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Malic acid is a component of the rhizosphere exudate and is vital for crop growth.
However, little information is available about the effects of external applications of
malic acid on the nutrient absorption and quality of grape fruit, and few studies have
been performed on the relationship between the changes in the rhizosphere microbial
community and nutrient absorption and fruit quality of grapes after adding malic acid.
Here, the LM (low concentration of malic acid) and HM (high concentration of malic
acid) treatments comprised 5% and 10% malic acid (the ratio of acid to the total weight
of the fertilizer) combined with NPK fertilizer, respectively. Applying malic acid changed
the grape rhizosphere microbial community structure and community-level physiological
profile (CLPP) significantly, and HM had a positive effect on the utilization of substrates.
The microbial community structure in the rhizosphere of the grapes with added malic
acid was closely related to the CLPP. The N and P content in the leaves and fruits
increased after applying malic acid compared to the control, while K content in the fruits
increased significantly. In addition, malic acid significantly reduced the weight per fruit,
significantly increased soluble sugar content (SSC) and vitamin C content of the fruit,
and significantly improved the fruit sugar-acid ratio and grape tasting score. Moreover,
the principal component analysis and grape nutrient and fruit quality scores showed that
grape nutrients and fruit quality were significantly affected by malic acid and ranked as
5% malic acid > 10% malic acid > control. Pearson’s correlation heatmap of microbial
composition, nutrient absorption and fruit quality of the grapes showed that the grape
microbial community was closely related to grape nutrients and fruit quality. Adding
malic acid was positively correlated to Planococcaceae, Bacillaceae, Woeseiaceae
and Rhodobacteraceae. Furthermore, Planococcaceae, Bacillaceae, Woeseiaceae and
Rhodobacteraceae were closely related to grape nutrient absorption and fruit quality.
Bacillaceae and Woeseiaceae were positively correlated with total soluble sugar, while
Planococcaceae and Rhodobacteraceae were positively correlated with titratable acid.
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Hence, Bacillaceae and Woeseiaceae were the key bacteria that played a major
role in grape fruit quality and nutrient absorption after applying malic acid water-
soluble fertilizer.

Keywords: malic acid, CLPP, Illumina MiSeq sequencing, nutrient absorption, total soluble sugar, titratable acid,
Bacillaceae, Woeseiaceae

INTRODUCTION

Malic acid (2-hydroxybutanedioic acid) is a four-carbon
dicarboxylic acid (Dai et al., 2018) used as an enzyme substrate
(Bassham and Calvin, 1980; Buser-Suter et al., 1982; Casati
et al., 1999; Edwards et al., 2001) and a carrier of carbon-
reducing power to transfer carbon and reducing power between
the cytoplasm and organelles (Drincovich et al., 2001; Scheibe,
2004; Chen et al., 2019). Malic acid often links various metabolic
pathways in different organelles and participates in the regulation
of various metabolic reactions in plant cells (Outlaw and Oliver,
1977; Song et al., 2009). Malic acid in leaves is involved in the
regulation of stomatal opening and closing, which provides a
large number of counter ions to open the stomata and take up
K+. When the stomata are open, the concentration of malic acid
in the guard cells is six times higher than that when the stomata
are closed, while the K+ concentration increases two to four
times (Yao et al., 2020). In particular, malic acid has a biological
“phytohormone” effect, which promotes the growth and cold
resistance of seedlings (Lou et al., 1993; Lasa et al., 2002; Guo
et al., 2017).

Malic acid is a low molecular weight organic acid (LMWOA)
that is closely related to soil nutrient content and is a link
between carbon and nitrogen metabolism. The difference in
the ratio of added nitrate-nitrogen to ammonium-nitrogen
causes changes in the type and content of organic acids in
the rhizosphere (Lasa et al., 2002; Dong et al., 2004). It is an
important energy source for bacterial respiration located in the
nodules of nitrogen-fixing bacteria (Driscoll and Finan, 2010).
This acid provides most of the carbon skeleton for nitrogen
fixation (Rosendahl et al., 1990; Galvez, 2000; Schulze et al.,
2002; Vance and Heichel, 2003) and participates in the binding
of the oxygen diffusion barrier through an osmotic electrical
mechanism (Denison, 1998). Malic acid exchanges and chelates
with Fe and Al ligands, thereby reducing the adsorption of P
in the soil (Wang et al., 2016), resulting in a larger pool of
P in the soil solution that is available for plant uptake (Bolan
et al., 1994). Malic acid is secreted by potassium-dissolving
bacteria to dissolve potassium from aluminum potassium silicate
(Prajapati and Modi, 2012) and drives the surface chemical
reactions of acid hydrolysis and complex dissolution and
promotes the release of mineral potassium and soil potassium,
which increases the effective potassium content in the soil
(Wang and Wang, 2009).

As a plant rhizosphere exudate, malic acid has a screening
effect on the plant rhizosphere microbial community (Jones,
1998; Rudrappa et al., 2008; Berendsen et al., 2012; Chen et al.,
2012; Lakshmanan et al., 2012; Beauregard et al., 2013; Tan
et al., 2013; Yuan et al., 2018). When Arabidopsis was infected

with Pseudomonas syringae, the secretion of malic acid into
the rhizosphere increased, contributing to the proliferation of
Bacillus subtilis FB17 in the rhizosphere. Hence, the formation
of a B. subtilis biofilm is closely related to the presence of
malic acid (Berendsen et al., 2012; Chen et al., 2012). Bacillus
amyloliquefaciens T-5 is significantly induced by malic acid in a
chemotactic reaction and cluster movement but has no significant
effect on the formation of the biofilm (Tan et al., 2013). Moreover,
malic acid, citric acid, and oxalic acid are common rhizosphere
exudates of watermelon that induce the biocontrol bacterium
Paenibacillus polymyxa SQR-21 to drive toward the root. Malic
acid has a strong driving ability (Ling et al., 2011).

Therefore, malic acid has the potential to act as a synergist
of NPK water-soluble fertilizer. Research on exogenous malic
acid has mainly focused on its mitigation effect in response to
heavy metal stress (Ebrahimian and Bybordi, 2014; Chen et al.,
2020; Yao et al., 2020), and several studies have investigated the
preservation of fresh-cut Lilium cv. Brunello as well as growth
and flowering in Gazania and the uptake of K by tobacco
(Darandeh and Hadavi, 2012; Talebi et al., 2014; Han et al., 2016).
A previous study showed that malic acid combined with NPK
fertilizer significantly improved pear fruit quality and nutrient
uptake (Shao et al., 2022). However, the role of the microbial
community in this process is not clear.

