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Agricultural practices alter the structure and functions of soil microbial community.
However, few studies have documented the alterations of bacterial communities in soils
under long-term conservation management practices for continuous crop production.
In this study, we evaluated soil bacterial diversity using 16S rRNA gene sequencing and
soil physical and chemical properties within 12 combinations of inorganic N fertilization,
cover cropping, and tillage throughout a cotton production cycle. Soil was collected
from field plots of the West Tennessee Agriculture Research and Education Center in
Jackson, TN, United States. The site has been under continuous cotton production for
38 years. A total of 38,038 OTUs were detected across 171 soil samples. The dominant
bacterial phyla were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia,
and Chloroflexi, accounting for ∼70% of the total bacterial community membership.
Conventional tillage increased alpha diversity in soil samples collected in different stages
of cotton production. The effects of inorganic N fertilization and conventional tillage
on the structure of bacterial communities were significant at all four sampling dates
(p < 0.01). However, cover cropping (p < 0.05) and soil moisture content (p < 0.05)
only showed significant influence on the bacterial community structure after burn-down
of the cover crops and before planting of cotton (May). Nitrate-N appeared to have a
significant effect on the structure of bacterial communities after inorganic fertilization and
at the peak of cotton growth (p < 0.01). Structural equation modeling revealed that the
relative abundances of denitrifying and nitrifying bacteria were higher when conventional
tillage and vetch cover crop practices were applied, respectively. Our results indicate that
long-term tillage and fertilization are key factors increasing the diversity and restructuring
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the composition of bacterial communities, whereas cover cropping may have shorter-
term effects on soil bacteria community structure. In this study, management practices
might positively influence relative abundances of bacterial functional groups associated
with N cycling. The bacteria functional groups may build a network for providing N and
meet microbial N needs in the long term.

Keywords: soil bacterial diversity, 16S rRNA, agricultural management practices, N fixer, nitrifier, denitrifier

INTRODUCTION

Soil microorganism are decomposers and nutrient transformers
and promote various biogeochemical cycles (BGC) through
redox reactions (Timonen et al., 1996; Trevors, 1998; Kibblewhite
et al., 2008; Meliani et al., 2012). They perform critical ecological
roles in agricultural systems such as C and N cycling (Aczel,
2019; Tian et al., 2019; Basu et al., 2021; Prasad et al.,
2021). Microbial taxa can be involved in specific process
of nutrient transformation, such as lignin decomposition, N
fixation, nitrification, and denitrification associated with these C
and N transformation processes (Anand et al., 2015; Jiménez-
Bueno et al., 2016; Liu et al., 2020). For example, the bacterial
strain in Streptomyces viridosporus is able to secret extracellular
oxidative enzymes to break down lignin and provide substrate for
other microbes and plant to uptake (Ramachandra et al., 1988;
Brown and Chang, 2014). Paenibacillus strains with N-fixing
capability have a positive effect on crop yield and root growth,
and Rhizobium can promote the efficient N fixation cooperatively
with legumes (Etemadi et al., 2018; Liu et al., 2019).

Changes in the soil microbiome over 40 years of cotton
planting remains unclear (Xi et al., 2019). Few studies of studying
microbial community composition and structure on our study
site are reported (Hu et al., 2021a; Li et al., 2021). Long-term
agricultural management practices, such as tillage, inorganic
N fertilization, and cover cropping system, can influence the
structure and functions of soil bacterial communities (Rousk
et al., 2009, 2010; Ramirez et al., 2010; Geisseler and Scow, 2014;
Zhou et al., 2017; Dai et al., 2018; Zhang C. et al., 2019; Hu et al.,
2021a). The effects of management practices on N inputs not only
manifest, in turn, as increases in crop growth and soil organic
matter inputs but also can lead to increasing soil acidity with
concomitant decreases in diversity of bacteria. Previous study
shows that microbial organism structure has a particular change
on composition of microbial community involved in N cycling
after N fertilizer application (Gao et al., 2020). For example,
inorganic N fertilization can significantly impact Nitrosospira,
ammonia oxidizing bacteria, which were dominant in soils with
N fertilizer addition (Bruns et al., 1999; Wu et al., 2011; Liu et al.,
2018; Hu et al., 2021b).

Tillage management increases soil aeration and the degree
of mixing of crop residues and decreases soil aggregation
and water infiltration, thereby altering microenvironments and
impacting microbial community structure through bottom-up
environmental controls (Kladivko, 2001; Lienhard et al., 2013).
Bacterial diversity tends to decrease under intensive tillage,
whereas reduced or no tillage can increase bacterial diversity

due to creation/preservation of microhabitats at the pore-scale
and alterations of the organic matter decomposition rates in
contrasting tillage systems (Wang et al., 2017; Legrand et al.,
2018). However, no-tillage can drive a decrease of soil porosity
and increase soil bulk density, leading to soil compaction
compared to regularly tilled systems (Logsdon and Karlen,
2004; Pastorelli et al., 2013), influencing water and oxygen
diffusions and creating anaerobic environments favorable to the
growth of denitrifiers (Tatti et al., 2015). Crop residues retention
favored from zero-tillage would create a suitable environment
for organic matter decomposers, for example, Actinobacteria are
more abundant in zero-tillage systems (Navarro-Noya et al., 2013;
Jiménez-Bueno et al., 2016).

