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The Pacific Northwest (PNW) is one of the largest commercial harvesting areas for 
Pacific oysters (Crassostrea gigas) in the United States. Vibrio parahaemolyticus, a 
bacterium naturally present in estuarine waters accumulates in shellfish and is a major 
cause of seafood-borne illness. Growers, consumers, and public-health officials have 
raised concerns about rising vibriosis cases in the region. Vibrio parahaemolyticus 
genetic markers (tlh, tdh, and trh) were estimated using an most-probable-number 
(MPN)-PCR technique in Washington State Pacific oysters regularly sampled between 
May and October from 2005 to 2019 (N = 2,836); environmental conditions were also 
measured at each sampling event. Multilevel mixed-effects regression models were 
used to assess relationships between environmental measures and genetic markers 
as well as genetic marker ratios (trh:tlh, tdh:tlh, and tdh:trh), accounting for variation 
across space and time. Spatial and temporal dependence were also accounted for in 
the model structure. Model fit improved when including environmental measures from 
previous weeks (1-week lag for air temperature, 3-week lag for salinity). Positive 
associations were found between tlh and surface water temp, specifically between 15 
and 26°C, and between trh and surface water temperature up to 26°C. tlh and trh 
were negatively associated with 3-week lagged salinity in the most saline waters (> 
27 ppt). There was also a positive relationship between tissue temperature and tdh, 
but only above 20°C. The tdh:tlh ratio displayed analogous inverted non-linear 
relationships as tlh. The non-linear associations found between the genetic targets 
and environmental measures demonstrate the complex habitat suitability of 
V. parahaemolyticus. Additional associations with both spatial and temporal variables 
also suggest there are influential unmeasured environmental conditions that could 
further explain bacterium variability. Overall, these findings confirm previous ecological 
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risk factors for vibriosis in Washington State, while also identifying new associations 
between lagged temporal effects and pathogenic markers of V. parahaemolyticus.

Keywords: Vibrio parahaemolyticus, Pacific oysters (Crassostrea gigas), spatial modeling, temporal modeling, 
mixed-effects model, Washington (state)

INTRODUCTION

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium 
naturally present in coastal waters around the world (CDC, 
1998; Ansaruzzaman et  al., 2005; Su and Liu, 2007; Kirs et  al., 
2011; Velazquez-Roman et al., 2014; Wu et al., 2014; Martinez-
Urtaza et  al., 2016). Vibrio parahaemolyticus grows in oysters 
and accumulates when oysters are inactive. When oysters are 
active, they release more of the bacteria than they accumulate 
during filter feeding (FAO and WHO, 2021). Although 
V. parahaemolyticus is a thermolabile bacterium, oysters are 
most commonly consumed raw in the United  States (U.S.) 
and so are the most common cause of seafood-borne bacterial 
gastroenteritis (Iwamoto et  al., 2010; Scallan et  al., 2011) and 
are associated with the majority (90%) of V. parahaemolyticus 
infections (i.e., vibriosis) in the country (Froelich and Noble, 
2016). Whereas symptoms are often mild and self-limiting, 
vibriosis can at times lead to life-threatening septicemia. The 
first vibriosis outbreak in the U.S. occurred in 1971 and 
outbreaks have been consistently reported around the country 
since (Su and Liu, 2007).

In the U.S., the Pacific Northwest (PNW) region is known 
for its relatively high abundance of pathogenic 
V. parahaemolyticus strains (Paranjpye et al., 2012). The large 
tidal ranges in the PNW along with the use of intertidal 
harvesting practices result in oysters intended for consumption 
that have been exposed to air and direct sunlight for prolonged 
time-periods (Jones et  al., 2016). The first large vibriosis 
outbreak in the PNW occurred in 1997; 209 people became 
ill from eating shellfish harvested in the PNW and one 
person died (CDC, 1998). There have been additional outbreaks 
in the PNW since that time along with an increased incidence 
of intermittent cases in Washington State where the majority 
of shellfish are harvested in the PNW (USFDA, 2005; National 
Marine Fisheries Service et al., 2018; WDOH, 2018). In spite 
of various efforts by the Washington State Department of 
Health (WDOH, 2018) and shellfish growers to limit oyster 
harvest by time and place and to employ strict post-harvest 
controls, instances of vibriosis have continued to rise over 
time (Paranjpye et  al., 2012; Washington State Board of 
Health, 2015). An increase in vibriosis linked to Pacific 
oysters has been observed on the Canadian side of the Salish 
Sea as well (Taylor et  al., 2018). Cases in similar estuarial 
environments in other parts of the world now occur both 
earlier and later in the year (Vezzulli et  al., 2013; Muhling 
et  al., 2017), and thus will likely also start to occur in the 
PNW. Climatic changes, especially those at higher latitudes, 
may be responsible for these trends, possibly from the increase 
in sea temperatures, given the well-reported positive correlation 
between V. parahaemolyticus abundance and water temperature 

(Sterk et  al., 2015; Vezzulli et  al., 2016; Baker-Austin 
et  al., 2017).

The bacterium population found in PNW oysters is comprised 
of a wide array of strains that partake in consistent genetic 
recombination (Hazen et  al., 2010; Paranjpye et  al., 2012; 
Turner et  al., 2013). Not all V. parahaemolyticus strains can 
cause vibriosis, although all V. parahaemolyticus bacteria have 
a specific thermolabile hemolysin gene (tlh). Potential indicators 
of pathogenicity found in V. parahaemolyticus bacteria are 
the thermostable direct hemolysin and the thermostable direct-
related hemolysin genes (tdh and trh; Shirai et  al., 1990; 
Panicker et  al., 2004). The bacterium strains often found in 
PNW waters, predominantly those containing the tdh and trh 
genetic markers, are regularly connected with vibriosis cases 
in Washington (Paranjpye et  al., 2012; Martinez-Urtaza et  al., 
2013; Turner et  al., 2013; Velazquez-Roman et  al., 2014; Xu 
et  al., 2017, Davis et  al., 2021). Although neither of the genes 
always predict or are required for pathogenicity, they have 
been frequently associated with type III secretion systems that 
can lead to human infection (Paranjpye et  al., 2012; Whistler 
et  al., 2015). For this reason, they are often used to indicate 
pathogenicity in environmental isolates (Zhang and Orth, 2013; 
Almuhaideb et  al., 2020).

