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Multidrug resistance has become a phenotype that commonly exists among
Staphylococcus aureus and is a serious concern for infection treatment. Nowadays,
to detect the antibiotic susceptibility, antibiotic testing is generated based on the
level of genomic for cure decision consuming huge of time and labor, while matrix-
assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF/MS)
shows its possibility in high-speed and effective detection on the level of proteomic.
In this study, on the basis of MALDI-TOF spectra data of discovery cohort with
26,852 samples and replication cohort with 4,963 samples from Taiwan area and
their corresponding susceptibilities to oxacillin and clindamycin, a multi-label prediction
model against double resistance using Lowest Power set ensemble with XGBoost is
constructed for rapid susceptibility prediction. With the output of serial susceptibility
prediction, the model performance can realize 77% of accuracy for the serial prediction,
the area under the receiver characteristic curve of 0.93 for oxacillin susceptibility
prediction, and the area under the receiver characteristic curve of 0.89 for clindamycin
susceptibility prediction. The generated multi-label prediction model provides serial
antibiotic resistance, such as the susceptibilities of oxacillin and clindamycin in this study,
for S. aureus-infected patients based on MALDI-TOF, which will provide guidance in
antibiotic usage during the treatment taking the advantage of speed and efficiency.
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INTRODUCTION

The multidrug resistance phenotype that occurred within
Staphylococcus aureus is considered as one of the most
intractable pathogenic features in the history of antibiotic
chemotherapy (Hiramatsu et al., 2014). This feature refers
to Staphylococcus aureus, which shows resistance to a set of
antibiotics. oxacillin-resistant S. aureus (ORSA) has been
increasing in importance as a leading cause of both nosocomial
and community-acquired infections (Bell and Turnidge, 2002).
Similar to penicillin and methicillin, oxacillin belongs to β-lactam
drugs. The initial discovery on the mechanism of β-lactam drugs
is the existence of penicillin-binding-proteins (PBPs), which
are transpeptidases responsible for partial peptidoglycan
construction on cell walls. The binding between penicillin
and PBPs blocks the function of PBPs and creates the entry
for penicillin. Gene blaZ was induced in bacteria encoding a
β-lactamase enzyme, which opens up the β-lactam ring at the
core of penicillin, preventing the binding to PBPs. Oxacillin
resistance results from a new PBP, decreasing the affinity for
oxacillin, though the β-lactam ring within the drug has been
modified and stabilized. Clindamycin-resistant Staphylococcus
aureus (CRSA) is free of the suppression in the virulence
factors expression, which is originally regulated by clindamycin
(Hodille et al., 2018). The mechanism of clindamycin is
binding to the ribosome and inhibiting protein synthesis
(Kehrenberg et al., 2005). Correspondingly, clindamycin
resistance results from conformation change of ribosome
induced by enzymes, which leads to the affinity decreasing
(Reygaert, 2013).

Nowadays, to test antibiotic susceptibility, the workflow takes
24–72 h including disk diffusion. Basically, in the case of the
low-efficiency treatment, patients infected by ORSA or CRSA are
asked to do the test and wait for the detection result (Swenson
et al., 2001), which causes a delay for the concise and precise
treatment individually ranging from 24 to 72 h, though broad-
spectrum empirical treatment would be conducted. Besides, long-
time testing is not suitable for urgent patients and leaves the time
lag for the probability of mutation.

In recent years, a huge number of arrays or kits emerged
and be applied in clinical detection such as Velogene
and MRSA-Screen, improving the detection time within
4 h (Louie et al., 2000). For instance, Velogene uses a
chimeric probe aiming at the mecA gene within 90 min.
Nevertheless, the high cost of detection kits and limited
labor capacity, privacy policy restricts the application of
genome detection. Proteomic of the resistant S. aureus is
also a focus of identification based on the ion types and
expression intensity generated by the spectra. Current
antibiotic susceptibility tests have shortened the detection
time within several hours besides S. aureus isolation and
culture. Nevertheless, the time lag still exists the chance for
resistance induction, which is calling for rapid detection and
proteomic-based tests with statistics and computational
algorithms. Specifically, with the availability of matrix-
assisted laser desorption-ionization (MALDI)-time-of-flight
mass spectrometry (TOF/MS), its fast generation speed and

accurate fragmentation detection are the advantages as well as
cross-species processing, which are longed for a long time to
solve resistance detection.