Cover cropping increases soil organic matter input and
protects soils from erosion and nutrient losses through leaching
and runoff (Romdhane et al., 2019). In addition, soil surfaces
covered by cover crop residue can reduce soil temperature
fluctuation and water evaporation. The growth of genera of
Bacillus and Pseudomonas can be benefit from cover cropping
(Patkowska and Konopiński, 2013). Root exudates contain
carbon-rich substrate (e.g., amino acids, organic acids, sugars,
and phenolics), which attract a variety of rhizosphere microbes
including N-fixing bacteria (Rasmann et al., 2005; Vukicevich
et al., 2016; Finney et al., 2017). Crop and root exudates positively
influence soil microbial biomass and activity (Bardgett and Shine,
1999; Bending et al., 2002; Mbuthia, 2014; Vukicevich et al., 2016;
Finney et al., 2017). The abundances of nitrifiers and nitrification
processes can increase under the combination of crops and N
fertilizer (Li H. et al., 2019). Therefore, cover cropping has a
potential to alter soil bacterial communities and functional taxa.

N cycling is the key component in BGCs of agricultural soil
systems, and nitrogen availability restricts the plant production,
organic matter input, and soil fertility (Greenwood, 1982;
Aczel, 2019). N cycling is driven by a diverse of microbes
(Simon and Klotz, 2013). Microbial diversity loss can affect
N cycling process (Patkowska and Konopiński, 2013; Philippot
et al., 2013; Li Z. et al., 2019). The previous studies indicated
that abundance of microbes or functional genes associated
with N cycling can be significantly changed by long-term
agricultural management practices, which may indicate shifting
of microbial function in agroecosystems (Doran et al., 1998;
Sun et al., 2015). Therefore, studying the diversity of soil
bacteria and changes of N cycling functional taxa is important
for estimation of microbial function and prediction of soil
function after a long-term agriculture management. The goal
of the study was to evaluate the variation of bacterial
community composition and N cycling bacterial taxa in
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different agricultural management practices under long-term
(40 years) conservation management and temporal patterns
during the cotton production cycle in West Tennessee. We
hypothesized that (1) bacterial diversity would be greater
following long-term (e.g., decades) of cover cropping and
fertilization practices, whereas conventional (i.e., intensive)
tillage would decrease bacterial diversity; (2) the bacterial
community would be structured accordingly under long-term
soil management practices but vary with time throughout the
cotton production cycle; and (3) conventional tillage would
decrease the relative abundances of denitrifying bacteria, and
inorganic N fertilization will decrease relative abundance of
N-fixing bacteria but increasing the nitrifying bacteria and
denitrifying bacteria. Cover cropping would increase all the
relative abundances of functional bacteria taxa. We used
16S rRNA high-throughput amplicon sequencing to estimate
bacterial diversity and relative abundance of various taxonomic
groups and structural equation modeling to associate these
distribution patterns with management practice and potential
roles of bacteria functional taxa in N cycling.

Site Description and Sample Collection
The ongoing long-term conservation management experimental
site was established in 1981 and is a randomized complete
block (RCBD) with split-split plot design located in Jackson,
TN, United States (35◦37′23.1′′N 88◦50′47.4′′W) (Li et al., 2021).
The soil was Lexington silt loam (fine-silty, mixed, thermic, Ultic
Hapludalfs). Inorganic nitrogen fertilizer (ammonium nitrate,
NH4NO3) has been applied at two levels of nitrogen (NH4NO3
at 0 and 67 kg ha−1 or 60 lb acre−1) based on weight of
N as the main plots and were divided into three subplots
that contained three kinds of cover crop treatments (hairy
vetch, Vicia villosa Roth; winter wheat, Triticum aestivum L.;
and no cover). Each subplot contained two tillage treatments
(conventional tillage and no tillage). The tillage was performed
before planting cotton using a standard disk harrow followed by
smoothing and breaking up of clods by a triple-K harrow. There
were four replications in each of 12 treatments (Supplementary
Figure 1). The collected samples were coded with the following
form: “sampling month,” “type of cover crop,” “tillage or not,”
“fertilization or not,” and “serial number of replicates,” e.g.,
M_NCCN0_1 represents May, no cover, conventional tillage
with no fertilization treatment of replicate plot 1, which was
sampled in May; O_VNTN60_4 is sampled in October, vetch-
covered, no tillage with fertilization with 67 kg ha−1, replicate
plot 4; and D_WCN0_3 is sampled in December, wheat-covered,
conventional tillage without fertilization, replicate plot 3 (see
Supplementary Table 4 for details).