In this study, Shine Muscat grapes were used as experimental
materials, conventional NPK fertilizer was used as the control,
and 5% and 10% malic acid combined with NPK fertilizer were
applied as treatments. We explored the relationship between the
grape rhizosphere microbial community, nutrient uptake and
fruit quality after adding malic acid to evaluate how malic acid-
driven microbial communities affect grape nutrients and fruit
quality and the prospect of applying malic acid as a synergist for
fruit quality improvement.

MATERIALS AND METHODS

Plant Material and Trial Information
The experiment was carried out in Kangcun, Xinxiang City,
Henan Province, China (35◦9′28′′N, 113◦42′17′′E) from April
to September 2019. The physical and chemical properties of
the 0–20 cm soil layers were measured according to Lu (2000)
and were as follows: organic matter 0.62%, nitrate-nitrogen
93.25 mg/kg, ammonium-nitrogen 59.20 mg/kg, available P
102.92 mg/kg, available K 213.4 mg/kg, pH 6.7 and electrical
conductivity 152.47 us /cm.

Shine Muscat grapes (Vitis labrusca × V. vinifera) were
planted in 2014 and arranged for the trials, and the spacing
between the rows was 2.5 m × 1.5 m. Malic acid and NPK
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fertilizer were formulated into water-soluble fertilizer solutions
in the proportions shown in Table 1. The fertilizers were applied
at the flowering, young fruit, fruit expansion and 20-days-before-
harvest stages during the grape growing period. Each treatment
had three repeated plots, and each plot had nine grape trees.
Each plot was arranged randomly. The fruits matured, the grapes
were sampled after they matured (16 bunches of grapes from each
treatment) and were brought back to the laboratory on September
20, 2019, for testing of various indicators. The rhizosphere soil
samples were collected 1 month after the last fertilization, and
three grape trees in each plot were randomly collected and
mixed into one sample. Then, three soil samples from each
treatment were processed, and a portion of each sample was dried
naturally, with the rest stored at −80◦C for the determination
of microbial indicators. KNO3, urea (NH4N2O) and KH2PO4
were supplied by Sinopharm Chemical Reagent Beijing Co., Ltd.
(Beijing, China).

Analysis of the Community-Level
Physiological Profile
According to Si et al. (2018), a community-level physiological
profile (CLPP) was constructed using the Biolog EcoPlate (Biolog
Inc., Hayward, CA, United States). Three soil samples from each
treatment were analyzed for the experiment. Briefly, 1 g of soil
and 99 mL of 0.85% sterilized NaCl solution were added to an
autoclaved triangular flask, and the flask was shaken at 120 rpm
for 30 min and then stored at 4◦C for 30 min. A total of 150 µL of
the resulting suspension was placed in each well, and the mixture
was incubated at 25◦C for 192 h. Then, the plates were read every
24 h using a Biolog MicroStation TM reader at both 590 and
750 nm (Guanghua et al., 2008) (Biolog Inc.).

The CLPP was constructed using Biolog Ecoplate (Biolog Inc.,
Hayward, CA, United States). The 120 h data collected during the
exponential phase were used to construct the CLPPs for the Shine
Muscat grape rhizosphere soil. Principal component analysis
(PCA) was used to assess differences relating to the different
amounts of malic acid added for the CLPPs, after normalizing the
absorbance associated with each substrate (Kolton et al., 2017).
Six C source groups were calculated to assess catabolic activity
with the different malic acid treatments (Jiang et al., 2013; Wu
et al., 2013).

Measurement of Soil Physicochemical
Properties
Nitrate (NO3-N) and ammonium (NH4-N) were measured
according to Lu (2000) by extracting with 1.0 M KCl at a

TABLE 1 | Fertilization program for the Shine Muscat grapes (kg/hm2/year).

Treatment NH4N2O-KH2PO4-KNO3

(kg/hm2/year)
Malic acid

(kg/hm2/year)

Control 130.89–221.89–283.23 0

LM, low concentration
of malic acid

130.89–221.89–283.23 33.47

HM, high concentration
of malic acid

130.89–221.89–283.23 70.67

1:10 soil-to-solution ratio, followed by measurements using an
automated discrete analyser (CleverChem 380, DeChem-Tech
Inc., Hamburg, Germany) (Si et al., 2018). According to the
method described by Lu (2000), available K was extracted in 1 M
ammonium acetate using atomic absorption spectrophotometry
(AAS; ZEEnit 700P; German Jena Analytical Instrument Co.,
Ltd., Jena, Germany), and available P was extracted from the
soil samples with 0.5 M NaHCO3 (pH 8.5) and measured
spectrophotometrically (Tu-1901; Persee Inc., Beijing, China).
The pH was measured using a pH meter (DPH-2; ATAGO,
Tokyo, Japan) at a 1:2.5 (w/v) ratio of soil to distilled water.
The electrical conductivity of the soil was measured using a
conductometer (DEC-2; ATAGO) at a 1:5 (w/v) ratio of soil
to distilled water (Lu, 2000). Total carbon (TC) and inorganic
carbon (IC) in the soil were determined using a carbon and
nitrogen analyser (Primacs100, Skalar, Breda, Netherlands). Soil
organic matter (SOM) = 1.724× (TC− IC).

Measurement of Leaf Photosynthetic
Indices
Leaf photosynthesis was measured using a CIRAS-3
instrument (PP systems, Amesbury, MA, United States) at
1 week before harvest.

Determination of Related Fruit Quality
Indices
Soluble solid content (SSC) was measured with a handheld digital
refractometer (PR-101, Atago, Tokyo, Japan). Vitamin C (Vc)
content was measured using the 2,6-dichlorophenol indophenol
method (Cao et al., 2007). Total soluble sugar (TSS) content was
determined by the anthrone method (Wang, 2006). Titratable
acid (TA) content was determined by the NaOH titration
method (Lu, 2000). The solid acid ratio (SAR) was calculated
as TSS/TA. The grape tasting score (TS) was evaluated using
a 10-point sensory evaluation according to a previous method
(Lin et al., 2020).

