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Posttranscriptional modifications have been implicated in regulation of nearly all biological 
aspects of cellular RNAs, from stability, translation, splicing, nuclear export to localization. 
Chemical modifications also have been revealed for virus derived RNAs several decades 
before, along with the potential of their regulatory roles in virus infection. Due to the 
dynamic changes of RNA modifications during virus infection, illustrating the mechanisms 
of RNA epigenetic regulations remains a challenge. Nevertheless, many studies have 
indicated that these RNA epigenetic marks may directly regulate virus infection through 
antiviral innate immune responses. The present review summarizes the impacts of 
important epigenetic marks on viral RNAs, including N6-methyladenosine (m6A), 
5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Methyl), and a few uncanonical nucleotides 
(A-to-I editing, pseudouridine), on antiviral innate immunity and relevant signaling pathways, 
while highlighting the significance of antiviral innate immune responses during virus infection.
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INTRODUCTION

Chemical modifications of RNA, also be  designated as epitranscriptomic marks of RNA, are 
considered common features in most natural RNAs. To date, more than 140 posttranscriptional 
modifications have been discovered to function in the structural diversity and metabolism of 
RNAs (Zhao et  al., 2017). While chemical modifications mainly appear in cellular RNAs such 
as messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA) as well as 
other non-coding RNAs, numerous studies have indicated the pivotal roles of RNA epigenetic 
regulations in virus infection (McIntyre et  al., 2018; Netzband and Pager, 2020). The most 
prevalent modifications in the virus genome include methylation of adenine and cytidine 
residues, such as N6-methyladenosine (m6A), 5-methylcytidine (m5C), or 7-methylguanosine 
(m7G), 2ʹ-O-methylation (2ʹ-O-Methyl), as well as uncanonical nucleotides like A-to-I editing 
and pseudouridine (McIntyre et  al., 2018). Although these chemical modifications are generally 
formed by cellular enzymes, virus-encoded methyltransferases have been implicated in several 
methylation modifications. Nearly all chemical modifications that are mediated by enzymes 
undergo dynamic and reversible changes during virus infection, which makes it difficult to 
define roles of epigenetic modifications in viral RNA metabolism or virus infection. Nevertheless, 
due to the rapid development of RNA biology, numbers of RNA modifications have been 
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found in genome of various viruses, which are supposed to 
influence virus infection to some extent (Courtney, 2021; 
Marchand and Motorin, 2021).

As the primary antiviral strategies, innate immune responses 
are invariably activated at the early stage of virus infection. 
Through recognizing the exogenous nucleic acids including 
virus-derived RNAs or DNAs by Toll-like receptors (TLRs; 
Creagh and O’Neill, 2006; Beutler, 2009; Lavelle et  al., 2010), 
which belong to pattern-recognition receptors (PRRs), 
cytoplasmic receptors/adapters like myeloid differentiation 
factor-88 (MyD-88) or TIR-domain-containing adaptor protein 
inducing interferon-beta (TRIF) is recruited and in turn activates 
TNF receptor-associated factors (TRAFs; Creagh and O’Neill, 
2006). Activation of TRAFs then gives rise to the activation 
of IFN response factor 3/7 (IRF3/7) and nuclear factor-κB 
(NF-κB) signaling pathways that induces type I  interferons 
(IFNs) and proinflammatory cytokines expression (Bonizzi and 
Karin, 2004; Rius et  al., 2008; Dev et  al., 2011). Aside from 
the TLR pathway, another kind of PRRs named as retinoic 
acid-inducible gene I  (RIG-I)-like receptor (RLR) family also 
has been identified as crucial cytosolic sensors of viral nucleic 
acids (Schustak et al., 2021). The mitochondrial antiviral-signaling 
protein (MAVS) is located in mitochondria or endoplasmic 
reticulum (ER) and considered as the receptor protein of RLR 
signaling pathway, by which IFN-β is effectively expressed at 
the early stage of virus infection (Hwang et  al., 2013; Tong 
et  al., 2021b). Both IFNs and proinflammatory cytokines have 
strong antiviral activities. A battery of studies have recently 
indicated the emerging roles of RNA modifications in regulating 
antiviral innate immune responses (Thompson et  al., 2021). 
The present review will focus on the impacts of these epigenetic 
marks, especially on antiviral innate immunity and its relevant 
signaling pathways, while highlighting the significance of antiviral 
innate immune responses during virus infection.

PREVALENT RNA MODIFICATIONS 
IN  VIRUS

N6-Methyladenosine
N6-Methyladenosine modification affects nearly all aspects of 
RNA biology, including stability, translation, splicing, nuclear 
export, and localization. Methylation modification, adding 
adenosine to N6 to form m6A, is catalyzed by a large heterogeneous 
complex of proteins that are named as “writer,” including 
METTL3, METTL14, or Wilms tumor 1-associated protein and 
KIAA1429 (Meyer and Jaffrey, 2017; Shi et al., 2019). In contrast, 
demethylases enzymes like fat mass and obesity-associated 
protein (FTO) or α-ketoglutarate-dependent dioxygenase AlkB 
homology 5 (ALKBH5) designated as “eraser” remove the methyl 
group (Jia et  al., 2011; Zheng et  al., 2013). The YTH domain 
family of proteins (YTHDC1, YTHDC2, YTHDF1, YTHDF3, 
and YTHDF3) and others named as “reader” recognize and 
bind to the m6A modification site to directly regulate the 
posttranscriptional functions of modified RNAs (Shi et  al., 
2019). m6A modifications are typically identified within the 
DRAmCH motif (D = G/A/U, R = A/G, and H = A/C/U); however, 

given the fact that only some of the DRACH motifs in eukaryote 
transcriptome are modified, there might exist some mechanisms 
for site-selective modification (Dominissini et  al., 2012).