An array of environmental conditions have previously 
been  associated with the presence and abundance of 
V. parahaemolyticus in estuarial environments (DePaola et al., 
2003; Turner et  al., 2014; Johnson, 2015; Paranjpye et  al., 
2015; Davis et  al., 2017; Hartwick et  al., 2019; Brumfield 
et  al., 2021). For example, water temperature is used as the 
primary environmental input in the U.S Food and Drug 
Administration’s risk assessment for V. parahaemolyticus in 
oysters (USFDA, 2005). While the bacterium can only survive 
in saline waters, its concentrations at higher salinity levels 
vary widely due at least in part to the other (a)biotic conditions 
of the water column, including variability in oyster activity. 
It is difficult, however, to identify broadly applicable 
relationships between environmental determinants and 
abundance of the bacterium as many of these associations 
vary significantly across geographic regions, time periods, 
and by the genetic marker of interest (DePaola et  al., 2003; 
USFDA, 2005; Turner et  al., 2013; Johnson, 2015; Paranjpye 
et  al., 2015; Davis et  al., 2017). Previous findings in the 
PNW have laid the groundwork to characterize space–time 
residual dependencies for the relationships between 
environmental measures and V. parahaemolyticus abundance 
in the region (Paranjpye et  al., 2015; Flynn et  al., 2019). 
Statistical assessments accounting for spatial heterogeneity 
across the varied aquatic “zones” found in Washington state 
and sampling autocorrelation are also important to consider 
(Davis et  al., 2021; Namadi and Deng, 2021).
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Given the vibriosis health concerns in Washington, the 
economic impact on some of the largest oyster harvesters in 
the U.S. and expected increases in illness rates as higher latitude 
waters continue to warm (Baker-Austin et  al., 2017), further 
inquiry into the environmental determinants of Vibrio bacterium 
in the region is merited. This study utilizes a large dataset of 
regularly monitored harvesting sites and public shellfish collection 
beaches in the state of Washington. The dataset used in this 
study contains one of the most comprehensive assortments of 
oyster samples ever analyzed for V. parahaemolyticus and spans 
a considerable range of locations and years. The current dataset, 
therefore, allows for an in-depth examination of the independent 
associations between genetic markers of the bacterium and 
aquatic environmental measurements. This study specifically 
aimed to evaluate the relationships between absolute and relative 
abundance of V. parahaemolyticus strains carrying selected 
pathogenic genetic markers with temperature measures and 
salinity, while accounting for temporal autocorrelation, in 
Washington State.

MATERIALS AND METHODS

Oyster Sampling and Processing
Starting in 2005, the Washington Department of Health (WDOH) 
has regularly sampled Pacific oysters (Crassostrea gigas) in order 
to quantify the abundance of V. parahaemolyticus genetic 
markers. Intertidal shellfish harvesting beds were sampled each 
year, as frequently as once a week, between May and October 
from 2005 to 2019. Sampling was performed primarily in Hood 
Canal and South Puget Sound, with additional samples taken 
in the coastal bays and northern waters (the latter comprised 
of Samish Bay and Drayton Harbor; Figure  1).

Each sample consisted of 13–18 live oysters approximately 
10 cm in length. When feasible, oysters were collected during 
the receding tide (i.e., when no longer submerged). During 
collection, oysters were rinsed in seawater, sealed in a bag, 
and placed in a chilled insulated container kept at 2°C–8°C. One 
additional oyster was shucked, and its tissue temperature was 
recorded with a thermometer before being discarded. At the 

FIGURE 1 | Oyster growing areas by zone in Washington state. Figure shows growing areas (blue hatched polygons) in (A) Northern Waters including Samish Bay, 
(B) Hood Canal and South Puget Sound, and (C) Coastal Bays. Puget Sound and Hood Canal represent separate oyster “zones” for the purpose of this study.
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FIGURE 2 | Schematic illustration of base nested model structure. First level environmental conditions fixed effects are modified by higher level spatial and temporal 
random effects. Spatial random effect of Sample-Site-Year-Group (SSYG; j) is nested within effect of oyster growing zone (i) in Washington state. Temporal random 
effect of sampling week (h) is nested within random effect of year (g). Spatial and temporal model levels modify relationship between environmental conditions and 
concentrations of Vibrio parahaemolyticus genetic markers (tlh or trh or tdh or ratio of two markers, etc.) in the model. Water Temp consisted of two measurements 
(surface water temperature and shore water temperature).

time of collection, shoreline water, surface water (measured 
where depth exceeded 0.6 m), and ambient air temperature 
were recorded with a thermometer. Salinity from water samples 
was measured with a refractometer in parts per thousand (ppt). 
Oyster samples were processed within 24 h of collection. Whole 
oyster tissue within a sample was homogenized and 
V. parahaemolyticus genetic markers enumerated using a most-
probable-number (MPN) based real-time PCR assay. Details 
of this assay have been described previously (Glover, 2015; 
Flynn et  al., 2019), and the MPN-PCR analytical results have 
been validated. Briefly, hemolysin genetic markers tdh and tlh 
were targeted across all sampling years, with trh also being 
targeted beginning in 2014. The analytical limit of detection 
for all three markers was 0.3 MPN per gram (MPN/g) with 
the upper limit of quantification being 110,000 MPN/g. Note 
that the assay was limited to separately assessing the gross 
abundance of each genetic marker; therefore, it was unable to 
distinguish between bacterium strains and/or sequence types.

The current work included samples collected between 2005 
and 2019. Sampling in 2009 was unique in that a non-systematic 
sampling schema was used, and therefore samples from this 
year were excluded from the described analyses. After exclusion 
of 2009, our dataset resulted in 3,137 total oyster samples, 
entries with lab errors or data errors were excluded (9.5%), 
leaving 2,836 samples for the analysis. Sample sites were 
categorized based on the time and geographic location of 
sampling. Sample-Site-Year-Groups (SSYGs) were constructed 
based on sample sites in a specific year, for example the “Oyster 
Bay” sampling site was only sampled in years 2013, 2014, and 
2016 and the exact coordinates of sampling shifted between 
2014 and 2016. From this one sampling site, three SSYGs 
were created: Oyster Bay 2013, Oyster Bay 2014, and Oyster 
Bay 2016; with corresponding separate geocoordinates. Locations 
were nested within zone (i.e., South Puget Sound, Hood Canal, 
Coastal Bays, and the Northern Waters) (Figure  2). Time as 
a variable was measured as weeks and years, with 
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within-season successive weeks treated as a linear time series 
nested in their respective years. For example, 18 weekly entries 
in the Hood Canal zone in 2005 form a portion of the entire 
longitudinal Hood Canal dataset.

