice (Alves de Lima et al., 2020). Mice deficient in
CXCR6 have been demonstrated to have fewer γδ T cells than
controls. The γδ T cells, in turn, release IL-17, a gene implicated
in autism spectrum disorder (ASD) and SCZ (Debnath and
Berk, 2017; Alves de Lima et al., 2020). γδ T cell-deficient mice
demonstrated reduced anxiety behavior in the open field test. The
authors showed that these cells could control anxiety behavior
through IL-17 signaling (Alves de Lima et al., 2020).

Sex hormones and neuroimmune responses play converging
roles in the etiology of mental disorders (Kokkosis and Tsirka,
2020). Lower testosterone is a predictor of depression symptoms
in men, while higher levers of free testosterone in serum have
been linked to manic episodes in men (Ozcan and Banoglu,
2003; Sankar and Hampson, 2012). Anti-androgenic therapies
have been considered as a potential treatment for vulnerable
populations (Bravaccini et al., 2021). A greater risk of depressive
symptoms was positively associated with SHBG in a study
of depressive disorders in post-menopausal women. SHBG
was positively and statistically associated with depression risk
(p = 0.003) in all women (Colangelo et al., 2012). In a study
of schizophrenic male patients and a group of undiagnosed
adults, the authors found that both treated and untreated patients
had lower serum levels of SHBG (33.3 and 26.6 nmol/L) than
undiagnosed controls (48.4 nmol/L, p < 0.05) (Costa et al., 2006).

Bipolar Disorder, Schizophrenia, and
Psychosis
Several infections, such as cytomegalovirus, herpes simplex
virus, and parasitic infection by T. gondii, have been noted
for interacting with the HLA system and for their association
with affective disorders like BPD and SCZ (Parks et al.,
2018). SCZ has been linked to several polymorphisms in
the major histocompatibility complex (MHC) or the HLA
system through several GWAS (Parks et al., 2018). HLA genes
are expressed in astrocytes and microglia within the brain,
although primarily in microglia (Tian et al., 2012). Previous
investigations have identified HLA-B∗4601, HLA-B∗0703, HLA-
B∗4601, HLA-C∗0801, and HLA-DRB1∗1202 as alleles associated
with severe illness following SARS-CoV-2 infection (Lin et al.,
2003; Ng et al., 2004; Morsy and Morsy, 2021). The HLA-
DRB∗0301 and HLA-Cw∗1502 alleles were associated with a
reduced frequency of severe infection. These clusters, namely
HLA-B, HLA-DRB1, HLA-C, HLA-DRA, HLA-DQA, HLA-
DQB, HLA-DPB, have been associated with mental health
disorders, i.e., SCZ, BPD, and PTSD (Carter, 2009). A gene-
wide association study of 13,4982 cases and 663 controls found
significant associations between the Notch 4 intronic variant
rs3131296 and HLA alleles: HLA-DRB1∗0301 and HLA-B∗0801
(R2 = 0.86 and 0.81, respectively) (Stefansson et al., 2009).
In a separate investigation of molecular pathways underlying
SCZ and BPD, the authors found that patients demonstrate
more variation in the HLA-C and HLA-DRA genes than would
be expected by chance (Marco et al., 2015). It is also worth
noting that PTSD has also been found to be associated with
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HLA alleles (HLA-B∗5801, HLA-C∗0701, HLA-DQA1∗0101,
HLA-DQB1∗0501, and HLA-DPB1∗1701) in a case-control study
of 403 diagnosed patients with 369 individuals who had been
exposed to trauma (Katrinli et al., 2019).