5-Methylcytidine
Another kind of RNA base methylation is the C5-methylation 
of RNA cytosine-m5C. m5C widely exists in cytoplasmic and 
ribosomal RNA (rRNA), tRNA, mRNA, and some non-coding 
RNAs (Lewis et  al., 2017; Bohnsack et  al., 2019). In eukaryotes, 
m5C is catalyzed by enzymes of the NOL1/NOP2/SUN domain 
(NSUN) family and DNA methyltransferase family protein 
(DNMT2), a homolog of DNA methyltransferase (Reid et  al., 
1999). Recent studies showed m5C was present in numerous 
virus genomes and might have non-negligible effects on antiviral 
innate immunity (Winans and Beemon, 2019; Wnuk et al., 2020). 
For instance, a high level of m5C modifications in HIV-1 genomic 
RNA (gRNA) promoted the expression of viral genes by regulating 
splicing and the translation efficiency of viral mRNAs (Courtney 
et al., 2019). Silencing or inactivation of the major writer NSUN2 
of m5C reduced the m5C abundance in HIV-1 transcripts and 
inhibited virus replication by disrupting the alternative splicing 
and the followed translation of HIV-1 mRNA (Kong et al., 2020).

2ʹ-O-Methylation and 7-Methylguanosine
Cellular mRNA conventionally has a triphosphate at 5ʹ end 
(5ʹ-ppp), which is converted to 5ʹ-diphosphate (5ʹ-pp) by RNA 
triphosphatase (Ramanathan et  al., 2016). This conversion 
resulted in mRNA capping by guanylyltransferase and guanine-N7 
methyltransferase (Shatkin, 1976). After adding a terminal 
guanosine base, the mRNA transcripts possess an m7G joined 
via a 5ʹ, 5ʹ-triphosphate bridge, designated as cap-0 (Shatkin, 
1976). When a cellular 2ʹ-O-methyltransferase, CMTR1, further 
modifies the mRNA, a methyl group is added at the 2ʹ-O-hydroxyl 
position of the first nucleotide to form cap-1 RNA structure 
(Belanger et al., 2010). Meanwhile, a second 2′-O-methyl group 
can be added at the second nucleotide to form cap-2, catalyzed 
by another cellular methyltransferase CMTR2 (Werner et  al., 
2011; Smietanski et  al., 2014). mRNA capping is considered 
one of the key factors in regulating RNA metabolism and 
function (Topisirovic et  al., 2011), including stabilizing the 
mRNA and serving as a chemical marker to discriminate self 
from foreign RNA, the latter of which may interfere with the 
innate immune sensing of viral derived RNA (Hocine et  al., 
2010; Ramanathan et  al., 2016). Some viruses, such as West 
Neil virus (WNV) or Dengue virus (DENV), encode 2ʹ-O 
MTases that catalyze 2ʹ-O-methyl adenosines inside the virus 
genome (Dong et  al., 2012; Chang et  al., 2016). Interestingly, 
this internal adonosine 2ʹ-O-methyl activity requires the same 
K-D-K-E motif as that for 2ʹ-O methylation of the 5ʹcap (Yap 
et al., 2010; Dong et al., 2012). Given that many viruses possess 
cap structures in their RNA components, this type of modification 
is supposed to play a pivotal role in antiviral innate immunity.

Uncanonical Nucleotides
After the pseudouridine (ψ) was firstly identified in plant turnip 
yellow mosaic virus (TYMV) in 1998 (Becker et  al., 1998), 
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the follow-up research continuously indicated the abundant ψ 
in RNA viruses, especially in positive-sense RNA viruses 
(McIntyre et al., 2018). Psedouridine occurs through isomerization 
of uridine-to-5-ribosyl uracil by pseudouridine synthases (PUS; 
Markham and Smith, 1951). Similar to ψ, the deamination of 
adenosine to inosine (A-to-I) that depends on the catalyzing 
of adenosine deaminase acting on RNA (ADAR) family is also 
considered RNA editing or uncanonical nucleotides (Chen et al., 
2000; Bass, 2002; George et  al., 2014; Chung et  al., 2018; 
Eisenberg and Levanon, 2018). The difference is that inosine 
generally acts similarly to guanosine (G), whereas ψ remains 
the original capacity of uridine to some extent. Although U 
to ψ conversion does not change the Watson–Crick base-pairing 
with adenosine, in certain cases, ψ enables base pairing with 
any other nucleotides (Samuel, 2011; Pfaller et  al., 2021). Both 
ψ and A-to-I editing may significantly convert RNA biology, 
including changing the coding preference of viral RNA dependent 
RNA polymerases, mediating alternative splice and even affecting 
RNA structures (Netzband and Pager, 2020; Pfaller et al., 2021).