Determination of Plant N, P, and K
N, P, and K contents of the leaves and fruits were determined
by digestion with H2SO4-H2O2 (Lu, 2000). An automatic
discontinuous chemical analyser (Clever Chem 380) was used
to determine the N and P contents in leaves and fruit, and the
K content was determined using an AAS device (AAS ZEEnit
700P, Jena, Germany).

DNA Extraction and Polymerase Chain
Reaction Amplification
The DNA extracted from three independent soil samples
served as a template to amplify the 16S rRNA gene
and the internal transcribed spacer (ITS) region. The
V3-V4 hypervariable region of the bacterial 16S rRNA
gene (Wan et al., 2018) was amplified with the primer
pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The
fungal-specific primers (Jamil et al., 2020) ITS3F (5′-
GATGAAGAACGYAGYRAA-3′) and ITS4R (5′-TCCTCCG
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CYYATTGATATGC-3′) were employed to amplify the fungal
ITS region. Polymerase chain reaction (PCR) amplification of the
16S rRNA gene was performed as follows: initial denaturation
at 95◦C for 3 min, followed by 27 cycles of denaturing at 95◦C
for 30 s, annealing at 55◦C for 30 s, extension at 72◦C for 45 s,
a single extension at 72◦C for 10 min and ending at 4◦C. The
PCR mixtures contained 5× TransStart FastPfu buffer 4 µL,
2.5 mM dNTPs 2 µL, forward primer (5 µM) 0.8 µL, reverse
primer (5 µM) 0.8 µL, TransStart FastPfu DNA Polymerase
0.4 µL, template DNA 10 ng and ddH2O up to 20 µL. The
PCR reactions were performed in triplicate. The PCR product
was extracted after 2% agarose gel electrophoresis and purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, United States) according to the manufacturer’s
instructions and quantified using the QuantusTM Fluorometer
(Promega, Madison, WI, United States).

Polymerase chain reaction amplification of the ITS region was
performed using the KAPA HiFiHot Start ReadyMix PCR Kit
in a GeneAmp PCR System 9700 instrument (Life Technologies,
Carlsbad, CA, United States). The PCR reactions were conducted
in 25 µL total volume reaction cocktails consisting of 12.5 µL
of KAPA HiFi HotStart ReadyMix (2×), 0.25 µmol L-1 of each
primer and 10 ng of the DNA template. Amplification was
performed with the following thermal profile: 3 min of initial
denaturation at 95◦C followed by 27 cycles of denaturation
at 95◦C for 30 s, annealing at 55◦C for 30 s, extension at
72◦C for 30 s and a final extension at 72◦C for 10 min.
After purification, the PCR products were quantified using
the 2100 Bioanalyses System (Agilent Technologies Inc., Santa
Clara, CA, United States) (Mueller et al., 2000) and pooled at
equal concentrations.

Illumina MiSeq Sequencing and Data
Analysis
The purified amplicons were pooled in equimolar concentrations
and paired-end sequenced on an Illumina MiSeq PE300
platform (Illumina, San Diego, CA, United States) according
to the standard protocols of Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China). The raw reads were deposited
into the NCBI Sequence Read Archive database (Accession
Number: PRJNA786655).

The raw 16S rRNA gene and ITS region sequencing reads
were demultiplexed and quality-filtered using fastp version
0.20.0 (Chen et al., 2018) and merged with FLASH version
1.2.7 (Magoč and Salzberg, 2011) using the following criteria:
(i) the 300 bp reads were truncated at any site receiving an
average quality score < 20 over a 50 bp sliding window, and
truncated reads < 50 bp were discarded; reads containing
ambiguous characters were also discarded; (ii) only overlapping
sequences > 10 bp were assembled according to their overlapped
sequence. The maximum mismatch ratio of the overlap region
was 0.2. Reads that could not be assembled were discarded;
(iii) samples were distinguished according to the barcode
(Supplementary Table 1) and primers, and the sequence
direction was adjusted, the exact barcode was matched and two
nucleotide mismatches were used for primer matching.

Operational taxonomic units (OTUs) with a 97% similarity
cut-off (Stackebrandt and Goebel, 1999; Edgar, 2013) were
clustered using UPARSE version 7.1 (Edgar, 2013) and chimeric
sequences were identified and removed. The taxonomy of each
representative OTU sequence was analyzed using RDP Classifier
version 2.2 (Wang et al., 2007) against 16S rRNA and the ITS
database (e.g., Silva v138) with a confidence threshold of 0.7.

Data Analysis
Experiments were performed using a completely randomized
design. Statistical analysis was performed using SPSS Statistics
22 software (SPSS Inc., Chicago, IL, United States). All data
are expressed as the mean ± standard error (SE). One-way
analysis of variance and Duncan’s test were used to detect
differences. A P-value < 0.05 was considered significant. The
PCA was performed using Canoco 4.5 (Microcomputer Power,
Ithaca, NY, United States). Non-metric multidimensional scaling
(NMDS) was conducted and a Pearson’s correlation heatmap was
produced using an R package.

RESULTS

Microbial Community Composition and
Metabolism in the Grape Rhizosphere
Soil After Adding Malic Acid
The number of OTUs in the grape rhizosphere increased, while
the OTUs of specific bacteria and fungi decreased after adding
malic acid (Supplementary Figure 1). NMDS analysis and the
percentage of microbial composition were used to evaluate
the effect of applying malic acid on the microbial community
structure of the grape rhizosphere (Figure 1 and Supplementary
Figure 2). The NMDS of the microbial community revealed that
each treatment formed its own cluster, and the control cluster was
separated from the malic acid samples (LM and HM clusters).
Additionally, the LM cluster was close to the HM cluster in the
bacterial and fungal communities. These results demonstrate that
the grape rhizosphere microbial community structure changed
significantly after applying malic acid.

The PCA of the soil microbial CLPP showed that the malic
acid treatments affected the functional structure of the soil
microbial community (Figure 2). Two PCs accounted for 85% of
the total variation and each treatment formed its own cluster. The
control cluster was close to the LM cluster, and distributed on the
negative axis of PC1, whereas the HM cluster was farther away
and distributed on the positive axis of PC1. However, this was
significantly different from the NMDS analysis of the microbial
OTUs by ANOSIM (p = 0.001).