Variable Generation
Three genetic variables consisting of the ratios trh:tlh, tdh:tlh, 
and tdh:trh were constructed to assess the relative abundance 
of the pathogenic markers comparatively as done previously 
in Flynn et al. (2019). All genetic variables, including pathogenic 
ratios, were log10 transformed. Time-lagged variables (e.g., air 
temperature measured 1–4 weeks prior to a given sampling 
event) were constructed and compared to time-indexed variables 
(i.e., at the time of sampling). For samples earlier in the season, 
lagged variables were treated as missing data. Correlation 
matrices were examined to determine redundancy in lagged 
and indexed variables. Earlier season entries for time-lagged 
variables were imputed through the multiple imputation methods 
used for missingness (described below) based on historic data 
from other seasons. In this way, lagged entries were kept in 
the same sampling year and the imputed collection was in 
line with early/middle/late seasonal values.

Given the previously observed increase in total 
V. parahaemolyticus and pathogenic markers after prolonged 
exposure to air (Jones et al., 2016); an “exposure from surfacing” 
(EFS) variable was generated to characterize this association 
within the WDOH dataset. National Oceanic and Atmospheric 
Association (NOAA) tidal buoys and stations in Washington 
State were matched to WDOH sampling sites in order to 
determine the ambient air exposure times of sampled surfaced 
oysters. NOAA tidal data comprising of two pairs of high and 
low tide measurements per day were collected and aggregated 
using an application programming interface (NOAA, 2020). 
Tidal stations were matched to oyster sampling locations based 
on a non-Euclidean shortest water distance using the gdistance 
package in the R statistical computing environment (van Etten, 
2017; R Core Team, 2021). The TideHarmonics package was 
used to interpolate tide height at all timepoints, assuming a 
mixed-Semidiurnal tidal cycle pattern (Stephenson, 2016).

All oyster samples were collected at 0.61 m (2 feet) above 
sea-level. EFS, which can also be  described as the time a sample 
was exposed to ambient air before collection, was generated based 
on interpolated tidal heights. The variable was generated as follows:
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Where h is the tidal height at the time of sampling, t is 
the time of sampling, and t0 is the time that the oysters were 
exposed to ambient air.

Exploratory Analyses
Exploratory analyses included scatterplots and boxplots of each 
environmental and genetic variable to compare univariate and 
bivariate relationships across the spatial and temporal variables. 
Non-linear trends were identified using non-parametric local 
regressions (LOESSs). For exploratory analyses, genetic variable 

assay values below the limit of detection were halved and 
those above the upper limit of quantification were doubled.

Model Development and Selection
The statistical analyses and modeling for this study were 
performed in R statistical and graphical software version 4.0.5 
(R Core Team, 2021); modeling was performed with the nlme 
package (Pinheiro et  al., 2021). Plots were created using the 
ggplot2 package in R (Wickham, 2016), and maps were created 
using ArcGIS Pro software version 2.6.2.

Multiple imputation was used to impute data for: random 
missingness of environmental (9.66% missing) and genetic variables 
(19.04% missing), the nonrandom missing time-lagged data from 
early in the season, and missingness due to infrequent sampling 
at certain locations. To help improve model selection and 
performance. Absolute genetic variables were first imputed using 
a censored imputation method, which has been described previously 
(Davis et  al., 2021). Using the mice package in the statistical 
software R (Van Buuren and Groothuis-Oudshoorn, 2011), the 
overall dataset was then imputed 100 times, with each imputation 
including 10 iterations, using a multivariate imputation classification 
and regression tree (CART) model within years.

Mixed-effect time-series regression models were constructed 
to analyze the spatial and temporal relationship between 
environmental measures and abundance of V. parahaemolyticus 
genetic markers and their ratios (tlh, trh, tdh, trh:tlh, tdh:tlh, 
and trh:tlh). Univariate and multivariate models were constructed 
based on trends observed in the exploratory data analyses. 
Separate sets of models were developed for each genetic marker 
and ratio that included environmental factors (including EFS) 
along with nested spatial and temporal dependence (Figure 2). 
Univariate associations were first developed and followed by 
two- and three-way potential interactions between environmental 
factors, which were examined for inclusion or exclusion in 
multivariate models. Variance inflation factors (VIF) were 
calculated to determine redundance in environmental variables.

Models including different environmental covariates, spatial 
and temporal random effects (intercepts and slopes), and time-
lags were considered, including non-linear associations between 
the dependent and independent variables. Selection of final 
models was based on Bayesian Information Criterion (BIC) 
scores in addition to visual examination of covariate relationships. 
Variable imputation results were run in separate versions of 
each model. Model estimates, residuals, and BIC scores were 
pooled into a single model result, including fixed effect estimates, 
uncertainty and mixed effect variance (Grund et  al., 2018). 
The mitml package in R was used to generate “pooled parameters” 
including imputation model summaries, estimates, and plots 
(Grund et  al., 2019).

Residual temporal autocorrelation of residuals was detected 
in the models. To account for temporal autocorrelation, 
autoregressive–moving-average (ARMA) models were constructed 
for each of the six genetic outcomes based on the repeated 
weekly samples using the SSYG nested in zone model structure 
and were tested for lack of residual autocorrelation with a 
Breusch-Godfrey test (Breusch, 1978; Godfrey, 1978). In ARMA 
models, the autoregressive (AR) portion functions to estimate 
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associations between the dependent variable and its own past 
values while the MA (moving average) element is comprised 
of modeling error as a grouping of contemporary errors and 
errors at various times in the past. Each model was fit with 
a modified Hyndman-Khandakar algorithm based on nested 
mixed-model structure (Hyndman and Khandakar, 2008), and 
each model’s residual temporal autocorrelation was examined 
through the autocorrelation function (ACF) and partial ACF 
(PACF). Models were examined pre- and post-application of 
ARMA correlation structure to determine existence of and 
remaining autocorrelation in the models. Data were checked 
for spatial autocorrelation via examination of semivariograms 
of data using SSYGs as coordinates. The geographic distance 
matrix was constructed using the same non-Euclidian, water-
distance algorithm to account for proximity based on watershed 
geography as in the construction of the EFS variable.