The field sampling occurred four times during the cotton
production cycle in 2019. The first sampling was made on May
21, 2019, shortly after burn-down of the cover crop and just
before planting cotton and conventional tillage in spring. The
second sampling was on June 12, 2019, after planting cotton
and tillage but before fertilization in mid-summer. The third
collection occurred on October 9, 2019, at the peak of cotton
growth in fall. The final sample collection was performed at the
beginning of December just after harvest but before cover crop

planting for next year. Each sample was processed for 16S rRNA
gene amplicon sequencing.

Pre-processing and Measurement of Soil
Properties
Soil samples were taken from a depth of 0 to 10 cm using a 2.5-
cm-diameter soil probe. About 10–15 samples were randomly
taken within each plot, approximately 10–15 cm away from the
crop row center. Each soil sample was mixed and passed through
a 2-mm sieve to remove fine rocks, roots, and other debris.
We used the 75% ethanol (v/v) to clean the sampling probes,
gloves, and sieves every time we sample different plots and sieve
different samples.

Soil pH was measured using a pH electrode at a 1:2 ratio
of soil to water (Ultrabasic, Denver Instrument, Bohemia, NY,
United States). Gravimetric water content (GWC; g−1 dry soil)
was determined as mass loss of field moist soil after oven drying
at 105◦C for 48 h. Salt extracts were conducted with a potassium
persulfate reagent overnight (80◦C) (Doyle et al., 2004). Then,
salt extracts are carried through two colorimetric assays to
measure extractable nitrate (NO3

−) and ammonium (NH4
+)

concentrations. Nitrate was determined using a Vanadium (III)
chloride reagent (Doane and Horwáth, 2003), and ammonium
was quantified using the Berthelot reaction (Rhine et al., 1998).
Air temperature data were obtained from Jackson Experiment
Station via National Weather Service Forecast Office, National
Oceanic and Atmospheric Administration1.

DNA Extraction
Total soil DNA was extracted using a DNeasy R© PowerLyzer R©

PowerSoil R© kit (REF 12855, QIAGEN) from 0.25 g of soil per
sample following the manufacturer’s instructions. After DNA
extraction from 192 samples (including four replicates from four
blocks), the DNA was dissolved in sterile DNA-free PCR grade
water. DNA quality and concentration were measured using
NanoDrop (ND-3300 Fluorospectrometer 83060-50, Thermo
Fisher Scientific).

Library Preparation and Illumina MiSeq
Sequencing
PCR amplification was carried out at UT Genomic Center
of The University of Tennessee, targeting V3–V4 of bacterial
16S rRNA gene with the index and adaptors. The primers
were 341F (5′- CCTACGGGNGGCWGCAG-3′) and 785R (5′-
GACTACHVGGGTATCTAATCC-3′). The protocol included
the primer pair sequences for the V3 and V4 region that
create a single amplicon of approximately 464 bp (Klindworth
et al., 2013). The PCR reaction (25 µl per sample) was
performed using Platinum Green Hot start master mix (12.5 µl
of 2 × concentration) (InvitrogenTM, Catalog No. 13001012,
United States), 2.5 µl of microbial genomic DNA (5 ng/µl in
10 mM Tris, pH 8.5), and 5 µl each of forward and reverse
primer. PCR conditions consisted of a pre-denaturation at 95◦C
for 5 min, followed by 25 cycles of denaturation at 95◦C for 40 s,

1https://www.weather.gov/
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annealing at 55◦C for 2 min, elongation at 72◦C for 1 min, and
held at 4◦C until storage in the freezer (−20◦C) for future use.
The 2 × 300 reads of each sample were generated by an Illumina
MiSeq platform performed at DNA Genomics Core, University of
Tennessee (Bartram et al., 2011). MiSeq Control Software version
2.6.2.1 was used for initial data processing.

Sequence Data Analyses
Illumina sequencing data were examined by FastQC to perform
the quality control (Andrews, 2010). Raw reads were processed
using the MOTHUR pipeline (v. 1.35.1) (Schloss Laboratory;
University of Michigan, Ann Arbor, MI, United States). The
analysis followed MiSeq SOP2 (Kozich et al., 2013). The step
of make.contigs was used to assemble reads into contigs. High-
quality contigs were aligned with SILVA bacterial reference
database (v.132) using kmer searching. After removing chimeric
sequences using the VSEARCH program (Rognes et al., 2016),
sequences were classified using the Ribosomal Database Project
Naive Bayesian classifier to reference sequences with a bootstrap
value cutoff 80% (Wang et al., 2007). Sequences identified as
Chloroplast, Mitochondria, unknown, Archaea, or Eukaryota
were removed. Then, sequences with no more than 3%
dissimilarity were clustered into one Operational Taxonomic
Unit (OTU). The make.shared command was performed to
generate taxonomic and OTU tables for further analysis (Schloss
et al., 2009; Schloss, 2020). The sequences for each replicate were
rarefied to 14,145 sequences to avoid the influence of sample
size on diversity estimation. Results were analyzed using phyloseq
(v1.30.0) and vegan (v 2.5.7) packages for diversity analyses and
visualized in RStudio 1.1.463 interface.