The use of six substrate types (polymers, carbohydrates,
phenolic compounds, carboxylic acids, amino acids and amines)
with different malic acid applications is shown in Supplementary
Figure 3. The results show that utilization of the six substrate
types by the microbial community changed significantly under
the HM treatment (p < 0.05). Utilization of the six substrate
types by the grape rhizosphere microbial community increased
with an increase in the amount of malic acid added. The
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FIGURE 1 | NMDS plots showing differences based on Bray-Curtis distance in the grape rhizosphere microbial community structure after applying different amounts
of malic acid. Left: bacterial community. Right: fungal community.

utilization intensity of HM for the six major carbon sources was
significantly higher than that of LM and the control, of which
the utilization intensity for phenols was the most significant.
Moreover, HM had a positive effect on substrate utilization.

Pearson’s correlation heatmap between bacterial composition
and microbial carbon shows that Gemmatimonadetes and
Firmicutes were positively correlated with utilization of
the six carbon sources, among which Gemmatimonadetes,
Firmicutes and amines were extremely significantly positively
correlated, with correlation coefficients of 0.85 (p = 0.003)
and 0.81 (p = 0.008), respectively (Supplementary Table 2).
Patescibacteria and Sumerlaeota were significantly negatively
correlated (p < 0.05) with the utilization of the six carbon
sources. The correlations between Patescibacteria and polymers
and amines were −0.7 (p = 0.035) and −0.67 (p = 0.048), while
the correlations between Sumerlaeota and phenols, amines, and

FIGURE 2 | Effect of malic acid on carbon utilization by the grape rhizosphere
microbial community. PCA plot of carbon substrate utilization patterns after
the addition of malic acid.

carbohydrates were −0.68 (p = 0.046), −0.7 (p = 0.037) and
−0.69 (p = 0.039), respectively (Supplementary Table 2).

Pearson’s correlation heatmap between fungal composition
and microbial carbon metabolism showed that Mortierellomycota
was negatively correlated with microbial carbon metabolism, and
significantly negatively correlated with polymers, carbohydrates,
carboxylic acids and amino acids, with correlation coefficients
of −0.85 (very significant, p = 0.004), −0.7 (p = 0.036), −0.71
(p = 0.034) and −0.72 (p = 0.029), respectively (Figure 3
and Supplementary Table 3). Monoblepharomycota was
significantly positively correlated with polymers, carbohydrates
and amino acids, with coefficients of 0.71 (p = 0.033), 0.67
(p = 0.048) and 0.76 (p = 0.018), respectively (Figure 3
and Supplementary Table 3). Blastocladiomycota was very
significantly positively correlated with phenols (0.82, p = 0.007)
and amines (0.84, p = 0.005), and significantly positively
correlated with carbohydrates (0.77, p = 0.016), carboxylic acids
(0.75, p = 0.02) and amino acids (0.67, p = 0.047) (Figure 3 and
Supplementary Table 3).

Nutrient Contents of the Grape
Rhizosphere Soil, Leaves and Fruit After
Adding Malic Acid
As shown in Table 2, the rhizosphere soil NO3-N trended
downward with increased application of malic acid, and that
under the LM treatment was significantly lower than the
control. In contrast, available P content trended upward, but no
significant difference was observed between the treatments. NH4-
N content increased first and then decreased, and that under the
LM treatment was significantly higher than that under the HM
treatment and in the control. No significant difference in available
K content was observed among the treatments.

There were no significant differences in grape soil pH between
the LM, HM, and control samples. The SOM content and EC
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FIGURE 3 | Pearson’s correlation heatmap showing the relationship between microbial composition and metabolism at the phylum level. Left: bacterial community.
Right: fungal community. **Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.

TABLE 2 | Nutrient contents of the grape rhizosphere soil, leaves, and fruits with different amounts of added malic acid.

Sample Source Nutrient indicators Control LM HM

Soil (mg/kg) NO3-N 93.25 ± 5.46a 76.98 ± 2.91ab 61.17 ± 11.55b

NH4-N 14.8 ± 1.6b 24.13 ± 2.24a 10.62 ± 1.05b

Available P 102.92 ± 4.47a 117.15 ± 7.76a 119.4 ± 9.34a

Available K 563.07 ± 22.43a 538.48 ± 17.59a 545.06 ± 16.85a

Leaf (mg/g) N 21.14 ± 0.15a 22.01 ± 0.34a 21.78 ± 0.22a

P 1.94 ± 0.05a 2.07 ± 0.07a 2.18 ± 0.14a

K 8.75 ± 0.25a 9.77 ± 0.23a 8.74 ± 0.82a

Fruit (mg/g) N 4.85 ± 0.19a 5.46 ± 0.45a 5 ± 0.22a

P 1.11 ± 0.03a 1.32 ± 0.12a 1.39 ± 0.07a

K 12.58 ± 0.16b 14.59 ± 0.71a 14.98 ± 0.47a

Values are presented as the mean ± SE. Different lowercase letters in the same row indicate significant differences (p < 0.05) between treatments with or without the
addition of malic acid based on one-way analysis of variance (ANOVA).

value were significantly higher in the LM samples than in the
control and HM samples (with SOM being 132.84% higher under
LM vs. the control; Supplementary Table 4). The LM and HM
treatments significantly increased the net photosynthetic rate
(Pn) of leaves. The LM treatment significantly increased stomatal
conductivity (Gs) and the water utilization rate (WUE) compared
to the control (Supplementary Table 5).

The leaf nutrient analysis showed that although there was
no significant difference between the treatments, the N and P
contents of the LM and HM leaves (except the K content of HM
leaves) tended to be higher than those of the control. In addition,
NPK content in the fruit trended upward with increased addition
of malic acid, and the K content in the LM and HM fruits was
significantly higher than that of the control.
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TABLE 3 | Fruit quality of grapes exposed to different amounts of added malic
acid.

Fruit quality indicators Control LM HM

Weight per fruit (g) 9.56 ± 0.35a 7.63 ± 0.16b 6.72 ± 0.23c

TSS (%) 12.73 ± 0.25b 22.12 ± 0.53a 21.91 ± 0.13a

Vc (100mg/g) 2.53 ± 0.28b 4.25 ± 0.53a 4.18 ± 0.24a

SSC (%) 18.07 ± 0.31b 21.7 ± 0.92a 22.16 ± 0.81a

TA (%) 0.56 ± 0.01b 0.55 ± 0.03b 0.63 ± 0.01a

Solid-acid ratio 32.08 ± 0.28b 39.48 ± 0.42a 35.02 ± 1.46b

TS 7.48 ± 0.31ab 8.28 ± 0.05a 7.28 ± 0.3b

Values are presented as the mean ± SE. Different lowercase letters in the same
row indicate significant differences (p < 0.05) between treatments with or without
the addition of malic acid based on one-way ANOVA.