Several sensitivity regression analyses were conducted on 
early/late sample dates (i.e., those falling in May or October), 
sites with less than three samples in a year, and different 
ranges of years and specific oyster harvesting zones. Regressions 
using categorical variables of temperature quartiles were also 
run to look for nonlinear or dependent relationships between 
temperature and genetic variables. After controlling for all other 
effects, a residual wave pattern was discerned in the inter-year 
trend of tdh, which was fit to a sinusoidal function of the 
linear model as: y = a · sin(x) + b · cos(x).

RESULTS

The dataset of 2,836 samples were taken at 91 sampling sites 
located across four zones in Washington state (Figure  1). There 
was a range of samples collected per year, with a minimum of 
68 samples in 2005 and a maximum of 353  in 2007 (Figure  3). 
The majority (95.9%) of samples were collected between June–
September, with the remaining samples collected in May or October 
(Figure  4). Sampling frequency by zone and year, with Hood 
Canal and Puget Sound being regularly sampled once and rarely 

twice per week, while Coastal Bays were sampled approximately 
every other week, and Northern Waters were sampled <1 per 
month (Figure  4). There were 288 unique SSYGs. Missing data 
(pre-imputation) was higher in the early and late weeks of the 
sampling season and was greater in the initial years of data 
collection (see Supplementary Figure S1 in the Supplementary 
material). The Coastal Bays and Northern Waters zones had a 
higher percentage of missing values than Puget Sound or Hood 
Canal, and tdh was the most common missing data value.

The range of environmental variables were: ambient air 
temperature (5.2, 35.4°C), surface water temperature (5.9, 
30.6°C), shore water temperature (9.9, 35.4°C), tissue temperature 
(3.3, 38.4°C), and salinity (0.6, 35.3 ppt) as seen in 
Supplementary Figure S2. All genetic variables had values 
below the limit of detection (<0.3 MPN/g; Ntlh = 9; Ntrh = 101; 
and Ntdh = 469). Only tlh had values above the upper limit of 
quantification (N = 4) while trh had a maximum observable 
value of 46,000 MPN/g and tdh a value of 930 MPN/g. The 
trh:tlh and tdh:tlh ratios ranged from 0 to 100%, while tdh:trh 
ranged from 0 to 330%. Additional descriptions of the 
environmental and genetic variables are listed in Table  1.

Air, tissue, and surface water temperatures showed similar 
seasonal (intra-annual) trends across years. Tissue temperature 
and air temperature were frequently higher in the Hood Canal 
and South Puget Sound. Surface water temperature displayed 
the same trend in all zones, although the Coastal Bays had 
cooler temperatures overall (Supplementary Figure S2). Shore 
water temperature had a markedly different distribution, with 
no systematic variation in the Hood Canal and South Puget 
Sound between May and August, and then decreasing in 
September and October; the Coastal Bays had an inverted 
relationship with temperatures dropping from May to October. 
Salinity was similar across years, outside of abnormally low 
salinity values in the first half of 2010. The Coastal Bays were 
the most saline zone overall (Supplementary Figure S2).

Overall, tdh abundance was over an order of magnitude 
lower than tlh and was particularly low in Northern Waters; 
trh was similar but its abundance was higher than tdh.  

A B

FIGURE 3 | Cumulative oyster sampling reported by (A) year and (B) zone.
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Unlike tdh and trh, tlh did not decrease in the later  
part of the growing season (September and October; 
Supplementary Figure S3). Negative trends for the genetic 
ratios were most prominent in the middle of the growing 
season, but the ratios were smaller in the early and late season, 
suggesting reduced tlh abundance compared to tdh or trh in 
cooler temperatures (Supplementary Figure S4).

All temperature measures were well-correlated with the highest 
correlations observed between tissue and air temp (r = 0.79), 
tissue and shore water temp (r = 0.76), and air and shore water 
temp (r = 0.68). All temperature measures were weakly positively 
correlated (r = 0.17–0.54) with tlh, trh, and tdh. Salinity was 
not correlated with temperature or any genetic variables. tlh, 

trh, and tdh were weakly positively correlated with one another. 
The genetic ratios were not correlated with temperature, salinity, 
or genetic variables (Supplementary Figure S5). As previously 
noted in Flynn et  al., 2019, we  checked for shore and surface 
collinearity, which revealed a high VIF, and so the former was 
excluded from our models (Supplementary Figure S6).

Exploratory analysis of ecological characteristics using LOESS 
identified non-linear relationships between tlh and trh with salinity 
and surface water temperature, and tdh with tissue temperature. 
Including these non-linear associations improved regression model 
fit for salinity (ΔBIC = 36.6), tissue temperature (ΔBIC = 20.5), and 
surface water temperature (ΔBIC = 40.7) compared to a model 
with only linear associations (Supplementary Figure S7). Correlation 

FIGURE 4 | Kernel density plots of weekly sampling across time of year, stratified by zone and year. Note that the estimations are used solely as a visualization tool 
and not for statistical smoothing, as the number of samples and sampling frequency were not consistent across years.

TABLE 1 | Descriptive characteristics of environmental and genetic variables including variation across sampling zones.

Characteristic Overall (N = 2,836)

Zones

Coastal Bays (N = 272) Hood Canal (N = 1,486)
Northern Waters 

(N = 190)
Puget Sound (N = 888)

Salinity (ppt) 27.0 [5.88] 29.0 [5.00] 25.0 [8.00] 27.2 [8.75] 28.2 [4.00]
Tissue Temp (°C) 20.0 [7.72] 17.2 [4.50] 20.4 [8.30] 18.7 [4.71] 21.1 [7.90]
Air Temp (°C) 17.7 [5.90] 16.1 [4.20] 17.8 [6.00] 17.0 [4.95] 18.2 [5.83]
Shore Water Temp (°C) 19.9 [4.70] 19.4 [3.50] 19.7 [4.80] 21.6 [6.30] 19.9 [4.60]
Surface Water Temp (°C) 18.3 [3.50] 17.8 [2.60] 18.5 [4.10] 17.3 [5.70] 18.4 [3.00]
tlh (MPN/g) 43.0 [426] 4.2 [19.3] 120 [921] 4.3 [37.7] 43.0 [421]
trh (MPN/g) 4.2 [22.3] 4.2 [14.1] 3.80 [22.6] 0.92 [3.84] 4.30 [22.1]
tdh (MPN/g) 0.3 [0.77] 0.36 [0.77] 0.3 [0.59] 0.3 [0.59] 0.36 [0.77]
tdh:tlh (ratio) 0.01 [0.06] 0.13 [0.36] 0.004 [0.02] 0.07 [0.10] 0.01 [0.05]
tdh:trh (ratio) 0.20 [0.50] 0.130 [0.37] 0.216 [0.97] 0.363 [0.35] 0.157 [0.38]
trh:tlh (ratio) 0.057 [0.21] 1.00 [0.59] 0.025 [0.10] 0.077 [0.10] 0.084 [0.22]