Mechanisms of Epigenetic Regulation in 
RNA Metabolism
Modified nucleotides may stabilize the functional RNA structures 
by reinforcing the hydrogen bond between Watson–Crick pairs, 
resulting in augmented thermal stability and reduced dynamics 
(Serra et  al., 2004; Zhou et  al., 2016; Frye et  al., 2018). Under 
other circumstances, Watson–Crick base pairs consisting of 
modified nucleotides may induce an alternative folding 
representing significant alterations in the RNA secondary or 
tertiary structures, negatively affecting RNA stability (Durbin 
et  al., 2016; Zhou et  al., 2016; Roundtree et  al., 2017; Wei and 
He, 2021). Moreover, the posttranscriptional introduction of 
modified nucleotides can affect RNA intermolecular interactions 
with other encountered molecules such as DNA partners, RNA 
binding proteins, or other RNAs (Zhao et al., 2017; Nachtergaele 
and He, 2018; Shi et  al., 2019). Since all functions are regulated 
by structure to a certain degree, viral RNAs carrying modified 
nucleotides (or uncanonical nucleotides) commonly represent 
functional differences in virus life-cycle, thus mediating virus 
infection in host cells. Besides, some RNA viruses those complete 
their life-cycle in cytoplasm influence host cell genomic 
transcription inside the cell nucleus, for example, ZIKV infection 
affects some endogenous genes’ trancription which occured inside 
the cell nucleus (Gokhale et  al., 2020). In this case, epigenetic 
regulations may facilitate the virus to overcome the spatial 
barrier. To sum up, some of the demonstrated RNA modifications 
in virus genome as well as the correlative functions are listed 
in Figure  1. Notably, many viruses use epigenetic modifications 
as crucial tools to evade antiviral innate immune response.

RNA MODIFICATIONS IN SENSING OF 
FOREIGN NUCLEIC ACIDS

Sensing the foreign molecules by the PRRs of the innate immune 
system serves as the initial step of the innate immune response 

(Akira et  al., 2006; Takeuchi and Akira, 2010). Different PRRs 
must distinguish the non-self molecules from the self through 
chemical patterns. To date, several kinds of PRRs, including 
TLRs, RLRs, cyclic GMP-AMP synthase (cGAS; Schoggins 
et  al., 2014; Aguirre et  al., 2017; Ma et  al., 2021; Yu et  al., 
2021), C-type lectin receptors (CLRs), nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs), and 
AIM2-like receptors (ALRs), have been utilized by host cells 
in recognition of viral PAMPs (Akira et  al., 2006; Crowl et  al., 
2017; Babamale and Chen, 2021; Chou et al., 2021; de Oliveira 
Mann and Hornung, 2021). As the most important component 
in virus particles, viral-derived RNAs/DNAs are released into 
the host cell cytoplasm at the early stage of infection. Thus, 
recognizing the distinction of epitranscriptomic modifications 
between cellular and pathogen nucleic acids is supposed to 
regulate antiviral innate immunity at the early stage of virus 
infection (Figure  2).

Retinoic Acid-Inducible Gene I-Like 
Receptors
Retinoic acid-inducible gene I, melanoma differentiation-
associated protein 5 (MDA5), and laboratory of genetics and 
physiology 2 (LGP2) are the three major homologous helicases 
of RLRs (Wu et  al., 2013; Yu et  al., 2018; Thoresen et  al., 
2021). RIG-I and MDA5 displayed similar component structures, 
including caspase activation domain in N-terminal, recruitment 
domains (CARDs) for communicating with downstream signals, 
a DExD/H-box helicase domain with RNA binding and ATP 
hydrolysis activity, and a C-terminal domain (CTD; Yoneyama 
et  al., 2004; Jiang et  al., 2011; Kowalinski et  al., 2011; Yu 
et al., 2018). The pathogen-associated molecular patterns (PAMPs) 
motifs of RIG-I include exposed 5ʹtriphosphate (5ʹppp) or 
diphosphate of double-strand RNAs (dsRNA), panhandle 
structures of viral genomic RNA, and uridine-rich sequences, 
while MDA5 recognizes long dsRNA such as poly (I:C; Yoneyama 
et  al., 2004; Hornung et  al., 2006; Kato et  al., 2006; Cui et  al., 
2008; Liu et  al., 2018). RIG-I is expressed at a low level in 
non-infected cells, usually referred to as a resting state with 
RNA-binding and helicase domains covered by RDs (Kowalinski 
et al., 2011; Luo et al., 2011). Following recognition of PAMPs, 
RIG-I undergoes a conformational change that provides room 
for closer interaction with more PAMPs RNAs and begins to 
release the CARDs for MAVS interaction and signaling (Pichlmair 
et  al., 2006; Peisley et  al., 2013; Thoresen et  al., 2021). When 
the complex consisting of RIG-I, MAVS, and other cytosolic 
proteins translocate from the cytoplasm to the associated 
mitochondrial membrane, RIG-I CARDs interact with the MAVS 
CARD to catalyze the filament formation of MAVS and then 
activates TBK1 and IKKε to initiate downstream signaling 
(Pichlmair et al., 2006; Peisley et al., 2013; Goubau et al., 2014).