FIGURE 4 | PCA plot showing the effect of adding different amounts of malic
acid on grape nutrient absorption and fruit quality.

Grape Fruit Quality After Adding Malic
Acid
As shown in Table 3 and Figure 4, the quality of grape fruit
was obviously affected by malic acid. Weight per fruit (WPF)
decreased significantly as the amount of malic acid added was
increased. However, the TSS, Vc, and SSC in the fruit increased
significantly after adding malic acid, but no significant differences
were observed between LM and HM. In addition, TA of the fruits
with HM was significantly higher than that of LM and the control.
The solid acid ratio (SAR) and TS of the fruits with LM were
significantly higher than those of HM and the control.

As shown in Figure 4, the PCA of nutrient absorption and
fruit quality showed that the PC1 and PC2 scores were 81.3% and
10.8%, respectively, and each treatment formed its own cluster.
Adding malic acid obviously changed the nutrient absorption
and fruit quality of the grapes. The control and malic acid
treatments (LM and HM) were located on the positive and
negative axes of PC1, respectively. However, the difference in
malic acid was mainly reflected in PC2; HM was distributed
on the positive axis of PC2, and LM was distributed on the
negative axis of PC2. Additionally, the comprehensive score
results of grape nutrient absorption and fruit quality showed that
LM > HM > control (Table 4).

In summary, although the malic acid treatment reduced WPF,
and the high-concentration treatment (HM) risked a reduction in
yield, the low-concentration (LM) treatment improved nutrient

absorption capacity and fruit quality, resulting in the best taste
and the highest nutrient and fruit quality scores.

Nutrient Absorption and Fruit Quality of
the Grapes Were Closely Related to the
Rhizosphere Microbial Community
Pearson’s correlation heatmap (Figure 5) shows that the
environmental factors of EC, pH, SOM, and added malic
acid were closely related to the composition of the bacterial
and fungal communities. The amount of added malic acid
was very significantly positively correlated with Firmicutes and
Blastocladiomycota, with coefficients of 0.798 (p = 0.01) and
0.836 (p = 0.005) (Supplementary Tables 6, 7), respectively.
In particular, the amount of added malic acid was very
significantly negatively correlated with Patescibacteria, with a
correlation coefficient of −0.87 (p = 0.002) (Figure 4 and
Supplementary Table 6). Soil OM was significantly positively
correlated with Deinococcota, Verrucomicrobiota, Sumerlaeota
and Abditibacteriota, and had a very significant relationship with
Deinococcota, with a correlation coefficient of 0.822 (p = 0.006),
and a significant negative correlation with Myxococcota (Figure 4
and Supplementary Table 6). EC had a closer relationship
with the bacterial communities than pH and a very significant
positive correlation with Deinococcota, with a coefficient of
0.808 (p = 0.008), and a very significant negative correlation
with Entotheonellaeota, with a correlation coefficient of −0.815
(p = 0.007). The fungus Rozellomycota was significantly positively
correlated with OM, with a coefficient of 0.775 (p = 0.014).

As shown in Figure 5, the bacterial community components
were closely related to rhizosphere soil nitrogen content
(ammonium-nitrogen and nitrate-nitrogen). In particular,
Proteobacteria, Gemmatimonadota, Firmicutes and Nitrospirota
were very significantly negatively correlated with nitrate-nitrogen
content, with coefficients of −0.934 (p = 0), −0.837 (p = 0.005),
−0.881 (p = 0.002) and −0.829 (p = 0.006), respectively
(Supplementary Table 6). Studies on the nutrient and microbial
community composition of grape leaves and fruits have shown
that grapes are closely related to absorption of the nutrient
element potassium. Leaf K content was negatively correlated
with Monoblepharomycota (Supplementary Table 7, r = −0.754,
and p = 0.019) and positively correlated with Bdellovibrionota,
with a correlation coefficient of 0.703 (p = 0.035). Fruit K content
was negatively correlated with Patescibacteria and Calditrichota,
with correlation coefficients of −0.764 (p = 0.017) and −0.738
(p = 0.023), respectively.

Pearson’s correlation heatmap analysis of the fruit quality
bacterial community showed that the SAR, TS and WPF
were closely related to the bacterial community (Figure 6
and Supplementary Table 8). In particular, TS was closely
related to the bacterial and fungal communities, with a very
significant negative correlation with Gemmatimonadota
and Myxococcota, and correlation coefficients of −0.82
(p = 0.007) and −0.863 (p = 0.003), respectively, in the
bacterial community, and a very significant positive correlation
with Sumerlaeota, with a correlation coefficient of 0.836
(p = 0.005). TS was very significantly negatively correlated with
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TABLE 4 | Comprehensive results of PCA on the effect of adding different amounts of malic acid on nutrient absorption and fruit quality in grape.

Treatment Principal component
score 1

Principal component
score 2

Principal component
score 3

Principal component
score 4

Comprehensive
score

Rank

Control 1 −3.31 −0.19 0.05 0.04 −1.94 8.00

Control 2 −2.91 0.28 0.88 0.07 −1.50 7.00

Control 3 −3.54 −0.39 −0.26 0.32 −2.12 9.00

LM1 2.02 0.79 1.24 −0.44 1.44 2.00

LM2 1.80 −1.12 1.67 −1.34 0.92 3.00

LM3 1.63 2.70 0.21 1.20 1.59 1.00

HM1 1.81 −0.49 −0.99 0.95 0.92 4.00

HM2 1.98 −2.38 −0.55 1.00 0.73 5.00

HM3 0.51 0.80 −2.25 −1.79 −0.04 6.00

FIGURE 5 | Pearson’s correlation heatmap showing the relationship between microbial composition, environmental factors and nutrient content at the phylum level.
Left: bacterial community. Right: fungal community. MA, malic acid; OM, organic matter; EC, electrical conductivity; LN, leaf nitrogen; LP, leaf phosphorus; LK, leaf
potassium; FN, fruit nitrogen; FP, fruit phosphorus; FK, fruit potassium. **Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.