Alpha- and Beta-Diversity Measurement
Shannon–Wiener, the number of OTUs, and Pielou’s evenness
diversity indices indicate species richness and evenness (Kim
et al., 2017). The canonical analysis of principal coordinates
analysis (CAP) was conducted to examine bacterial community
structure between individual samples. Similarity percentage
analysis (SIMPER) was also utilized to test percentage of
dissimilarities for each species contribution at phylum level
between two treatments (Grange and Smith, 2013).

Structural Equation Modeling
Structural equation modeling (AMOS 27; IBM Corporation,
Meadville, PA, United States) was conducted to test the
relationships among environmental factors, bacteria abundance,
and the agricultural managements. Path coefficients were tested
by maximum likelihood estimation at p ≤ 0.05. Multivariate
normality was evaluated by Kurtosis value ≤7. Model fit was
evaluated by (1) the minimum discrepancy divided by its degrees
of freedom in the range of 1–3 (Carmines and McIver, 1983), (2)
the goodness of fit index close to 1 (Tanaka and Huba, 1985), (3)
the comparative fit index close to 1 (Bentler, 1990), and (4) the
root mean square error of approximation less than 0.05 (Browne
and Cudeck, 1993). We followed the procedures of developing
and modifying a structural equation model in Byrne (2013a) and

2https://mothur.org/wiki/miseq_sop/

Li L. et al. (2019). Briefly, we proposed an a priori model based on
our hypotheses, tested if the existing pathways were significant
and if necessary pathways were left out, and then adjusted the
a priori model by dropping insignificant pathways and adding
missing pathways taking into consideration of model fit and
scientific rationality.

We used SEM in this study for several reasons. (1) SEM is
a confirmatory method that can test the validity of an existing
theoretical framework built upon background knowledge and
previous studies (Byrne, 2013b). In our hypothesized model,
we assumed that field treatments would have effects on soil
properties (Li L. et al., 2019; Mueller and Hancock, 2019), and the
soil properties would affect microbial abundance and diversity
(Byrne, 2013b; Mueller and Hancock, 2019). (2) SEM can evaluate
the complex relationships among multiple variables beyond the
traditional multiple regression (Colman and Schimel, 2013).
(3) SEM can quantify these causal relationships by generating
standardized coefficients (Grace and Bollen, 2005).

Statistical Analysis
The mixed model ANOVA was used to test the variations
of diversity indices (Chao1, the number of OTUs, Shannon,
and Pielou) across treatments. The 17 samples, namely,
M_VCN0_1, M_VCN0_2, M_VCN0_3, M_VNTN60_4,
J_VCN0_1, J_VCN0_2, J_VCN0_3, J_VNTN60_4, O_VCN0_1,
O_VCN0_2, O_VCN0_3, O_VNTN60_4, D_VCN0_1,
D_VCN0_2, D_VCN0_3, D_NCCN0_4, and D_VNTN60_4,
were removed due to low quality scores (less than 20) poor
assembly and alignment to the 16S rRNA reference sequences.
The M_VCN0_4, J_VCN0_4, O_VCN0_4, and D_VCN0_4
within the treatment of vetch-covered, conventional tillage with
no fertilization (VCN0) were also removed because that one
sample cannot run statistical analysis. All these 21 removed
samples were treated as missing value during following statistical
analysis. After the step of quality control, a total of 171 of
192 samples were remained for the downstream analyses. The
statistical analysis was conducted in SAS software with Glimmix
procedure (SAS Institute Inc., Cary, NC, United States), and
the normality, equal variance, and outliers were checked using
UNIVARIATE procedure. The least square means compared
with Fisher’s Least Significant Difference at 5% significance level
and Tukey’s Honest Significant Difference (Tukey’s HSD) tests
were performed to compare differences between each treatment.
The tillage, fertilization, cover cropping, and their interaction
effects were tested in this study (Supplementary Figure 2).
The statistical test on seasonal variation with regard to seasonal
sampling as repeated measures was based on randomized
complete block (RCBD) split-split plot design. Furthermore,
three-way permutational multivariate analysis of variance tests
with 9,999 permutations were also conducted within each
sampling dates in R, respectively, to estimate if a given treatment
signal was significant or not. The insignificant terms, including
three-way and two-way interactions, cover crop treatment across
June, October, and December, were removed from the statistical
model to increase the number of degrees of freedom due to
no significant effect (p < 0.05). Only significant environmental
factors (p < 0.05) were kept in the model. We use adjusted
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FIGURE 1 | The contribution of bacteria phyla to the total dissimilarity of pairwise comparison among cover cropping (A–C), tillage (D), fertilization (E), and across
four seasons based on SIMPER (Analysis of Similarity) analysis.

R-square to avoid overexplaining the variation in the model
(Peres-Neto et al., 2006).