m6A and RLRs
As one of the most common RNA modifications, m6A has 
been widely involved in the innate immune sensing process 
and thus regulates viral pathogenesis. In some cases, viral 
RNA-loaded m6A modification dampens the RIG-I mediated 
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RNA sensing and activation of the downstream transcription 
factors such as IRF3 and IRF7, which depresses the type 
I  interferon (IFN-I) gene expression (Lu et  al., 2020; Ge et  al., 
2021; Xue et  al., 2021). One suggested mechanism is that m6A 
modification might harbor viral PAMPs motifs for RIG-I 
recognition and innate immune signaling. For example, m6A 
modifications in HIV RNAs undermined RIG-I sensing and 
type-I interferon induction in differentiated monocytic cells, 
while m6A-deficient HIV-1 virions produced from 
FTO-overexpressing HEK293T cells induced high levels of IFN-I 
expression in a RIG-I-dependent manner (Chen et  al., 2021). 
Consistently, in several families of negative-sense RNA viruses, 
such as Pneumoviridae (hMPV), Paramyxoviridae (SeV and 
MeV), and Rhabdoviridae (VSV), m6A-deficient viral RNAs 
universally triggered RIG-I-dependent innate immune response 
much more efficiently compared to the m6A-sufficient viral 
RNAs, suggesting a crucial role of m6A marker in RIG-I sensing 
process (Kim et  al., 2020; Lu et  al., 2020, 2021).

Further investigation demonstrated that these negative effects 
might be  induced by m6A related enzymes, including YTHDFs 

and METTLs. Instead of encoding innate immune antagonist 
proteins, m6A modifications in viral RNAs enable the recruitment 
of the m6A enzymes, which subsequently sequestrates viral 
ds/ssRNA through their RNA binding ability to prevent RIG-I 
recognition. Specifically, m6A modification of hepatitis B and 
C viral RNAs suppressed the activation of RIG-I signaling, 
whereas single nucleotide mutation of m6A motif of viral RNAs 
(A8766C) enhanced RIG-I sensing activity (Kim et  al., 2020). 
In this case, YTHDF2 was found to regulate HBV pgRNAs 
and HCV genomic RNAs to evade RIG-I recognition. Besides 
YTHDF itself, diverse RNA-binding proteins (RBPs) were 
identified to interact with YTHDF proteins. The interactions 
might also regulate RIG-I access to viral RNAs, which mediates 
the activation of RIG-I signaling pathways through indirect 
influences (Luo et  al., 2012).

Moreover, reducing the m6A “writer” enzyme METTL3 not 
only downregulates the m6A levels in the 3ʹ end of SARS-
COV-2 genome, but also improves the RIG-I binding to enhance 
the downstream innate immune signaling pathway and 
inflammatory gene expressions (Li et  al., 2021). Similarly, as 

FIGURE 1 | Brief summary of RNA modifications in regulating virus infection. N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Me)/7-
methylguanosine (m7G), and A-to-I editing (A-to-I) are listed as example of epigenetic regulations in virus infection. Three major effects are summarized in diverse 
virus infection, among which the modulation of innate immune response is the focus of the present review. T. B. D: To be determined. References are listed in the 
Supplementary Table S1.
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for vesicular stomatitis virus (VSV) infection, METTL3 decreases 
viral dsRNA formation, thereby impeding virus-sensing efficacy 
by RIG-I and dampening antiviral immune signaling (Qiu 
et  al., 2021). However, due to the lack of precise information 
about RIG-I PAMPs, the universal mechanisms of viral RNA 
m6A modification inhibiting RIG-I activation remains unclear. 
A potential clue has been elucidated in human metapneumovirus 
(hMPV) infection. Due to the indispensable role of 
conformational change in RIG-I activation, m6A modifications 
in virus genome might block the binding of viral RNAs to 
RIG-I, which disabled the conformational change of RIG-I, as 
well as the subsequent MAVS-TBK1 pathways. In this case, 
m6A-deficient hMPV virion RNA induced much higher RIG-I 
expression (Lu et  al., 2020).

2ʹ-O-Methylation and RLRs
Besides m6A modifications, RNA 2ʹ-O-methyl is a highly 
conserved process used by RNA viruses to evade sensing by 
cytosolic RNA sensor proteins (Daffis et  al., 2010; Decroly 
et  al., 2011; McFadden et  al., 2017). Early studies indicated 
that the 2ʹ-O-methyl commonly marks viral RNA as “self,” 
which prevents RLRs and downstream signaling pathways (Hyde 
and Diamond, 2015; McFadden et  al., 2017; Jaafar and Kieft, 
2019). During HIV-1 infection, viral RNAs were methylated 
to carry internal 2ʹ-O-methylations by the cellular 
methyltransferase FTSJ3 (Ringeard et  al., 2019). When HIV-1 
viruses were produced in FRSJ3 knock-out cells, the induction 
of IFNs was heavily enhanced in an MDA5-dependent manner 
(Zust et al., 2011; Ringeard et al., 2019). Similarly, 2ʹ-O-methyls 