Chytridiomycota and Glomeromycota in the fungal community
with correlation coefficients of −0.86 (p = 0.003) and −0.86
(p = 0.003), respectively.

Firmicutes had a significant positive correlation with TA and
TSS and a significant negative correlation with WPF (Figure 6).
Patescibacteria was negatively correlated with TSS, SSC and
Vc, with correlation coefficients of −0.867 (p = 0.002), −0.773
(p = 0.015) and −0.813 (p = 0.008), respectively, and a very
significant positive correlation with WPF, with a correlation
coefficient of 0.847 (p = 0.004). Calditrichota was significantly
negatively correlated with TSS and SAR (r =−0.872 and−0.723,

p = 0.002 and 0.028, respectively), and significantly positively
correlated with WPF (r = 0.748, p = 0.02).

The increase in the ratio of the fungi Mortierellomycota and
Blastocladiomycota reduced fruit quality. Mortierellomycota had
a significant negative correlation with TSS, SSC and Vc, while
Blastocladiomycota had a very significant positive correlation
with TA, and a very significant negative correlation with WPF,
with correlation coefficients of 0.814 (p = 0.008) and −0.802
(p = 0.009), respectively. The increase in the Rozellomycota ratio
had the potential to improve fruit quality, which was significantly
positively correlated with SAR and TS.
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FIGURE 6 | Pearson’s correlation heatmap showing the relationship between microbial composition and grape fruit quality at the phylum level. WPF, weight per fruit;
SSC, soluble solid content; Vc, vitamin C; TSS, total soluble sugar; TA, titratable acid; TS, grape tasting score; SAR, solid-acid ratio (TSS/TA). **Correlation is
significant at the 0.01 level. *Correlation is significant at the 0.05 level.

The nutrient absorption and fruit quality of the grapes
were significantly affected by the bacterial community at
the family level (Figure 7 and Supplementary Tables 8, 9).
Adding malic acid was significantly positively correlated with
Planococcaceae (p = 0.008), Bacillaceae (p = 0.047), Woeseiaceae
(p = 0.012) and Rhodobacteraceae (p = 0.01), and the correlation
coefficients were 0.78, 0.84, 0.79 and 0.8, respectively. In
contrast to the malic acid-added treatments, nitrate-nitrogen was
extremely significantly negatively correlated with Planococcaceae,
Bacillaceae, Woeseiaceae and Rhodobacteraceae with correlation
coefficients of −0.88 (p = 0.002), −0.9 (p = 0.001), −0.82
(p = 0.006) and −0.95 (p = 0), respectively. Similar to the malic
acid-added treatments, the P contents of leaves and fruits were
significantly positively correlated with Planococcaceae (r = 0.68
and 0.81, and p = 0.045 and 0.008, respectively) and Bacillaceae
(r = 0.75 and 0.77, and p = 0.021 and 0.016), and soil available P
content was significantly positively correlated with Woeseiaceae
(r = 0.77, and p = 0.015) and Rhodobacteraceae (r = 0.73, and
p = 0.026). Fruit K content was significantly positively correlated
with Bacillaceae (r = 0.67, and p = 0.049) and Woeseiaceae
(r = 0.76, and p = 0.018). Therefore, Planococcaceae, Bacillaceae,
Woeseiaceae and Rhodobacteraceae were related to the malic
acid treatments and played an important role in the nutrient
absorption of grapes.

Furthermore, contrary to malic acid, Planococcaceae,
Bacillaceae, Woeseiaceae and Rhodobacteraceae all had
significant negative correlations with WPF, with correlation

coefficients of −0.75 (p = 0.019), −0.84 (p = 0.005), −0.84
(p = 0.005) and −0.8 (p = 0.009), respectively. Bacillaceae
and Woeseiaceae were significantly positively correlated with
TSS, with correlation coefficients of 0.72 (p = 0.028) and 0.84
(p = 0.005), while Planococcaceae and Rhodobacteraceae were
significantly positively correlated with TA (r = 0.75 and 0.71,
p = 0.021 and 0.033, respectively), and the proliferation of
Bacillaceae and Woeseiaceae increased the TSS of fruit exposed
to added malic acid.

DISCUSSION

As an important intermediate product of many metabolic
processes in plants, malic acid links multiple metabolic pathways
in cells (Fernie and Martinoia, 2009) and plays an important
physiological function during plant growth. In addition, malic
acid, as one of the main exudates of the plant rhizosphere, affects
the composition of the rhizosphere microbial community and
soil nutrient cycling.

The Microbial Community in the Grape
Rhizosphere Was Altered by Malic Acid
Adding malic acid affected the pH of the soil, which, in turn,
affected the soil microbial community. In addition, it served
as a carbon source to stimulate and screen the soil microbial
communities. However, the effects of 5% and 10% malic acid
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FIGURE 7 | Pearson’s correlation heatmap showing the relationships between bacterial composition, fruit quality and nutrient content at the family level. MA, malic
acid; OM, organic matter; EC, electrical conductivity; LN, leaf nitrogen; LP, leaf phosphorus; LK, leaf potassium; FN, fruit nitrogen; FP, fruit phosphorus; FK, fruit
potassium; WPF, weight per fruit; SSC, soluble solid content; Vc, vitamin C; TSS, total soluble sugar; TA, titratable acid; TS, grape tasting score; SAR, solid-acid
ratio. **Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.
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combined with NPK fertilizer on soil pH were not significant, and
this was consistent with research on peach and pear rhizosphere
soil after adding malic acid (Shao et al., 2022). Therefore, malic
acid as a carbon source stimulates and screens the soil microbial
community, which is the main reason why it affected the grape
rhizosphere microbial community.