Spearman’s correlation was performed among bacteria at
genus level known to be associated with N fixation, nitrification,
and denitrification in each sampling date, and significant
correlations (p < 0.05) were corrected using Benjamini-
Hochberg (BH) method (Benjamini, 1995). All functional
taxa mentioned in this study were found by genus in our
samples as reported in previous studies (Pagan et al., 1975;
Pichinoty et al., 1976; Carlson and Ingraham, 1983; Davey
and Marchant, 1983; Awonaike et al., 1990; Gee et al., 1990;
Urakami et al., 1995; Baumann et al., 1996; Albrecht et al.,
1997; Schramm et al., 1999; Hurek and Reinhold-Hurek, 2003;
Verbaendert et al., 2011; Kostka et al., 2012; Cua and Stein,
2014; Sun et al., 2016; Fukami et al., 2018; Cardoso and Kana,
2019; Liu et al., 2019; Zhang H. et al., 2019; Spieck et al.,
2020).

RESULTS

The Contribution of Bacterial Phyla to
the Total Variations of Bacterial
Composition Across Treatments
In total, 4,854,968; 5,495,390; 3,983,387; and 3,809,793 raw
sequence reads were obtained from samples collected in May,

June, October, and December 2019, respectively. A total of 38,038
OTUs with 97% identity were generated from 171 samples after
rarefaction. The number of OTUs per sample ranged from 4,134
(D_VCN60_1) to 2,758 (O_NCNTN0_4).

Proteobacteria, Acidobacteria, Actinobacteria,
Verrucomicrobia, and Chloroflexi were the most abundant
bacterial phyla in this study (Supplementary Figure 2).
SIMPER analysis (analysis of similarity of percentage) was
used to estimate the contribution of each bacterial phylum and
calculate the contribution of each bacterial taxonomic group
to the dissimilarity of the whole bacterial community between
different treatments (Warton et al., 2012). Contributions of
more than 2% of the total variation of dominant phyla were
included (Figure 1). All phyla showed a similar variation of
contribution in five pair-wise comparisons (no cover and
vetch, no cover and wheat, vetch and wheat, tillage and no
tillage, and fertilization and no fertilization) across sampling
dates. The contribution of Firmicutes, Actinobacteria, and
Patescibacteria increased after planting cotton but, before
fertilization, decreased at the peak of cotton growth and
increased again after harvest. However, the Cyanobacteria,
Chloroflexi, and Acidobacteria exhibited the opposite
trend (Figure 1).

The diversity, richness, and evenness of the bacterial
communities in different samples were estimated by Shannon
index (H), the number of OTUs, and Pielou’s index, respectively
(Figure 2). No significant interaction effect was observed
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FIGURE 2 | Variations of soil bacteria diversity under long-term management practices during the cotton production cycle. Boxplot of bacterial richness and
evenness across four sampling dates (A–C) and tillage management. Shannon (A,D), the number of OTUs (B,E), and Pielou’s evenness (C,F) indices represented
bacteria alpha-diversity, richness, and evenness, respectively. Minimum value, first quartile (Q1), median, third quartile (Q3), and maximum value were shown in the
plot. The significance (p < 0.05) was represented by lower letters above the boxes; the boxes that shared same letter have no significant differences from each other.

among tillage, fertilization, cover cropping, and sampling date
(Supplementary Table 1). Only sampling date and tillage
management had significant influence on bacterial richness and
evenness (Supplementary Table 1). Shannon index (p < 0.001),
number of OTUs (p < 0.01), and Pielou’s evenness (p < 0.01)
varied across sampling dates (Figures 1A–C). Lowest alpha
diversity was found after burn-down of cover crops (May)
compared to samples collected after tillage but before fertilization
(June) (i.e., richness, p < 0.05), after fertilization and at
peak of cotton growth (October) (i.e., richness and evenness,
p < 0.05), and after cotton harvest but before planting
of the cover crops (December) (i.e., richness and evenness,
p < 0.05). Soils sampled collected after cotton harvest had
greater diversity relative to those at the peak of cotton
growth because of a higher richness (p < 0.05). However,
bacterial diversity showed no difference before (June) and
after (October) in inorganic N fertilization plots. In addition,
bacterial Shannon index (p < 0.01), numbers of OTUs
(p < 0.01), and Pielou’s evenness (p < 0.05) were higher in
conventional tillage compared to no tillage (Figures 2D,E).
The results indicated that conventional tillage practices largely

contributed to the change of bacterial alpha diversity over entire
production cycle.

Comparisons of Bacterial Community
Structure Across Long-Term Tillage,
Inorganic N Fertilization, and Cover
Cropping Practices
Overall, spatial variation of bacterial communities was
significantly influenced by inorganic N fertilization and
tillage across four sampling dates. Cover cropping, tillage,
inorganic N fertilization, and soil water content explained
15.2% of dissimilarity of bacterial communities of soil
samples collected after burn-down of cover crops (Samples
collected in May) (Figure 3A). Bacterial communities were
significantly influenced by the nitrate-N concentrations of
the soil samples collected after inorganic N fertilization
and at the peak of cotton growth (Samples collected
in October) (Figure 3C). Approximately 7.1–15.2% of
the variation of bacterial communities was explained by
the environmental variables within the two CAP axis
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FIGURE 3 | Canonical analysis of principal coordinates (CAP) across four
seasons under tillage, fertilization, and cover cropping treatment. (A–D) The
samples collected in May, June, October, and December, respectively. Colors
represent the fertilization (0 or 67 kg ha−1 or 60 lb acre−1), and shapes
represent the tillage treatment (no-till or intensive tillage). The significant
environmental indicators are shown as arrows (p < 0.05). The Bray–Curtis
dissimilarities were calculated to estimate the differences among samples.
GWC was the gravimetric water content. NO3 was nitrate-N in ppm. N60
represented inorganic N fertilization. Vetch and wheat were the two cover
cropping types. Adjusted R-square values indicate the total percentage
explanation of variation by significant factors (shown as arrows) at each
sampling date, which were shown on the right corner of each plot.