FIGURE 2 | Schematic diagram of mechanisms by which RNA modification regulating viral-derived RNA recognition and innate immune responses. 
N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Me), and pseudouridine (ψ) are demonstrated to inhibit melanoma differentiation-associated 
protein 5 (MDA5) or retinoic acid-inducible gene I (RIG-I) mediated sensing. METTL and YTHDF proteins are involved in these process. Inside the endosomes, 
2′-O-Me are identified to block the TLR7-dependent type I interferon (IFN-I) response. Meanwhile, m6A, m5C, and ψ also prevent the Toll-like receptors (TLRs) 
activation inside the endosomes, although the relevance to virus infection still remains ambiguous. Moreover, m6A may regulate antiviral innate immunity through 
stress granules or endoplasmic reticulum (ER)-stress pathways, the latter of which has already been illustrated in Flavivirus infection.
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on the coronavirus family viral RNAs also perturbed type 
I  interferon production that is dependent on either the MDA5 
or RIG-I sensing process (Zust et al., 2011; Devarkar et al., 2016).

Additionally, the virus facilitated the capping of viral RNAs 
at the 5ʹ terminal to disturb the innate immune sensing process 
(Bradrick, 2017; De Vlugt et  al., 2018). Unlike cellular mRNA 
transcripts, some viruses, including flaviviruses and coronaviruses, 
encode enzymes with m7G and 2ʹ-O-methyltransferase 
(2ʹ-O-MTases) activity to cap their RNA, It has been showed 
that 2ʹ-O-MTases-deficient virus are highly sensitive to IFN-I 
(Chen and Guo, 2016; Bradrick, 2017). Although, the precise 
factors that sense unmethylated RNAs as invading nucleic acid 
are still unclear, the interferon-induced protein with 
tetratricopeptide repeats (IFIT) family has been discovered to 
function in West neil virus, poxvirus, and coronavirus infection 
(Daffis et al., 2010). Interestingly, instead of encoding 2-O-MTases, 
the influenza virus applies a “cap-snatching” strategy to ensure 
the viral RNA 5ʹ end modifications that prevent the viral RNA 
from being sensed by IFIT proteins (De Vlugt et  al., 2018).

Other RNA Modifications and RLRs
Along with m6A modifications and 2ʹ-O-methyl, other RNA 
chemical modifications also participate in RLRs sensing-
dependent innate immune response (Ahmad et  al., 2018). For 
example, RIG-I and MDA5 detection of dsRNA is blocked by 
adenosine deaminase acting on RNA (ADAR1), which catalyzes 
RNA A-to-I modification (Mannion et  al., 2014; Yang et  al., 
2014; Ahmad et  al., 2018; Tang et  al., 2021). Although it is 
well-demonstrated how ADAR1-mediated A-to-I modifications 
impeded MDA5 activation in the mouse study (Liddicoat et al., 
2015; de Reuver et  al., 2021), MDA5-dependent sensing has 
rarely been found in A-to-I editing-induced innate immune 
response. In other cases of A-to-I editing in virus infection, 
suppression of innate immune IFN responses after virus infection 
is mainly mediated by cytoplasmic dsRNA sensors protein 
kinase R (PKR) and oligoadenylate synthetase (OAS; Yang 
et al., 2014; Radetskyy et al., 2018; Lamers et al., 2019). Rather 
than upstream dsRNA sensors, PKR, and OAS are identified 
as pivotal antiviral IFN stimulated genes (ISG). Thus, more 
details about ADAR1-mediated A-to-I modifications in antiviral 
innate immune response will be  further discussed below.

Similar to A-to-I editing, pseudouridine modifications were 
shown to abolish RIG-I’s filament formation and PAMPs RNA’s 
binding (Peisley et al., 2013). Given the abundant pseudouridine 
modifications in RNA viruses, especially the positive-sense RNA 
viruses (McIntyre et al., 2018), this type of uncanonical nucleotides 
is suggested to regulate various aspects of the antiviral response.

Toll-Like Receptors and Other PRRs
Another well-characterized PRRs, TLRs, are widely distributed 
invertebrates. TLRs are anchored in the cell membrane as type 
I  transmembrane proteins (Akira et  al., 2006). The ectodomain 
(N-terminal) of TLRs consists of several leucine-rich repeat (LRR), 
which connect to the C-terminal Toll/interleukin-1 receptor (TIR) 
domain by transmembrane (TM) domain (Akira et  al., 2001; 
Kawasaki and Kawai, 2014). Studies have shown that most TLRs 