Malic acid, a major organic acid in root plant secretions,
is selectively secreted and effectively signaled to beneficial
rhizosphere bacteria, regulating root metabolites during the
recruitment of beneficial microorganisms, which emphasizes
the breadth and sophistication of plant-microbe interactions
(Rudrappa et al., 2008). The secretion of malic acid into the
rhizosphere of three emergent plant species has a significant
negative correlation with ammonia-oxidizing bacterial activity
(Chen et al., 2021). Malic acid induces a stronger chemotactic
response and swarming motility of Bacillus amyloliquefaciens
than citric acid, succinic acid or fumaric acid, which produces
a variety of antibiotics with broad-spectrum activity against
different plant pathogens, thereby inducing plant host system
resistance (Basi et al., 2006; Chen et al., 2009; Arrebola et al.,
2010; Ramarathnam et al., 2010; Tan et al., 2013). Additionally,
malic acid in the presence of a pathogen recruits the beneficial
bacterium Bacillus subtilis FB17 to Arabidopsis roots (Rudrappa
et al., 2008). Similarly, we revealed that the amount of added
malic acid was extremely significantly positively correlated
with Bacillaceae in the grape rhizosphere. Furthermore, malic
acid and citric acid in watermelon root exudates, which are
intermediate products of the tricarboxylic acid (TCA) cycle, i.e.,
also significantly induce Paenibacillus polymyxa SQR-21 motility
(Ling et al., 2011). Hence, malic acid, as the main organic acid
in the rhizosphere exudate, is the second most preferred carbon
source for organisms, such as Bacillus subtilis and Azospirillum
brasilense (Bashan and de-Bashan, 2002; Meyer et al., 2011; Rekha
et al., 2018). Malic acid and citric acid released from tomato roots
attract Pseudomonas fluorescens strains (Weert et al., 2002; Liu
et al., 2020).

The bacterial community was more sensitive to malic acid
than the fungal community. In structuring rhizosphere microbial
communities with different root exudates, differences in fungal
community structure have been attributed to citric acid and
differences in bacterial community structure have been attributed
to cisaconitic, citric and malic acids (Dennis et al., 2010).

Grape Fruit Nutrient Absorption Capacity
and Fruit Quality Improve in the
Presence of Malic Acid
Soil OM is a dynamic nutrient storage medium that provides
macronutrients to produce protein in plants through soil
biota activities (Garcia-Pausas and Paterson, 2011; Wood
et al., 2018). A low malic acid treatment stimulates the
microorganisms and primes the soil organic carbon in a
nutrient-poor system (Chowdhury et al., 2014). Hence, the SOM
content was significantly increased by 5% malic acid compared
with the control.

Malic acid was negatively correlated with NO3-N in the
emergent plant rhizosphere of a constructed wetland in northern

China (Tan et al., 2013). As the amount of malic acid added
increased in the current study, the NO3-N content in the
grape rhizosphere decreased and was significantly reduced by
10% malic acid combined with the NPK fertilizer. Additionally,
absorption of NH4-N was closely related to ammonium-nitrogen
content. Soil NH4-N content increased significantly after adding
5% malic acid combined with the NPK fertilizer. The absorption
of NH4-N upregulates the synthesis of malic acid and oxaloacetic
acid by promoting the activities of malate dehydrogenase and
phosphoenolpyruvate carboxykinase (Britto and Kronzucker,
2005; Wang et al., 2021). Thus, root cytosol alkalinization
induced by NH4-N uptake distinctly enhanced the activities of
phosphoenolpyruvate carboxylase and malate dehydrogenase but
reduced malic enzyme activities (Xu et al., 2021).

Malic acid, as one of the LMWOAs, increases plant-available
P fractions by solubilizing inorganic P fractions, which are
virtually insoluble, retarding the reaction of fertilizer P with
soil components and decreasing the relative saturation of metal
ions in solution (Harrold and Tabatabai, 2006; Pavinato et al.,
2008; Miller and Fox, 2011; Oral and Uygur, 2018). In addition,
plants produce a series of protective mechanisms when exposed
to a phosphorus deficiency by secreting small molecules, such as
malic acid, into the rhizosphere (Ozawa et al., 1995; Ascencio,
1997; McGrail et al., 2021). Although the ability of malic acid to
complex with metal ions is weaker than that of dicarboxylic acid
and TCA (McGrail et al., 2021), malic acid combined with NPK
fertilizer increased soil available phosphorus content, thereby
increasing the phosphorus content of leaves and fruits, and
ultimately increasing the absorption of phosphorus by grapes.

K is an essential macronutrient for plant growth that
plays important roles in various metabolic processes involving
protein synthesis, photosynthesis, enzymes and resistance to
pests and diseases (Prajapati and Modi, 2012). Potassium is
solubilized from potassium-aluminum silicate minerals through
the secretion of different organic acids, such as malic acid and
citric acid, by potassium-dissolving bacteria (Prajapati and Modi,
2012). Although no significant difference was observed in the
results, the available K content of the grape rhizosphere soil with
added malic acid was lower than that of the control, while leaf
K content in the 5% malic acid treatment was higher than that
in the other treatments. However, regardless of the 5% and 10%
malic acid combined with the NPK fertilizer, the K content of
fruits was significantly higher than that of the control, indicating
that malic acid promoted the absorption of potassium by grapes
and contributed to the accumulation of potassium in fruits.
Secretion of malic acid into the rhizosphere is strongly affected
by potassium status (Freeman, 1967). Moreover, the combination
of potassium nutrition and exogenous organic acids improves
the absorption of iron by monocots and dicots and mediates
iron-biofortified crops (Awad-Allah and Elsokkary, 2020).

Malic acid is stored in vacuoles, constituting a major carbon
pool and a potential substrate for respiration (Blanke and Lenz,
1989), but is also the predominant organic acid associated with
taste, flavor and juice quality in fruit (Yao et al., 2020). Malic
acid promotes plant growth by increasing chlorophyll content
and mitigating stress damage to photosynthetic structures,
thereby significantly increasing plant biomass (Chen et al., 2020).
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Photosynthetic assimilates are mainly used for fruit growth
during the early stage of fruit development, and the sugar
in the fruit accumulates 2 weeks after fruit expansion stops,
leading to an increase in SSC (Long et al., 2006). Adding malic
acid potentially improved the photosynthetic capacity of grape
leaves. We speculate that the photosynthetic rate and water
use efficiency of grape leaves would increase after adding malic
acid, which facilitates the accumulation of soluble solids in
the fruit. Similar results were found in pears when applying
malic acid combined with NPK (Shao et al., 2022). A study
of organic acids and potassium fertilizer in fruits reported that
applying potassium fertilizer increases TA of fruits, particularly
malic acid content (Cummings and Reeves, 1971; Du, 1985;
Biaiłczyk and Lechowski, 1989), and malic acid content is usually
positively correlated with ash alkalinity during fruit ripening,
while ash content alkalinity is closely related to potassium content
(Genevois and Peynaud, 1947; Souty et al., 1967; Lobit et al.,
2006).