across May, June, October, and December (Figure 3 and
Supplementary Table 2). The results suggested that the
fertilization and tillage have a long-lasting impact on soil
bacterial communities, and cover cropping only exerted the
short-term effect after burn-down of cover crops in the aspect of
one production cycles.

Changes of Bacterial Genera Involved in
N Fixation, Nitrification, and
Denitrification Across Long-Term
Management and Annual Environmental
Change
N-fixing bacteria (including Azoarcus, Paenibacillus, Rhizobium,
Azospirillum, Nostoc, and Bradyrhizobium), nitrifying bacteria
(including Nitrosospira, Nitrosomonas, and Nitrolancea),
and bacteria associated with denitrification (Flavobacterium,
Streptomyces, Bacillus, Pseudomonas, Paracoccus, Cupriavidus,
Sphingomonas, Mycobacterium, Rhodococcus, Rhodanobacter,
and Hyphomicrobium) were detected in our soil samples.
Overall, the greatest partition of significant connections was
found between N-fixing bacteria and nitrifying bacteria or
denitrifying bacteria compared to partition of connections

between nitrifying and denitrifying bacteria. After burn-down
of cover crops, approximately 9.10% of total significant
correlations (p < 0.05) among all N groups were between
N-fixing bacteria and nitrifying bacteria, and 45.45% numbers of
total significant connections (p < 0.05) were between N-fixing
bacteria and denitrifying bacteria (Figure 4A). After tillage but
before fertilization, approximately 6.67 and 46.67% significant
connections (p < 0.05) were observed among N-fixing bacteria
and nitrifying bacteria, and N-fixing bacteria and denitrifying
bacteria, respectively (Figure 4B). After fertilization and cotton
harvest, most of the positive connections were observed between
N fixing and denitrifying bacteria (Figures 4C,D).

As shown in the structural equation model for evaluating
the influence of tillage, fertilization, and cover cropping on
the relative abundance of N-fixing, nitrifying, and denitrifying
bacteria, the abundances of N-fixing bacteria had positive
effect on nitrifying (standardized path coefficient = 0.28,
p < 0.001) and denitrifying bacteria (standardized path
coefficient = 0.54, p < 0.001), respectively. As for the effect
of cover crop, vetch-covered soil increased the abundance
of nitrifying bacteria (standardized path coefficient = 0.28,
p < 0.001). Tillage increased the abundances of denitrifying
bacteria (standardized path coefficient = 0.27, p < 0.001).
N-fixing bacteria were negatively influenced by soil
moisture content (standardized total effect = −0.34,
p < 0.001) and positively influenced by air temperature
(standardized total effect = 0.11, p < 0.001) (Figure 5 and
Supplementary Table 3).

DISCUSSION

The Variation of Bacterial Diversity,
Composition, and Structure Under
Long-Term Management Practices
The contributions of bacteria phyla on variations among
sampling dates were consistent across treatments, indicating
that the communities are likely dominated by taxa that have
acclimated to the ambient environment conditions and/or
formed a dynamic steady pattern after the long-term soil
management. Actinobacteria and Firmicutes were reported as
ecologically relevant copiotroph-associated phyla (Fierer et al.,
2012; Ramirez et al., 2012; Bastida et al., 2015), which may
response to more organic matter input after burn-down of
cover crops. Cyanobacteria, Chloroflexi, and Acidobacteria were
as oligotrophic-associated phyla (Fierer et al., 2012; Ramirez
et al., 2012; Pepe-Ranney et al., 2016), which may be disturbed
when soil with limited nutrient status, such as after peak
of cotton growth.

Previous research has indicated that no tillage can increase
soil microbial diversities, which benefit from greater soil moisture
and lower fluctuation of soil temperature created by no tillage
(Wang et al., 2016). No tillage also can exhibit no effect on
bacteria diversity in other studies (Li et al., 2018). Here, bacterial
alpha diversity in our study increased under conventional
tillage. The possible reason might be that conventional tillage
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FIGURE 4 | Spearman’s correlation among bacterial taxa at the genus level involved in N-fixation (Azoarcus to Bradyrhizobium), nitrification (Nitrosospira to
Nitrolancea), and denitrification (Flavobacterium to Hyphomicrobium) across May (A), June (B), October (C), and December (D). Significant correlations
(p-adjusted < 0.05) were colored by red (positive correlation) and blue (negative correlation). The darker the color, the greater absolute value of correlation coefficient.
False discovery rate was controlled using Benjamini (1995) method.

management is known to disturb the stability of soil aggregates
and release physically protected organic matter utilized by
microbes (Rong et al., 2017; Bu et al., 2020).