function as homology dimers (Kawai and Akira, 2011). Two 
TIR domains became close to forming a competent signaling 
state that recruits the adapter proteins (O’Neill et al., 2013). Nearly 
all the activated TLRs can trigger proinflammatory gene expression 
despite functioning in specific aspects of antiviral immunity (Kawai 
and Akira, 2011). To date, 10 TLRs have been identified in 
human cells. Four of them functioned as immune sensors by 
detecting pathogens-derived nucleotides (Kawasaki and Kawai, 
2014). TLR3 recognizes long dsRNA and recruits TRIF as its 
dedicated adapter protein. Phosphorylated TRIF provides a signaling 
hub for IRF3 phosphorylation by TBK1, which then activates 
downstream signaling pathways of TRIF (Matsumoto et al., 2011; 
Oshiumi et  al., 2011; Liu et  al., 2015). TLR7 and TLR8 detect 
RNA debris as short RNA segments, while TLR9 enables sensing 
short DNA fragments that contain CG dinucleotide motifs (Chan 
et  al., 2015; de Oliveira Mann and Hornung, 2021). TLR7, 8, 
and 9 can recruit the adapter protein MyD88 to form a complex 
known as the Myddosome. Myddsosome interact with IκB kinase 
and TGF-beta-activated kinase 1 (TAK1) complex to initiate 
NF-κB and MAPK signaling, respectively (Motshwene et al., 2009). 
Interestingly, the complex can also trigger IRF activation that 
depends on TASL that is only expressed in specific cells (Heinz 
et  al., 2020). TASL is also capable of IRF phosphorylation, while 
in this case, IRF5 and IRF7, as well as IRF3, may be  activated 
to drive antiviral gene expression (Wust et  al., 2021).

Although several studies indicate the important roles of TLRs 
that usually sense long dsRNA inside endolysosome or outside 
the cells in antiviral innate immune response, they have rarely 
been found to be regulated by RNA modifications, partly because 
many RNA viruses expose their genomic dsRNA in the cytoplasm 
(Akira et  al., 2001; Alexopoulou et  al., 2001; Heil et  al., 2004). 
Some studies have implied that the epigenetic marks of viral 
RNA interfere with the innate immune signaling pathway by 
preventing TLRs activation. For instance, the 2ʹ-O-methyl marks 
on coronavirus RNAs avoid the recognition of TLR7 to evade 
the activation of the IFN signaling pathway, while this effect 
may also be achieved through MDA5 sensing signals (Zust et al., 
2011). Coronaviruses replicating in MDA5 or TLR7 deficient 
mice are detected to the same extent as in IFNR-deficient mice. 
By employing in vitro modified RNA oligos, an early study 
showed that m6A limited the capacity of RNAs to activate TLR3, 
TLR7, and TLR8, while m5C and Ψ blocked the activation of 
TLR7 and TLR8 (Kariko et  al., 2005). Recent studies applied 
CRISPER tools to map the function of m6A and demonstrated 
that m6A could suppress macrophage activation through TLR 
mediated signaling (Tong et al., 2021a). However, more evidence 
of virus RNA modifications regulating TLR mediated pathways 
in innate immune response remains to be  discovered.

RNA MODIFICATIONS IN REGULATING 
IFN SIGNALING PATHWAY

Interferon is a group of signal proteins synthesized and released 
by host cells in response to stress and infections. Interferon 
exists widely in human and other animal organisms with highly 
species specifictiy (Crow and Stetson, 2021). According to the 
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types of corresponding receptors, interferon can be  divided 
into three types: IFN-I, type II interferon (IFN-II), and type 
III interferon (IFN-III; Hervas-Stubbs et  al., 2011; Stanifer 
et  al., 2019). After infected with viruses, cells release IFNs to 
restrict the virus infection and even degrade the virions. 
Although IFNs do not kill the virus directly, IFNs enable the 
transcription and production of several enzymes that interfere 
with the viral genome transcription or translation of viral 
protein components (Sadler and Williams, 2008).

Meanwhile, IFNs also improve the antiviral ability of the 
surrounding cells. Therefore, IFNs are commonly considered 
powerful tools and key components in the first line of innate 
immune defense against viruses infection.

Interferons function mainly through the interactions between 
IFN molecules and cell surface receptors. Upon specifical 
recognition and binding by IFNs, the IFN receptors undergo 
conformational changes, activating the JAK family proteins and 
promoting the recruitment and phosphorylation of signal 
transduction and transcriptional activation (STAT) proteins. 
The phosphorylated STAT is then dimerized and binds to IRF9 
to form an ISGF3 complex, a transcriptional factor after transfer 
into the nucleus. The ISGF3 regulates the expression of numerous 
kinds of IFN stimulating genes ISGs, which exert strong antiviral 
effects (Darnell, 2012; Raftery and Stevenson, 2017). However, 
many viruses (e.g., SARA-COV-2 or influenza virus) encode 
structural and non-structural viral proteins that ablate the IFN 
signaling pathways through interaction with other cellular 
signaling pathways. This usually results in invalid STAT that 
fails to form phosphorylated ISGF3 complex, further abolishing 
the expression of antiviral ISGs (Mazewski et  al., 2020; Yin 
et  al., 2020; Jung and Lee, 2021). This process is concluded 
as an evasion of the innate immune response. Evading of the 
IFN-dependent innate immune response also relates to persistent 
infections. For example, direct binding of the Borna disease 
virus (BoDV) encoded P protein to TBK1 can antagonize the 
IRF3 activation, which prevents IFNβ induction (Unterstab 
et  al., 2005). It is hypothesized that the ability of BoDV to 
prevent IRF3-dependent genes transcription might prevent the 
virus from activating the RLR signaling pathway and give rise 
to persistent BoDV infections in mammalian and avian hosts 
(Peng et  al., 2007).