Changes in the Rhizosphere Microbial
Community Stimulated by Malic Acid
Affect Nutrient Absorption and Fruit
Quality of Grapes
Malic acid as a rhizosphere exudate secreted by plants drives
microorganisms to participate in OM mineralization that
indirectly mediates nutrient uptake and indirectly mediates
nutrient absorption through dissolution and chelation of
nutrients (McGrail et al., 2021). Malic acid was significantly
positively correlated with Planococcaceae, Bacillaceae,
Woeseiaceae and Rhodobacteracea.

It was revealed that the 5% malic acid treatment increased
soil ammonium-nitrogen content and decreased soil nitrate-
nitrogen content, while excessive malic acid reduced the available
nitrogen content in the soil. However, most ammonia-oxidizing
bacteria OTUs were negatively correlated with malic acid
content (Fang et al., 2019). Contrary to adding malic acid,
nitrate-nitrogen was significantly negatively correlated with
Planococcaceae, Bacillaceae, Woeseiaceae and Rhodobacteraceae.
Planococcaceae is composed mainly of the genus Planococcus,
and Planococcus includes denitrifying bacteria (Chen et al., 2016;
Ismail et al., 2021). Bacillaceae, particularly the genus Bacillus, is
involved in denitrification and dissimilatory nitrogen reduction
to ammonium in several strains, and various members of
Bacillus have flexible physiological functions during the process
of dissimilated nitrate reduction and its intermediates or by-
products (Verbaendert, 2014). Woeseiaceae is an abundant core
member of the microbial community in global marine sediments
that are involved in the incomplete denitrification pathway,
including subunits of nitrite reduction (nirS) and NO reduction
(norB) to the ozone-depleting greenhouse gas N2O (Hinger
et al., 2019). However, Rhodobacteraceae, which oxidize NH4-
N to nitrate or nitrite, is significantly negatively correlated with
nitrate-nitrogen (Liu et al., 2018).

Similar to the added malic acid treatments, the P content
of leaves and fruits was significantly positively correlated with
Planococcaceae and Bacillaceae, and soil available P content

was significantly positively correlated with Woeseiaceae and
Rhodobacteraceae. B. subtilis, isolated from mangrove soil
in Chollangi, East Godavari, exhibits a phosphate solubilizing
ability in the range of 80–100 mg/l (Anzuay et al., 2015). Research
on the role of P limitations in shaping soil bacterial communities
has revealed that Firmicutes, including Planococcaceae and
Bacillaceae, are enriched in high P soils, and Planococcaceae
is relatively more abundant than Bacillaceae (Oliverio et al.,
2020). Notably, the abundance of Planococcaceae and Bacillacea
related to functions of carbon degradation and P cycling
increase sugarcane yield (Silva et al., 2021). Rhodobacteraceae
is a family in Alphaproteobacteria that is involved in C, N and
S cycling processes in the marine environment (Zheng et al.,
2015; Zhang et al., 2019). Non-marine Rhodobacteriaceae
gained high-affinity transporters in response to much
lower sulfate concentrations and lost genes associated with
reduced sodium chloride and organohalogen concentrations
in their habitats (Simon et al., 2017). The bacterial carbon-
phosphorus lyase pathway, an enzyme complex that evolved
to extract phosphate from phosphonates, is prevalent in a
considerable proportion of Rhodobacteraceae bacteria (11–40%
of organisms) across all ocean regions in the mesopelagic zone
(Sosa et al., 2019).

Fruit K content was significantly positively correlated
with Bacillaceae and Woeseiaceae. Bacillaceae is a family of
potassium-dissolving bacteria (KSB) microorganism that secrete
organic acids from insoluble potassium-containing minerals
that directly dissolve rock K or chelated silicon (Meena et al.,
2014, 2016; Zhang and Kong, 2014). Hence, both the malic
acid and the increase in the abundance of Bacillaceae with
added malic acid stimulated the absorption of potassium by
grapes; thus, the proliferation of Planococcaceae, Bacillaceae,
Woeseiaceae and Rhodobacteraceae stimulated by malic acid
has the potential to enhance nutrient absorption of grapes.
Planococcaceae, Bacillaceae, Woeseiaceae and Rhodobacteraceae
were significantly negatively correlated with WPF. Bacillaceae
and Woeseiaceae were significantly positively correlated
with TSS, while Planococcaceae and Rhodobacteraceae were
significantly positively correlated with TA. However, SSC and
TSS of grape fruit increased after adding malic acid. In addition,
the nutrient content of leaves and fruits also increased after the
malic acid treatment. Bacillaceae, involved in plant rhizosphere
growth, and Woeseiaceae, involved in the nitrogen cycle, have
the potential to improve fruit quality. Therefore, Bacillaceae and
Woeseiaceae were the key bacteria playing a major role in grape
fruit quality and nutrient absorption after applying the malic acid
water-soluble fertilizer.

CONCLUSION

Nutrient absorption and fruit quality of grapes were improved
after adding malic acid, and the best formula was 5% malic
acid combined with NPK fertilizer. In addition, the structure
and carbon metabolism of the soil microbial community
were affected significantly by applying malic acid, and the
composition of the microbial community was closely related to

Frontiers in Microbiology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 850807

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-850807 May 13, 2022 Time: 15:35 # 13

Si et al. Malic Acid Improves Fruit Quality

nutrient absorption and the quality of the grapes. Adding malic
acid was significantly positively correlated with Planococcaceae,
Bacillaceae, Woeseiaceae, and Rhodobacteraceae with correlation
coefficients of 0.78, 0.84, 0.79 and 0.8, respectively. The
proliferation of Planococcaceae, Bacillaceae, Woeseiaceae, and
Rhodobacteraceae stimulated by malic acid has the potential
to enhance nutrient absorption of grapes. Bacillaceae and
Woeseiaceae were significantly positively correlated with the
TSS of grape fruit with correlation coefficients of 0.72 and
0.84, respectively, while Planococcaceae and Rhodobacteraceae
were significantly positively correlated with the TA content of
grape fruit (0.75 and 0.71, respectively). Hence, Bacillaceae and
Woeseiaceae are the key bacteria that play a major role in grape
fruit quality and nutrient absorption after applying malic acid
water-soluble fertilizer.
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