Table displays median of values and [Q3–Q1] for each characteristic of the overall dataset and stratified by harvesting zones.
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matrices of lagged environmental characteristics did not display 
redundancy between time-indexed and lagged variables as shown 
in Supplementary Table S1, and models’ BIC scores showed lagged 
salinity and air temperature measures to improve model fit when 
included in the model without their respective time-indexed values. 
For salinity in relation to the genetic markers, both 3- and 4-week 
lags improved model BIC scores but there was no noticeable 
difference between them. Therefore, only the 3-week lag was 
included in the model. Similarly for air temperature, 1- and 2-week 
lags were identified by lower model BIC and 1-week lags were 
utilized for the same parsimonious modeling.

The EFS variable EFS was not included in the final model 
as it was found to have no statistically significant association 
with any genetic marker in both univariate and multivariate 
models and did not demonstrate a mediating effect or interaction 
effect with any of the other environmental characteristics 
included in the model. Random slopes across independent 
variables were examined but were excluded due to model 
overfitting and failure of model convergence.

Fixed effects from regression models for tlh (a surrogate 
for total V. parahaemolyticus abundance), and pathogenic markers 
trh and tdh, are shown in Table 2 and Supplementary Figure S8. 
Each temperature variable displayed a statistically significant 
positive association in the univariate models for all three 
markers. Salinity at 3  weeks before the sampling event 
demonstrated a negative association with tlh and trh in the 
univariate models but not tdh. A non-linear association was 
observed between tlh and surface water temp where a statistically 
significant positive relationship began at 15°C and continued 
until 26°C before attenuating substantially. In contrast, there 
was a strong positive association between trh and surface water 
temperature, which was somewhat attenuated above 26°C. tlh 
and trh had non-linear relationships with salinity at 3-week 
lags, respectively, in which the negative relationship strengthened 
above 27 ppt. There was a threshold in the positive relationship 
between tdh and tissue temperature in that it was only observed 
above 20°C. All temperature associations became attenuated 

in the multivariate models for tlh, trh, and tdh. For surface 
water temperature, the trend observed was such that the 
association between both tlh and trh and surface water 
temperature above 26°C was no longer statistically significant. 
No statistically significant interaction was found between the 
temperature variables or with salinity (results not shown).

The ratios of trh in relation to total V. parahaemolyticus 
abundance (trh:tlh) and ratio of pathogenic strains in relation 
to each other (tdh:trh) had predictable associations with the 
environmental covariates given the associations observed for the 
absolute abundances. Therefore, the regression models for these 
two ratios are provided in Supplementary Table S2. Table  3 
shows the fixed effects from the univariate and multivariate 
regression models for the ratio of tdh in relation to total 
V. parahaemolyticus abundance (tdh:tlh). In contrast to the previous 
multivariate models, associations with tissue temperature and air 
temperature were not statistically significant in any of the ratio 
models. Surface water temperature, however, continued to have 
a significant, non-linear relationship with tdh:tlh but not with 
tdh:trh or trh:tlh. Overall, only the 3-week lagged salinity and 
surface water temperature variables were found to have pronounced 
associations with absolute and relative genetic marker abundance.

The random effects for all univariate and multivariate models 
are reported in Table 4 and Supplementary Table S3. The random 
effect for year was redudant with the inclusion of the SSYG 
random effect, and a nested region/SSYG random effect structure 
had the best model performance with the lowest BIC scores. 
There was minimal variation across SSYGs compared to zones, 
except for tdh (and to a lesser extent trh) where the random 
intercepts for both SSYG and zone were similar. When a temporal 
random intercept for week was incorporated into the models it 
resulted in overfitting, as samples were taken roughly a week 
apart and the models were singular. While random slopes for 
the environmental covariates were considered, none resulted in 
any noteworthy changes to model interpretation.

Residuals of each of the models showed statistically significant 
autocorrelation across weeks nested within years in both the 

TABLE 2 | Fixed effect estimates from univariate and multivariate regression models of tlh, trh, and tdh with environmental covariates.

log10 tlh log10 trh log10 tdh

Univariate Multivariate Univariate Multivariate Univariate Multivariate

Ecological characteristic

Salinity (ppt)–3 week lag – – – – 0.00 (0.00, 0.01) *
1–27 ppt −0.03 (−0.29, 0.23) 0.04 (−0.17, 0.26) −0.46 (−0.81, −0.11) −0.37 (−0.67, −0.07)

– –
27–35 ppt −0.61 (−0.91, −0.32) −0.26 (−0.50, −0.02) −0.90 (−1.32, −0.48) −0.49 (−0.85, −0.13)
Tissue Temp (°C) 0.07 (0.06, 0.08) 0.02 (0.01, 0.03) 0.09 (0.08, 0.1) 0.04 (0.02, 0.05) – –
3°C–20°C

– – – –
0.19 (−0.06, 0.45) −0.03 (−0.31, 0.25)

20°C–38°C 1.24 (1.01, 1.48) 0.75 (0.43, 1.06)
Air Temp (°C)—1 week lag 0.06 (0.05, 0.07) 0.03 (0.02, 0.04) 0.05 (0.04, 0.07) 0.03 (0.02, 0.04) – –
Surface Water Temp (°C) – – – – 0.06 (0.05, 0.08) 0.02 (0.01, 0.04)
6°C–15°C −0.13 (−0.66, 0.40) −0.17 (−0.64, 0.30)

2.91 (2.51, 3.32) 1.59 (1.15, 2.04)
– –

15°C–26°C 2.21 (1.71, 2.71) 1.40 (0.92, 1.89)
26°C–31°C 1.10 (0.11, 2.10) 0.64 (−0.25, 1.52) 2.06 (1.29, 2.83) 1.01 (0.30,1.71)