In addition, previous studies show that tillage can improve
soil aeration, total porosity, and oxygen diffusion rate, providing
a suitable environment for aerobic microbial growth and
accelerated decomposition of soil organic matter as substrate
and energy source for soil microbes (Linn and Doran, 1984;
Khan, 1996; Simmons and Coleman, 2008). In addition, different
microbial functional groups harbored at different soil depths and

tillage practices might relocate microbial groups in deeper soil
to the surface soil, leading to increase in bacterial richness and
evenness of bacterial communities.

No significant effect of cover cropping and inorganic N
fertilization on bacterial alpha can be observed, which contradicts
the common assertion that cover cropping and inorganic N
fertilization can increase the diverse of organic matter input,
prevent nutrient leaching, and keep the soil physical structure,
which would provide a positive effect on for bacteria growth and
diversity (Novara et al., 2020). Incorporated organic matter may
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FIGURE 5 | Structural equation model for N-fixing, nitrifying, and denitrifying bacteria. Boxes represent variables. Single-headed arrows represent causal
relationships. Black arrows indicate positive effects, and gray arrows indicate negative effects. No arrows suggest no significant relationships between variables. All
presented relationships are significant at p < 0.05. Numbers beside each arrow are standardized path coefficients (i.e., effect sizes). See Supplementary Table 3
for standardized total effects. The “Vetch” and “Wheat,” “Tillage,” and “Fertilization” were presenting the cover cropping, conventional tillage, and inorganic N
fertilization treatment, respectively. Soil pH (pH), gravimetric water content (GWC), ammonia-N (NH4

+), and nitrate-N (NO3
−), air temperature (month average ahead

of sampling date) presented in rectangular box.

result in only a short-term change on bacteria diversity through
favor relatively corticotropic taxa contribute to largest partition
communities. The N input can decrease the bacterial OTU
richness due to the soil acidification (Zeng et al., 2016; Dai et al.,
2018). The fact that there are no changes in bacterial richness
and evenness under inorganic N fertilization is consistent with
the result that the no obvious decrease on soil pH in our long-
term managed field.

Meanwhile, conventional tillage and fertilization exerted a
lasting effect on bacterial structure throughout the growing cycle.
The observed lasting effect of field management practices over
decades was most pronounced in tillage and/or fertilization
and was consistent with previous studies (Marschner et al.,
2003; Toda and Uchida, 2017). In addition, nitrate-N input
significantly explained variation of bacterial communities among
samples after fertilization (October sampling date). In previous
studies, microbial biomass, bacterial community structure, and
specific taxa can respond to inorganic fertilization management
(Ramirez et al., 2010; Geisseler and Scow, 2014; Zhou et al.,
2017). For example, increased nitrogen availability would likely
suppress N-fixing bacteria but stimulate nitrifier and denitrifier
populations and then shift the structure of bacteria community
(Ouyang et al., 2018; Norton and Ouyang, 2019).

The effect of cover cropping on bacterial community structure
was observed only after the burn-down of cover crops which
exhibited a relatively short-term effect (approximately 1 month)
compared to inorganic N fertilization and conventional tillage.
At this site, cover crops were planted and grown in winter
and spring seasons as one of several experimental treatments
and the cover crops residues were left on the soil surface.
Winter wheat possessed a high C:N ratio compared to hairy
vetch biomass, which likely affected the quality and quantity

of carbon, nitrogen, and other nutrient resources available
for bacteria (Vukicevich et al., 2016; Schmidt et al., 2018).
The plant residues with different nutrient compositions could
have a large impact in reshaping the soil bacterial community
structure (Marschner et al., 2003). For example, the soil
enriched with recalcitrant substrates often exhibits enrichment
in microbes that have the ability to secrete extracellular enzymes
to degrade complex polymers (e.g., cellulase) (Marschner
et al., 2003). Meanwhile, this relatively short-term effect
from cover cropping on reshaping soil bacterial communities
structure might relate to increasing of soil moisture content
(Acharya et al., 2019).

The Response of Bacterial Taxa Involved
in N Cycling to Management Practices
A conceptual model, “N saturation hypothesis,” states that an
N supply that exceeds biological demand could result in the
loss of N from the ecosystem (Aber et al., 1998; Galloway
et al., 2003; Pajares and Bohannan, 2016). N addition or loss
can potentially be affected by abundances of functional taxa.
Here, we observed N-fixing taxa had a substantial positive
effect on the relative abundance of denitrifying bacterial groups
across the four sampling times. These results may indicate
that positive correlation between the relative abundances N
fixer and denitrifiers, and N fixer and nitrifiers might be the
reason to provide N cycled by microbes and meet the N needs
of soil bacteria.