Differential levels of cytokines and cytokine receptors have
been found between the first episode, acute relapse of psychosis,
and post-treatment patients diagnosed with SCZ (Capuzzi et al.,
2017). A previous meta-analysis of first-episode psychosis, acute
relapse, and post-treatment SCZ patients compared effect sizes
of blood levels of inflammatory markers (cytokines, cytokine
receptors, and antagonists) (Miller et al., 2011). Significant
differences between the effect sizes of several inflammatory
markers were found between post-treatment patients diagnosed
with SCZ and first-episode psychosis and acutely relapsed
patients (Miller et al., 2011). These cytokines and receptors
include including IL-6, IL-12, TNF-α, IL-1β, IL-8, transforming
growth factor-β (TGF-β), IL-1RA, IFN-γ, sIL-2R, and IL-10
(Miller et al., 2011). It is worth noting that levels of IL-6
and TNF-α were significantly correlated with survival in SARS-
CoV-2 in a previous investigation (Del Valle et al., 2020).
Increased levels of circulating IL-1β, IL-12, IL-6, CXCL10, CCL2
have been reported in severe cases of SARS-CoV-2 infection
(Coperchini et al., 2020). TGF-beta plays a role in regulating
immune response and plays a role in the development of mental
disorders like SCZ and symptoms such as psychosis (Sanjabi
et al., 2017; Roomruangwong et al., 2020). Increased expression
of chemokines such as CCR1 has been shown in postmortem
brain tissue in patients diagnosed with SCZ compared to patients
diagnosed with BPD (de Baumont et al., 2015).

Metalloproteases ADAM10/17 have been implicated in
neurodegenerative disorders. They play a role in the proteolysis of
the amyloid precursor protein (APP) and several other proteins
(Vincent and Govitrapong, 2011; Qian et al., 2016). Similarly,
another protein affected by SARS-CoV-2 infection, FYCO1, has
been linked to neurodegenerative disorders, neuropsychiatric
disorders, and senescence in age-accelerated mice (Cheng et al.,
2007; Saridaki et al., 2018). However, ADAM10/17 have also
been linked to SCZ, depression, BPD, and conduct disorder,
a condition that has been found to be comorbid with mood
disorders (Jian et al., 2011; Marballi et al., 2012; Qian et al.,
2016; Hoseth et al., 2017; Yuan et al., 2017; Pantazopoulos
et al., 2020). A family-based association study found 20 variants
associated significantly associated with conduct disorder; among
these single nucleotide polymorphisms (SNPs), rs383902 was
located within ADAM10 (p = 0.00036) (Jian et al., 2011). In
one investigation of postmortem brain tissue from BA9, using
ANCOVA analysis, investigators found a significant difference
in ADAM17 expression between the control and bipolar groups
and levels observed in the schizophrenic group (p < 0.007). The
authors also found a significant negative correlation between
levels of neuregulin-1 (NRG-1) and ADAM17 in Broca’s area
9 samples taken from the post-mortem tissues of patients
diagnosed with SCZ (Marballi et al., 2012). Similarly, Hoseth
et al. (2017) found greater mRNA expression of ADAM17 in the
plasma of SCZ patients vs. that seen in controls (Hoseth et al.,
2017). ADAM10/17 influences glutamatergic signaling, which is
also impacted by the SLC6A20 transporter protein. In a GWAS

of NMDA receptors and the detection of their coagonists in
cerebrospinal fluid, the authors found that a missense variant
in SLC6S20 as associated with increased L-proline levels in CSF,
thus demonstrating that SLC6A20 plays a role in the trafficking of
proline to the CSF (Luykx et al., 2015). Hyperprolinemia has been
previously reported in conjunction with SCZ and schizoaffective
disorder (Jacquet et al., 2005; Clelland et al., 2011).