Results are displayed as the log-transformed, pooled parameter estimates of the model with associated 95% CIs. Reported associations are adjusted for region and year, as well as 
autocorrelation between weeks in the case of tlh and tdh. *Indicated null effect (0) and exclusion from multivariate model.
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ACF/PACF plots and by the Breusch-Godfrey test; therefore, 
each model displayed in Tables 2, 3 was further fit in a sensitivity 
analysis with ARMA terms (Table 5; Supplementary Figure S9). 
Applying residual structure reduced model, residual autocorrelation 
for each model but did not show change in regression associations. 
Residual semivariograms did not indicate any spatial dependence 
(Supplementary Figure S10). Given that exploratory analyses 
identified tdh abundance oscillating across years, another 
sensitivity analysis fit a sinusoidal trend to the yearly variation 
of tdh adjusting for previously included environmental 
characteristics (Table  6). Model fit improved with the addition 
of the sinusoidal parameters to the model (ΔBIC = 16), with a 
wave period of approximately 15 years (Figure  5).

Sensitivity analyses removing and including specific years 
of sampling revealed that for models using only post-2013 
data there was a more pronounced negative association between 
salinity and tlh and the positive association between tissue 
temperature and tdh strengthened. Early and late season 
exclusions did not substantially change model associations. 
Restricting the dataset to only repeatedly sampled SSYG’s 
resulted in a significant attenuation in the negative relationship 
between salinity and trh but a slight strengthening in the 
negative slope of the relationship between salinity and tlh. 
Restricting model associations by harvesting zone revealed 
differences in the effect size of salinity on the model, with a 
noticeable difference between the Coastal Bays and Northern 
Waters zones, and the Hood Canal and Puget Sound zones.

DISCUSSION

This analysis evaluated the relationships between environmental 
measures and genetic markers of V. parahaemolyticus using a 
large number of samples of Pacific oysters in the U.S. state 
of Washington. The analysis accounted for hierarchical spatial 
and temporal heterogeneity by including random effects in 

regression models. Several non-linear relationships were observed 
between environmental characteristics and V. parahaemolyticus 
genetic markers. The nested models created from the extensive 
WDOH dataset complemented by multi-step imputation indicate 
that there are differences in the magnitude of the associations 
for tlh and tdh:tlh across harvest zones and that genetic marker 
abundance experiences temporal autocorrelation (i.e., abundance 
from the previous week is indicative of abundance at the time 
of sampling). The nature of the temporal relationships between 
abundance and lagged ecological characteristics did not differ 
by zone. The utility of time-lagged measures was demonstrated 
in the modeling of the relationship between salinity and air 
temp and tlh and trh, but not tdh. Overall, these models provide 
greater insights into the variation of each of the genetic markers 
for V. parahaemolyticus in Washington, the potential larger 
ecological conditions that may be  affecting them, and the 
complexity of the estuarine ecosystems that V. parahaemolyticus 
and the pacific oyster inhabit in Washington state.

The constructed EFS variable was not associated with the 
abundance of any genetic marker. This was unexpected, since 
exposure to relatively warmer air and direct sunlight have 
been show in experimental settings to increase the abundance 
of Vibrio spp. in oysters (Nordstrom et  al., 2004; Jones et  al., 
2016). This null association is almost certainly not an indication 
of exposure time not increasing V. parahaemolyticus growth 
but instead likely due to NOAA tidal data not capturing the 
specific tidal fluctuations of the numerous inlets in the 
Washington state oyster growing environment (Ben-Horin et al., 
2022). The wide flat beaches have significant variation in where 
and how long oysters are exposed, and sample oyster gathering 
is not precise enough at this time to ensure oysters were 
sampled exactly when completely exposed, or at the same exact 
location every time. Incorporating specific, recurring sampling 
coordinates for sample sites and the use of reliable tidal 
dataloggers to monitor submersion and exposure cycles more 
precisely would likely better capture the true relationship of 

TABLE 3 | Univariate and multivariate associations between the tdh:tlh ratio with 
environmental covariates.

log10 tdh:tlh

Univariate Multivariate

Ecological characteristic

Salinity (ppt)—3 week lag – –
1–27 ppt 0.04 (−0.23, 0.31) 0.05 (−0.21, 0.31)
27–35 ppt 0.26 (−0.02, 0.55) 0.39 (0.11, 0.67)
Tissue Temp (°C) −0.03 (−0.04, −0.02) *
3°C–20°C
20°C–38°C – –
Air Temp (°C)—1 week lag −0.04 (−0.05, −0.02) −0.02 (−0.03, −0.01)
Surface Water Temp (°C) – –
6°C–15°C −0.08 (−0.60, 0.45) −0.02 (−0.53, 0.48)
15°C–26°C −1.40 (−1.90, −0.91) −1.17 (−1.65, −0.69)
26°C–31°C −0.66 (−1.70, 0.39) −0.56 (−1.53, 0.42)

Results are displayed as the log-transformed, pooled parameter estimates of the model 
with associated 95% CIs. Reported associations are adjusted for region and year, as 
well as autocorrelation between weeks.*Indicated null effect (0) and exclusion from 
multivariate model.

TABLE 4 | Model random effects for zone and sample site year group (SSYG).

Random effects log10 tlh log10 trh log10 tdh log10 tdh:tlh

Univariate
Salinity (ppt)

Random Intercept - Zone 0.33 0.05 0.04 0.26
Random Intercept - SSYG 0.41 0.13 0.14 0.44
Tissue Temp (°C)
Random Intercept - Zone 0.25 0.02 0.03 0.24
Random Intercept - SSYG 0.39 0.17 0.14 0.44
Air Temp (°C)
Random Intercept - Zone 0.31 0.04 0.03 0.26
Random Intercept - SSYG 0.40 0.14 0.14 0.45
Surface Water Temp (°C)
Random Intercept - Zone 0.32 0.12 0.04 0.26
Random Intercept - SSYG 0.33 0.17 0.16 0.38
Multivariate
Random Intercept - Zone 0.22 0.06 0.03 0.19
Random Intercept - SSYG 0.00 0.01 0.05 0.02

Estimate of random intercept effect size for univariate and multivariate models. Sample 
Site Year Groups were time and space matched e.g. Totten Inlet-2017.
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TABLE 6 | Univariate and multivariate sinusoidal function of tdh across years.