Whenever ISGs are successfully expressed, they will perform 
diverse antiviral effects. More than an important effector in 
IFN-dependent antiviral immune response, some ISGs can also 
be  upregulated directly and independent of IFNs after virus 
infection. Although ISGs have different effects, on the whole, 
they all can resist or control infectious pathogens (Schneider 
et  al., 2014; Fensterl et  al., 2015). Previous studies showed 
that ISGs generally functioned by interacting with different 
co-factors, mediating antiviral effects by promoting viral RNA 
degradation, abrogating viral proteins translation, or combining 
both (Nguyen et  al., 2001; Bick et  al., 2003; Yang and Li, 
2020). Moreover, secreted IFNs and induced ISGs may also 
activate NF-κB or other related innate immune signaling 
pathways to improve the release of proinflammatory cytokines 
and/or induce apoptosis that further restricts virus infection 
(Peteranderl and Herold, 2017).

m6A in IFN Producing and Effecting
The biological function of m6A is mainly regulated by a 
methyltransferase (writer), demethylase (eraser), and m6A 
binding protein (reader; Tong et  al., 2018). Many studies 
have shown that RNA m6A modification plays an important 
role in innate immune response, while the exact roles of 
m6A in regulating antiviral IFN signaling displays in opposite 
aspect (Gokhale et  al., 2016; Guo et  al., 2020). In some cases, 
m6A modifications in the virus genome promote the IFN 
and ISGs induction, whereas, under other circumstances, m6A 
modification occurs to turn off the antiviral innate immune 
response. For example, the m6A modifications at specific sites 
in the HBV transcript restricts the virus replication through 
IFN α-mediated response. Although HBV is a DNA virus, 
it replicates through transitional pre-genomic RNA (pgRNA). 
m6A modification of A1907 in HBV pgRNA is the key regulator 
of IFN α-mediated pgRNA decay. Further investigation showed 
that ISG20 selectively degraded the m6A HBV transcripts that 
are strictly regulated by m6A reader YTHDF2 (Liu et  al., 
2017; Imam et  al., 2020).

Contrary effects were found in encephalon myocarditis virus 
(EMCV), herpes simplex virus type 1 (HSV-1), and VSV 
infection. In these cases, YTHDF3 can inhibit the expression 
of ISGs by promoting the translation of transcriptional inhibitor 
FOXO3 (Zhang et  al., 2019). RAW264.7 cells with YTHDF3 
gene deletion have extensive antiviral activity against RNA 
and DNA virus, and this activity is mediated by the IFNAR1 
signal (Zhang et  al., 2019). Notably, m6A modification, in this 
case, regulated the host cell transcripts to inhibit antiviral 
innate immune response instead of affecting viral RNAs. Indeed, 
this viral infection-induced host cell m6A epitranscriptome 
diversity has commonly been found to regulate the antiviral 
innate immune response. During VSV infection, m6A 
modifications in MAVS, TRAF3, and TRAF6 are demethylated 
by ALKBH5 through interacting with the RNA helicase DDX46, 
which leads these three transcripts to retention in nuclei. 
Abolished expression of these three transcripts prevents efficient 
IFN induction (Zheng et  al., 2017). Similarly, human 
cytomegalovirus (hCMV) infection affects host m6A modification 
machinery, including METTL14 and ALKBH5, reducing the 
IFNβ production. When knocking down the expression of 
METTL14, the production of IFNβ and subsequent signaling 
depending on the JAK/STAT pathway are enhanced, which 
decreases the production of infectious hCMV virion in infected 
cells (Rubio et  al., 2018).

Interestingly, besides the direct influences of m6A modification 
on HBV pgRNA, it also has been indicated that m6A modification 
of tumor suppressor phosphatase and tensin homolog (PTEN) 
transcript is affected by HBV infection through invaliding PI3K/
AKT pathway and inhibiting IRF-3 nuclear export (Kim et  al., 
2021). Other studies also indicated that DHX58, p65, and 
IKKγ, which bind to YTHDF2, are mediated by m6A modification, 
potentially interfering with IFN induction during virus infection 
(Lichinchi et  al., 2016). Besides, YTHDF1, METTL3, and 
METTL14 have also been found to increase the expression of 
ISGs like IFITM1 in an m6A binding-dependent manner, which 
further indicated the m6A methyltransferase complex might 
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promote the antiviral activity of type I  IFN (McFadden 
et  al., 2021).

Excluding the direct regulations of host transcripts by m6A 
modification, interactions between RNA and RBPs may also 
be  affected by m6A modifications that subsequently affect 
antiviral IFN response (Bidet et  al., 2014). For example, it has 
been found that during DENV-2 infection, three conserved 
RBPs, G3BP1, G3BP2, and CAPRIN1, are regulatory factors 
necessary for antiviral IFN response by promoting the efficient 
translation of PKR and IFITM2 mRNAs (Arguello et  al., 2017; 
Edupuganti et  al., 2017).