Neurotransmission may also be related to the expression of
SARS-CoV-2 entry protease FURIN. FURIN was found among
several genes linked to comorbidity SCZ and cardiometabolic
illness, which gives insight into the etiology of these conditions
(Liu et al., 2020). Several studies underscore the importance of
furin in the CNS, as it has been linked to Alzheimer’s disease
(AD) and SCZ (Scamuffa et al., 2006; Schrode et al., 2019;
Yang et al., 2020). In a GWAS of 49 ancestry matched non-
overlapping case-controls and 1,235 parent affected offspring
trios, the authors found 108 loci that were significantly associated
with SCZ (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). Of those, Fromer et al. (2016)
found nineteen of the SCZ risk loci were enriched for eQTLs.
However, only eight involved a single gene; among them was
the gene encoding furin protease. The authors found that
furin expression was downregulated by the risk variant rs4702
(GG to AA allelic conversion), a 3′ UTR variant, which was
both the most significant SNP detected by GWAS and eQTL
analyses (Fromer et al., 2016). The rs4702 SNP results in the
alteration in the binding site for miR-338-3p. miR-338-3p is
an mRNA that is expressed predominantly in mature neurons
within the dentate gyrus (Howe et al., 2017). The authors
noted that cells in which miR-338-3p was effectively knocked
down showed aberrations in the number of primary dendrites
as well as the angles of their extension from the soma (Howe
et al., 2017). Interestingly enough, the rs4702 variant, which
is associated with SCZ, may be protective against SARS-CoV-
2 infection, as cells expressing rs4702 had reduced levels of
vRNA relative to cells expressing the normative allele (AA)
(Dobrindt et al., 2021). In a separate investigation, the rs4702
specific reduction in the expression of FURIN and BDNF
was “mediated” by miR-338-3p (Hou et al., 2018). BDNF is a
member of the BDNF-mTORC1, which helps to regulate synaptic
plasticity, glutamatergic signaling, monoaminergic signaling, and
autophagy. The SARS-CoV-2 infection has been demonstrated
to increase the activity of mTORC in Vero kidney epithelial
cells 24 h post-infection (Mullen et al., 2021). A common
SNP of BDNF, rs62265, is a missense mutation that has
been associated with anxiety, major depression, suicide, and
neurodegenerative disease, as has dysregulation of mTOR
signaling (Dincheva et al., 2016; Youssef et al., 2018; Bar-
Yosef et al., 2019). Additionally, decreased BDNF expression
has also been associated with SCZ (Suchanek-Raif et al., 2020).
Epigenetic regulation of BDNF has also been demonstrated
to play a role in mental illness, as methylation of genes
associated with SCZ, like BDNF, has been linked to psychosis
(Gavin et al., 2010).

Increased levels of GSK-3β in blood, serum, and CSF have
been associated with SCZ (Mohammadi et al., 2018). The
GSK-3β inhibitor lithium, which is utilized as a treatment for
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psychiatric disorders such as SCZ and BPD, has been shown
to inhibit infection by several viruses, including coronaviruses
(Murru et al., 2020). One investigation examined gene expression
in 12 BPD patients and ten controls following two laser
microdissections of the olfactory epithelia: one pretreatment with
lithium in the second after 6 weeks of daily lithium treatment.
The BPD patients demonstrated greater levels of GSK-3β than
controls (Narayan et al., 2014). Lithium has been shown to inhibit
GSK-3β, and similar to those studies the authors found that GSK-
3β was reduced in the second microdissection samples taken
from BPD patients following 6 weeks of daily lithium treatment
(Harrison et al., 2007; Narayan et al., 2014; Zhao et al., 2017).

Genes responsible for chromatin remodeling are implicated
in SCZ as well. The SWI/SNF complex protein ARID1A is
typically associated with craniofacial abnormalities. However,
mutations in the ARID1B gene have been associated with
intellectual disability, ASD, and SCZ as well (Son and Crabtree,
2014; Pagliaroli and Trizzino, 2021). SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin, family a,
member 2 gene (SMARCA2), encoding the SWI/SNF subunit,
Brahma (BRM), has been associated with self-reported MDD and
SCZ (Amare et al., 2020; Wu et al., 2020a). In an investigation
of bivariate analyses of genome-wide association study results
relating to depression combined with MDD, BPD, and SCZ,
the authors found that the SMARCA2 gene and the SWI/SNF
gene set were enriched. This indicated the role of epigenetic
mechanisms in the etiology of complex mental health disorders
(Amare et al., 2020). In a separate investigation, drugs capable
of inducing psychosis were found to reduce BRM expression,
while anti-psychotics led to increased expression of BRM
(Koga et al., 2009).