Model coefficients Univariate Multivariate

sin(2 * π * (t / total t in years)) 0.19 (0.11, 0.27) 0.20 (0.12, 0.28)
cos(2 * π * (t / total t in years)) 0.14 (0.06, 0.23) 0.06 (−0.03, 0.15)

Variable t represents time in model. Results are displayed as the log-transformed, 
pooled parameter estimates of the model with associated 95% CIs. Reported 
associations are adjusted for region and year and multivariate model is adjusted for all 
environmental covariates listed in Table 2.

FIGURE 5 | Sinusoidal trend of log tdh values across time. Plotted results of 
univariate model coefficients shown in Table 6.

exposure time and V. parahaemolyticus abundance accurately. 
The EFS variable did not account for weather patterns as it 
was prohibitively difficult to retrieve and summarize cloud 
cover data for the entire study area across all sampled summers. 
However, the modifying effect of solar radiation on oyster 
surfacing time likely plays an important role in 
V. parahaemolyticus growth in oyster tissue (USFDA, 2005; 
Sami et  al., 2022). Accounting for weather patterns in future 
analyses may alter the null association observed with EFS.

Tissue temperature exhibited a strong positive, albeit non-linear 
association with tdh, with no significant association observed 
below 20°C. As post-harvest oyster tissue temperature controls 
are a key piece of WDOH’s vibriosis control plan, identification 
of such a threshold for pathogenic growth should be  examined 
further (Nilsson et  al., 2019). An upper threshold limit for the 
association between surface water temperature and tlh was also 
reported in an analysis of a subset of the dataset used in this 
study (Flynn et  al., 2019); however, the full dataset identifies 

the threshold at a higher temperature (26 vs. 22°C). This difference 
could be due to the imputation of previously missing temperature 
values in this analysis, as the range of temperature values was 
extended in the complete dataset compared to previous subset 
of data that excluded sampling occasions with any missing data. 
A previously unidentified lower threshold in the tlh-surface 
temperature association was also observed around 15°C, which 
is consistent with the minimum required temperature for 
V. parahaemolyticus growth reported in laboratory and field 
settings (Urquhart et  al., 2016; Wang et  al., 2018). The positive 
association between surface water and trh also demonstrated an 
upper threshold at 26°C but with no lower threshold. This may 
be because V. parahaemolyticus strains that contain the trh marker 
continue to decline as water temperatures drop. The steeper 
association between trh and water temp compared to tlh indicates 
a risk of pathogenic V. parahaemolyticus having more rapid 
growth rates in warmer waters when compared to non-pathogenic 
bacteria. Notably, the relationship between surface water temperature 
and each of the genetic markers did not change in sensitivity 
analyses stratified by the four growing zones. This suggests 
consistency in this relationship across these ecologically diverse 
waters which were possibly due to random intercepts accounting 
for baseline differences in genetic targets. The inconsistency 
between strains of V. parahaemolyticus containing the tdh marker 
compared to tlh or trh in relation to water temperature had not 
previously been observed (Flynn et  al., 2019).

Salinity (lagged at 3-weeks) also demonstrated a non-linear 
negative relationship with tlh and trh with a threshold at 27 ppt, 
where the magnitude of the relationship strengthened and in 
the case of tlh became statistically significant. This non-linear 
relationship supports previous findings of a negative relationship 
between salinity and V. parahaemolyticus at high (greater than 
23 ppt) salinity levels (Davis et  al., 2017). Although previous 

TABLE 5 | Model variable temporal autocorrelation structure and residual 
significance.

ARMA (p,q) model Breusch–Godfrey test

Coefficient
Standard 

error
BG p value

Variable

tlh (MPN/g) – – 4.58 0.21

AR(1) 0.79 0.02 – –
MA(1) −0.38 0.03 – –
trh (MPN/g) – – 3.20 0.36
AR(1) 0.74 0.04 – –
MA(1) −0.40 0.05 – –
tdh (MPN/g) – – 2.72 0.44
AR(1) 0.79 0.03 – –
MA(1) −0.56 0.04 – –
trh:tlh – – 0.56 0.91
AR(1) 0.92 0.02 – –
MA(1) −0.65 0.03 – –
tdh:tlh – – 1.72 0.63
AR(1) 0.85 0.02 – –
MA(1) −0.52 0.03 – –
tdh:trh – – 4.81 0.19
AR(1) 0.85 0.03 – –
MA(1) −0.60 0.05 – –

Reported associations are adjusted for all environmental and genetic covariates as well 
as region and year. Nested autoregressive–moving-average (ARMA) model of 
multivariate models’ residuals for one (1) time step. Nonsignificant value of p indicates 
lack of statistical significance of autocorrelation of linear model error term.
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studies in Washington did not observe an association with salinity 
(Paranjpye et  al., 2015; Flynn et  al., 2019), complex non-linear 
relationships with salinity and V. parahaemolyticus have been 
found in other bodies of water (DePaola et  al., 2003; USFDA, 
2005; Johnson, 2015; Martinez-Urtaza et  al., 2016; Davis et  al., 
2017). Further, the previous PNW studies only considered salinity 
measurements at the time of sampling, whereas statistically 
significant relationships in this study were identified using a 
time-lagged measure of salinity. This suggests that the salinity 
of the harvesting water weeks before sampling may impact growth 
of V. parahaemolyticus in microbial ecological communities, 
possibly due to seawater intrusion diluting the existing population. 
The significant negative effect on overall abundance in saline 
waters over 27 ppt is in line with similar previous estimates 
(DePaola et al., 2000; Martinez-Urtaza et al., 2016) but our results 
show this relationship’s threshold varies by the zonal environment 
of the oyster. These associations are similar to salinity relationships 
observed in other environments such as in coastal waters near 
New  Zealand and Korea (Lee et  al., 2019; King et  al., 2020). In 
combination with salinity, surface water temperatures were the 
only two environmental characteristics that had a measurable 
effect on pathogenic vibrio growth when included in the models.
The temporal autocorrelations of each genetic marker and ratio 
were estimated using an ARMA model to account for any 
stationary stochastic process. The significant results at AR(1) 
and MA(1), each to the order of one time-step, indicate that 
the concentration of genetic markers at a specific site in a 
particular year are influenced by some unobserved moving 
average (likely a seasonal trend) as well as previous concentrations 
from that site (the autoregression). This outcome suggests a 
temporal relationship process of previous week’s influence on 
V. parahaemolyticus abundance for the current week. The 
sinusoidal curve function of tdh across years implies that some 
other long-term ecological process is not being captured by 
the measured environmental variables included in this analysis. 
The full sampling period of ~15 years would potentially indicate 
this trend was tied to a longer-time scale process such as the 
El Niño–Southern Oscillation (ENSO; Logar-Henderson et  al., 
2019) which it superficially resembles. Previous studies have 
linked the dissemination of pathogenic V. parahaemolyticus to 
the expansion and dynamics of the poleward propagation and 
the recession of El Niño ocean water in South America (Martinez-
Urtaza et al., 2008). This relationship could be due to increased 
precipitation occurring in ENSO years, but more research is 
needed to identify what process is taking place. Anomalously 
high heat led to a vibriosis outbreak in the PNW during the 
summer of 2020. Unfortunately, sampling in Washington was 
heavily impacted by the pandemic and so was not included 
in the current dataset. The models developed in this analysis 
can be  used to extrapolate to high temperatures in an attempt 
to predict V. parahaemolyticus levels in future climatic scenarios. 
The sinusoidal curve function observed for tdh abundance also 
appears to have predicted a high level of V. parahaemolyticus 
in 2020 and so may also inform future large-scale trends.