Nitrification process driven by nitrifiers apparently responded
to crop residues with low C:N ratio input. Low C:N ratio
of vetch compared to that of other cover crops like wheat
provided more readily utilizable substrate for bacterial
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decomposition. N input by N-fixing cover crops can also
likely increased the activity and abundance of nitrifiers
that use reduced N forms as an oxidizable energy source
and, subsequently, by heterotrophs that utilize the oxidized
nitrogen as an alternate terminal electron acceptor (Songjuan
et al., 2021). Microbial N transformation accelerated by
vetch cover crop was found in the same study site (Li
et al., 2021). Our result is also consistent with the finding
that functional activity (transcript copy abundances) of
bacterial N cycling groups, such as amoA genes involved in
nitrification process, was promoted by hairy vetch plantation
(Hu et al., 2021a).

In previous research, conventional tillage disrupted the soil
aggregate structure, resulting in increase in the abundance of
denitrifiers (Dick, 1992; Buckley and Schmidt, 2001; Kladivko,
2001; Lienhard et al., 2013). In this study, conventional
tillage showed a positive effect on denitrifier abundance,
in agreement with previous studies that observed greater
denitrification gene abundance under the conditions similar to
this study (Wang et al., 2019). This may be due to denitrifiers
brought from deeper soil being brought to the surface soil by
conventional tillage (Kladivko, 2001; Holland, 2004; Wang et al.,
2017).

According to the SEM results, soil moisture content can
negatively influence the abundance of N-fixing bacteria.
Although nitrogenase mediates, N fixation process is oxygen-
sensitive (Gallon, 1981). The process can be conducted by
aerobic N-fixing microbes (Barney, 2020). For example,
Azospirillum found in our study was reported as aerobic
nitrogen-fixing bacteria (Huergo et al., 2008), which may
benefit from low soil moisture. The free-living N-fixing
bacteria (e.g., Nostoc) can survive from drought stress
(Fuhrmann et al., 1986). In addition, previous studies show
that the survival and distribution of N-fixing bacteria were
influenced not necessarily restricted by anaerobic conditions
due to higher soil moisture; it also needs to consider the
initial moisture content and moisture stress in water-filled
pores of soil microhabitat (Postma et al., 1989; Zahran,
1999).

CONCLUSION

Soil bacterial communities were influenced by long-term
agricultural management practices and seasonal climate variation
based on 1-year field investigation at The University of Tennessee
West Research and Education Center. Long-term conventional
tillage, inorganic N fertilization, and cover cropping not only
did not dampen the alpha diversity of bacteria communities but
also can reshape bacteria community structure and exert different
lasting effect (relatively short-term from cover cropping and
long-term from fertilization and tillage). Meanwhile, oligotroph-
associated bacteria and copiotroph-associated bacteria phyla
show a steady dynamic pattern, indicating that acclimation
of bacterial community may occur in a long-term managed
soil ecosystem. In addition, the management practices may
indirectly enhance the correlations between N cycling functional

groups. The results of the correlation between bacterial N cycling
groups disclose that bacteria community built the network for
providing N and meet microbial N needs in the long term.
In this study, variation of relative abundances of N cycling–
related functional taxa indirectly reflects the roles of bacteria,
which is the limitation of this study. Direct evidence (e.g.,
transcriptome) is needed to get insight into bacterial functional
activities for future studies.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

ND, JZ, MR, and SS designed the experiment. ND, XL, and AF
conducted the experiment. ND and LL analyzed the data. ND, LL,
JZ, MR, and SS revised the manuscript. All authors contributed to
the article and approved the submitted version.

FUNDING

This study was supported by projects of United States
Department of Agriculture National Institute of Food and
Agriculture awarded to SS (grant number: 2015-67019-23604)
and to MR (grant number: 2018-67019-27792).

ACKNOWLEDGMENTS

We thank UT Genomic Center of The University of Tennessee
for providing sequencing service and consultant and China
Scholarship Council (scholarship number: 201404910569).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.
847005/full#supplementary-material

Supplementary Figure 1 | Field design (RCBD with split-split plot). The plots are
40′ × 26.6′ with 20′ alleys. Total average with alleys 4.5 ac, main plot: nitrogen
fertilization rate (0, 60 lb N/ac), Subplot: cover crop, no-cover, hairy vetch, crimson
clover, wheat. Sub-sub plot: Tillage; C, conventional till; NT, no-till.

Supplementary Figure 2 | The relative abundance of bacterial phyla, including
Proteobacteria (A), Acidobacteria (B), Actinobacteria (C), Verrucomicrobia (D),
Choroflexi (E), Planctomycetes (F), Bacteroidetes (G), Firmicutes (H),
Gemmatimonadetes (I), Patescibacteria (J), Cynaobacteria (K), Nitrospirae (L)
across treatments collected in May, June, October, and December.
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Supplementary Table 1 | Statistical results of diversity indices across sampling
dates, tillage, N fertilization, and cover cropping.

Supplementary Table 2 | PERMANOVA results for the significant factors
influencing bacterial community structure across each sampling date.

Supplementary Table 3 | Standard total effect for SEM.

Supplementary Table 4 | Coding for sample ID.

Supplementary Table 5 | The data for SEM.
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