Further demonstrating the importance of chromatin
remodeling proteins in the etiology underlying SCZ is the
HMGB1 protein. An investigation of gene expression in post-
mortem tissue from 212 patients with SCZ and 214 undiagnosed
controls found 87 genes demonstrated expression variability,
including HMGB1 (Huang et al., 2020). In a separate study,
serum levels of HMGB1 were significantly higher in bipolar
patients than in undiagnosed controls. The authors found that
serum levels of HMGB1 were significantly higher in the bipolar
patients compared to the controls137. A systematic review of the
literature also found increased levels of HMGB1 in conjunction
with several studies of mouse models of depression (Zhang et al.,
2019). One drug, minocycline, was found to reduce depressive-
like symptoms in a mouse model of depression. This reduction
was associated with a significant decrease in the translocation of
HGMB1 from neurons and microglia (Wang et al., 2020).

Sex hormones have also been shown to play a role in the
risk of developing SCZ (Kokkosis and Tsirka, 2020). Women
with polycystic ovarian syndrome (PCOS) have also been
demonstrated to be at greater risk of developing psychiatric
disorders such as bipolar disorder and SCZ (Owens et al.,
2019). An investigation of androgen receptor expression among
individuals diagnosed with SCZ, BPD, and undiagnosed controls
(n = 35, 31, and 34, respectively) found increased expression of
AR among individuals diagnosed with bipolar disorder relative
to individuals diagnosed with SCZ and control volunteers. No

significant differences were observed in 5α-reductase between the
experimental groups. However, a small but significant correlation
was found between bipolar disorder and 5α-reductase expression
(r = 0.422, p < 0.01) (Owens et al., 2019). Hormones have
been demonstrated to affect neuropeptides involved in stress
and anxiety, like oxytocin and corticotropin-releasing hormone
(CRH) (Wang and Wang, 2021). Previous research has linked
decreased oxytocin and oxytocin receptor levels to first-episode
SCZ and bipolar II disorder (Liu et al., 2019b; Wei et al., 2020).
The therapeutic use of OXT has been proposed as a treatment
to protect against cardiovascular damage caused by SARS-CoV-2
infection (Wang and Wang, 2021).

DISCUSSION

Several host genes affected by SARS-CoV-2 infection are
implicated in mental disorders and neuropsychiatric symptoms.
Of the host genes perturbed by the coronavirus spike protein,
many are involved in innate and adaptive immunity, stress
response, cell cycle regulation, and other biological functions.
These genes have also been implicated in mental disorders such as
depression, SCZ, and bipolar disorder. Other components of the
SARS-CoV-2 virion, such as E and N proteins on host proteins
PSD95 and RIG-1, also relate to neuropsychiatric symptoms
(Javorsky et al., 2021; Oh and Shin, 2021).

Several other genes that are dysregulated in mental disorders,
such as DISC1, phosphodiesterase 4B (PDE4B), and neurexin-
1 (NRXN1), could also be impacted by SARS-CoV-2 infection
and contribute to neurotropism and inflammation in the CNS.
We previously noted that increased TLR3 signaling leads to
reduced DISC1 expression and aberrant neurogenesis. A recent
transcriptomics study of publicly available datasets demonstrated
that DISC1 is downregulated by COVID-19 (Alqutami et al.,
2021). Though the exact role that DISC1 plays in complex mental
disorders is unclear, DISC1 is an important component in the
formation of the immune synapse. DISC1 forms a complex
with Girdin and dynein that allows for the translocation of
the microtubule-organizing center to the synapse; however, in
DISC1 knock-out cell lines, the MTOC fails to translocate to
the immune synapse (Maskalenko et al., 2020). The DISC1
pathway is a massive multi-step pathway of 203 genes that can
be subdivided in the interactome and regulome (Teng et al.,
2017). DISC1 and the DISC1 pathway genes like PDE4B and
NRXN1 are implicated in several mental health disorders (Millar
et al., 2007; Korth, 2009; Hu et al., 2019). PDE4B is found in the
DISC1 interactome, and differential expression of PDE4B has also
been noted in relation to COVID-19 infection (Alqutami et al.,
2021). PDE4B has been shown to regulate cytokine signaling
pathways (Lugnier et al., 2021; Moolamalla et al., 2021). Several
adjunct therapies for the treatment of SARS-CoV-2 symptoms
have been identified that target PDE4B (Lugnier et al., 2021;
Moolamalla et al., 2021). Studies of microRNAs as potential
targets of treatments for viral infection have shown that miR-1290
is upregulated in SARS-CoV-2 infection, and this is predicted to
result in downregulation of NRXN1 expression (Chen and Wang,
2020; Guterres et al., 2020).
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Long-lasting pulmonary symptoms, pain, fatigue, and other
symptoms stemming from coronavirus infection have been
documented throughout the literature. However, currently,
no studies have investigated the mechanisms concerning the
long-lasting mental health symptoms or disorders that might
result from COVID-19 infection. However, several publications
have enumerated observations of long-COVID neuropsychiatric
symptoms and life stressors that affect mental health (Crook
et al., 2021). One published review listed several probable risk
factors related to PTSD and psychological dysfunction, including
isolation, loss of a loved one, disability, and occupation (Boyraz,
2020). An investigation of1,427 United States adults reported
the percentage of respondents reporting depressive symptoms
increased from 27.8% in early 2020 to 32.8% just 1 year later
(Ettman et al., 2021).