A limitation of this study was that although generally sampling 
at sites occurred no more than once a week, sampling intervals 
usually ranged between 3 and 12 days, which may have introduced 

some amount of measurement error. Therefore, differences in the 
“optimal” week lags should be understood to not specifically refer 
to 7-day increments. Oyster to oyster variability could also alter 
abundance estimates (e.g., if a single oyster remained inactive 
over a period of exponential growth). However, such variability 
should be  random and would therefore only bias the observed 
associations toward the null. The WDOH sampling design limited 
our ability to effectively isolate the temporal random effect size 
for individual years in our models. Each year, WDOH would 
move sampling locations, sometimes clustering in a specific region 
in successive years and sometimes moving significant distances. 
To account for this spatial “drift,” we constructed the SSYG variable 
to assign sampling locations to consistent sites within a year. When 
incorporating nested random effects, however, the SSYG confounded 
the year random effect and prevented us from including both 
sets of random effects in the models. However, as SSYG accounted 
for the year random effect, this created a more parsimonious 
model. Other studies have used techniques such as gradient boosting 
to assist in capturing complex non-linear associations such as 
those observed in our models (Ndraha et  al., 2021).

The associations described in this work are notable, but further 
environmental information, including measurements of water 
quality (e.g., oxygenation, turbidity, plankton abundance, and 
suspended solids), watershed precipitation, and land use, were 
not readily obtainable to include in the analysis due to logistical 
and financial restrictions in the WDOH sampling efforts. This 
missing information could explain some of the associations observed 
in this work as well as the residual temporal variation in the 
models. These additional environmental variables have been used 
for analyses of Vibrio spp. in the Chesapeake Bay and other 
regions and future work could incorporate such measurements 
if they could be  regularly gathered during oyster sampling in 
Washington state (Johnson et  al., 2012; Paranjpye et  al., 2015; 
Davis et  al., 2017; Nilsson et  al., 2019; Deluca et  al., 2020). 
Complementary datasets of these variables collected at different 
times and sampling locations in Washington State could also 
be  incorporated into a spatiotemporal prediction framework in 
order to provide additional inputs into the models described in 
the current work. This framework can also be  used to make 
more informed imputations for missing data in the existing WDOH 
shellfish dataset. These potential models could further utilize 
spatial–temporal statistics to forecast V. parahaemolyticus abundance 
in Washington state, providing a resource shellfish harvesters and 
risk managers can use to make informed food safety decisions. 
Incorporation of climate variables and patterns into models would 
likely improve fit and potential predictive utilization by FDA/
WDOH as has been done in other studies (Ndraha and Hsiao, 
2021; Ndraha and Hsiao, 2022).

Modernizing the FDA’s V. parahaemolyticus risk assessment 
based on improved statistical and analytical tools with more 
granular measurements of V. parahaemolyticus samples and 
environmental conditions, such as was done in this study, would 
allow for increasingly proactive risk management options. Regional 
heat anomalies, like that observed in the PNW in the summer 
of 2020, often drive risk and are linked to the most severe 
vibrioses outbreaks. The FDA V. parahaemolyticus risk assessment 
was intended to predict regular, sporadic cases and an important 
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extension of the assessment would be  to forecast outbreaks 
(USFDA, 2005). The findings in the current study and other 
recent studies should be  compared to the V. parahaemolyticus 
risk assessment assumptions and estimates in order to create a 
more perfect tool to manage pathogenic V. parahaemolyticus risk. 
Application of spatial imagery or dynamic and interactive models 
such as those utilized in the latest norovirus risk assessment 
(Pouillot et al., 2021) could be helpful for adapting the modeling 
approach of this paper to a future interactive V. parahaemolyticus 
risk assessment tool. Overall, increased focus on updating shellfish 
safety assessments in the PNW using new methods and advanced 
models is of increasing importance given more frequent intense 
heat events along with the rise in shellfish-borne illnesses.

CONCLUSION

Modeling the abundance of genetic markers of total 
V. parahaemolyticus (tlh) and potentially pathogenic strains (trh, 
tdh) in Pacific oysters from Washington State revealed strong 
associations with surface water temperature and salinity, as well 
as relatively smaller associations with both air and tissue temperature. 
Overall, this study confirmed the existence of a positive trend 
between water temperature and tlh with an upper threshold while 
also identifying a previously unobserved lower threshold. trh 
appeared to have a similar relationship with salinity and water 
temperature to tlh while tdh had a positive relationship with tissue 
temperature in warmer oysters (>20°C). This study also identified 
an interannual sigmoidal curve for tdh, suggesting long-term 
ecological variation that may impact the risk of vibriosis to oyster 
consumers. These findings show that mixed models incorporating 
spatial and temporal variation can reveal the intricate links between 
environmental measures and the potential growth of pathogenic 
strains of V. parahaemolyticus. We  recommend that subsequent 
models to explain V. parahaemolyticus estimations incorporate 
geostatistical techniques in order to identify zonal and sub-zonal 
differences across shellfish growing environments to better estimate 
the risk of shellfish-borne illness among consumers of Pacific oysters.
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