Other RNA Modifications in IFN Producing 
and Effecting
As one of the most important signaling pathways in innate 
immune responses, IFN producing and effecting are likely 
regulated by diversity factors, probably due to numerous protein 
enzymes evolving in the IFN signaling pathway. For example, 
NSUN2, the methyltransferase of m5C, has multiple effects on 
RNA biogenesis, including converting vault ncRNA to vtRNA 
(Bohnsack et  al., 2019; Kong et  al., 2020). The vtRNA has 
been shown to promote Influenza A virus (IAV) replication 
in A549 cells and mouse lungs through repressing PKR activation 
and the subsequent effects of interferon (Li et  al., 2015; Wnuk 
et al., 2020). Similarly, DNMT2 has been reported to be required 
for efficient IFN responses in Drosophila C virus or Sindbis 
virus infected Drosophila (Durdevic et  al., 2013; Bhattacharya 
et  al., 2017).

Other studies also indicate an important role of ADARs, 
the enzymes mediating A-to-I editing, in modulating innate 
immune response during virus infection (Pfaller et  al., 2021). 
ADAR1 has a proviral effect on Measles virus (MeV) and 
VSV infection that depends on PKR activation (Nie et  al., 
2007; Pfaller et  al., 2015), while the suppression of innate 
immune response by ADAR2 is supposed to rely on STAT1  in 
the case of Chikungunya virus (CHIKV) and Venezuelan equine 
encephalitis virus (VEEV; Schoggins et  al., 2011; Clavarino 
et  al., 2012). In the case of other viruses, such as BoDV, IAV, 
and Yellow fever virus (YFV), the mechanisms of ADAR-
regulated IFN response remain indistinct (Pfaller et  al., 2021). 
Interestingly, during HIV-1 infection, ADAR1 and ADAR2 may 
have opposite effects on virus replication, through the forming 
of DNA:RNA heteroduplex or antiviral innate immune response, 
respectively (Clerzius et  al., 2009; Doria et  al., 2009; Pujantell 
et  al., 2017).

RNA MODIFICATIONS ALTERED 
SPECIFIC CELLULAR TRANSCRIPTS TO 
REGULATE ANTIVIRAL RESPONSES

Except for the viral RNA modifications, some RNA 
modification can also directly control the expression of 
cytokines or specific genes that important for antiviral 
responses. In Flavivirus infection, the m6A abundance of 
host cell transcripts CIRBP and RIOK3 are altered through 

ER stress and RIG-I signaling respectively, which further 
regulate virus infection through antiviral immune response 
(Gokhale et al., 2016, 2020). m6A modification also destroyed 
the binding of stress granules (SGs) proteins to their RNA 
partners (Arguello et al., 2017; Fu and Zhuang, 2020). These 
may explain the diverse function of G3BP1, G3BP2, and 
CAPRIN1 in virus infection. G3BP1 and CAPRIN1 functioned 
as proviral factors in vaccinia virus (VACV) and respiratory 
syncytial virus (RSV) infection, while in contrast, G3BP1 
and G3BP2 performed antiviral activity against poliovirus 
(PV) and alphaviruses (Bidet et  al., 2014; Eiermann 
et  al., 2020).

5-Methylcytidine has also been described to affect the 
expresson of host cell genes, which include cell cycle regulator 
p21 and immunity-related protein IL-17A (Wnuk et  al., 2020). 
There were also studies suggesting a potential role of m5C in 
regulating other host genes, including those functioning in 
antiviral response.

HOW EPIGENETIC MARKS REGULATE 
VIRUS INFECTION?

Compared to the heritable evolutions, epitranscriptomic marks 
on virus genomes that are controlled by various protein factors 
including endogenous modifying enzymes undergo more 
dynamic changes. This type of epigentic regulation has been 
identified to play important roles in virus-host arms race. 
On one hand, epigenetic modifications of the virus genome 
prevent the host from recognizing the viral-derived RNAs, 
thus invaliding the antiviral innate immune response. On the 
other hand, the host epitranscriptome profiles may vary with 
virus infection so as to induce expression of uncanonical 
antiviral genes that restircts virus replication. Notably, the 
changes to the host transcriptome likely occur in the late 
stage of virus infection. As a result, the epigenetic machinery 
tends to facilitate the virus infection at the early stage. However, 
the dynamic property of RNA modifications on both virus 
and host transcriptiomes has even complicated epigenetic 
regulation of the virus-host arms race. Nevertheless, it is 
worthwhile to harness epigenetic regulations to intervene virus 
infections and develop antiviral treatments on the future avenue 
of antiviral research.

CONCLUSION

Despite the indistinct mechanisms, RNA modifications currently 
are identified to affect the infection of diverse kinds of viruses, 
in which the antiviral innate immunity is the most prevalent 
factor. In the near future, some RNA modifications, including 
m6A and m5C, may serve as crucial targets for the rational 
design of improved live attenuated vaccine candidates. 
Importantly, considering the complex effects of epigenetic 
modifications in host cell transcriptome, developing these types 
of antiviral drugs or vaccines still needs additional studies to 
confirm such assumptions.
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