It is unclear what the precise causes of long COVID or
neuropsychiatric symptoms could be the result of neuroinvasion
by coronavirus in the brain and CNS or could result from
systemic inflammation or a combination of both. There are
conflicting studies regarding the specific ability of coronaviruses
to cross the blood-brain barrier and infect the CNS or to
be transmitted from neuron to neuron via the olfactory bulb
(Thye et al., 2022). However, clinical observations of anosmia
and encephalitis would suggest that SARS-CoV-2 and other
coronaviruses are capable of both (Mondelli and Pariante, 2021).
The precise mechanisms leading to long-term psychological
sequelae are yet elusive. Some investigators have concluded that
there may be myriad factors contributing to long COVID cases,
including prolonged inflammation, ischemia, neuroinvasion,
prolonged sedation, etc. (Alonso-Lana et al., 2020; Song et al.,
2020). Given the comorbidity between autoimmune disorders
and mental disorders and observations of increased levels of pro-
inflammatory factors in the absence of encephalitis, it seems that
inflammation is likely the underlying cause (Soria et al., 2018;
Alonso-Lana et al., 2020; Proal and VanElzakker, 2021).

Several animal models suitable to the study of COVID-
19 are currently available. Among these models are rhesus
macaques, ferrets, mice expressing the human ACE2 receptor,
and Golden Syrian hamsters (Jia et al., 2021). All these
animal models feature pathological symptoms related to human
pathological symptoms encountered with COVID-19. These
symptoms include mild to moderate pneumonia, increased
inflammatory markers, and weight loss. However, only two of
these models are commonly utilized to investigate behavioral
phenotypes: rhesus macaques and mice. Rhesus macaques are
animal models that are used to investigate mental disorders
such as anxiety. Many studies utilize transgenic mice to

investigate obsessive-compulsive disorder (OCD), depression,
SCZ, and ASD.

In this review, we summarized several host factors and
pathways that are involved in coronavirus infection and are
also implicated in neuropsychiatric symptoms. Though several
of these host factors are expressed in the CNS, we have also
provided evidence that their influence on widespread systemic
inflammation may play a significant role in the development
of long-term psychological symptoms stemming from COVID-
19 infection. We’ve highlighted several cellular mechanisms that
are impacted by SARS-CoV-2 infection and connected them to
complex mental disorders such as MDD, SCZ, and BPD. We have
elucidated the connection between DISC1 and DISC1 pathway
proteins such as NRXN1 and PDE4B to viral infection as well as
to mental disorders.

Future work should focus on the mechanisms by which
infectious diseases like COVID-19 may impact mental illnesses
of neuropsychiatric symptoms. This knowledge could contribute
to interventions to lessen the effects of infection on the central
nervous system or inform the development of treatments for
existing mental disorders. Some of the host factors described here
are already being investigated for their potential use as therapies
or co-therapies for mental illness symptoms. However, further
investigation is necessary to determine what impact coronavirus
and other flu-like infections may have on mental symptoms
and disorders. These investigations could elucidate the biological
changes underlying the etiology of complex mental illnesses like
SCZ, BPD, and depression.
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