Matrix-assisted laser desorption-ionization-time-of-flight
mass spectrometry is a special kind of mass spectrometry
technique that requires protein samples crystallized within the
matrix for further ionization and detection, which can be applied
to grasp the resistant characters besides antibiotic susceptibility
testing (Lay, 2001; Croxatto et al., 2012). Each run of detection
through MALDI-TOF only causes low cost within a few dollars
within 5 min. Scientists have tried to combine the statistical
analysis, computational method, even machine learning with
the spectra information such as mass-to-charge (m/z) ratio and
peptide intensity from the MALDI-TOF to differentiate sensitive
and resistant S. aureus for several types of antibiotics (Wang
et al., 2020). Through the combination of MALDI-TOF and
machine learning, the classification model could be a guide to
provide insight information into drug susceptibility during the
clinical treatment and even show the potential of saving the
antibiotic test in the ideal case.

The crucial consideration from both patients and doctors
is that the computational model on the basis of the cohort
representation and assumption lacks quality guarantee for
individuals, which can be solved and ensured largely in the
antibiotics susceptibility test. Specifically, the consideration is
getting mitigated with a novel resistance information database
called DRIAMS with huge-scale data, which collects at least
300,000 mass spectra with more than 750,000 antimicrobial
resistances (Weis et al., 2022). Another limitation is that each
existing classification model only refers to a specific type
of antibiotic, which is not suitable and applicable for the
multidrug-resistant S. aureus with the widespread multidrug-
resistant phenotype, referring to being resistant to at least
three classes of antibiotic mechanisms or three antibiotics based
on the gene level (Schwarz et al., 2010). Thereby, to relieve
the dilemma in cohort representation and size, this study
recruited 26,852 patients infected by S. aureus in the Chang
Gung Memorial Hospitals (CGMH) at the Linkou branch from
2013 to 2019. Antibiotic susceptibility tests on oxacillin and
clindamycin had been conducted for the samples, and their
S. aureus susceptibility status was mapped with their MALDI-
TOF results as the labels. Besides, for the reproducibility, from
2015 to 2017, this study also recruited 4,963 patients as the
validation test for the constructed model at the Kaohsiung
branch. In our dataset, information, such as specimen type,
sex, age, m/z, and peak intensity, is included for each sample.
Two drug susceptibilities are combined in the form of a
tuple as the label data. We aimed to construct a prediction
model using the high-dimension and large-scale MALDI-TOF
data to indicate the resistance for oxacillin and clindamycin
in patients, which is not the typical case for multiresistance
but breaking model mode for single susceptibility prediction.
Meantime, this study applies the XGBoost algorithm in multi-
label learning for fast and accurate serial resistance prediction.
Over the long haul, the model could improve resistance detection,
provide medication guidance, and be extended to serial antibiotic
susceptibility tests.
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MATERIALS AND METHODS

Overview of the Study
This study consists of sample data generation and prediction
model construction (as shown in Figure 1). During the first step,
the clinical specimen from recruited patients is cultured, and a
single pathogen colony after isolation and incubation was treated
with the MALDI-TOF MS spectra. During the second step, the
mass spectra data generated by the MALDI-TOF from different
samples went through the preprocessing and were used for the
modeling of serial-drug resistance prediction. Figure 1 presents
the overlook of this study including the basic flow of the MALDI-
TOF MS spectra and the process of model construction. Study
details are introduced in the following sections.

Experiment Cohorts’ Information,
MALDI-TOF Preparation, and Processing
Two cohorts, Linkou and Kaohsiung, are used as the discovery
and replication population, respectively, which is independent
of each cohort. The Linkou cohort focused on the oxacillin
and clindamycin resistance of S. aureus lasting from 2013 to
2019. We collected wound (W) swab specimens, respiratory
tract (RT), sterile body fluid (SBF), blood (B), and urinary
tract (UT) from patients from different departments during
the data tracking. For those samples that showed resistance
in the AST, CGMH cultured the clinical specimens, isolated
bacterial pathogens from the samples, and did the antibiotic
resistance profiling. Table 1 presents the label information of
the Linkou cohort, which is prepared for the discovery part
(Table 2). Notably, 26,852 samples in total are marked with two
labels after the antibiotic susceptibility testing to the oxacillin
and clindamycin. One of the labels can be categorized as
ORSA or oxacillin-sensitive Staphylococcus aureus (OSSA). The
other one can be presented as CRSA or clindamycin-sensitive
Staphylococcus aureus (CSSA). Meanwhile, more information,
such as age and sex, was collected from each participant.
In the Kaohsiung cohorts (Table 2), 4,963 samples were

TABLE 1 | Susceptibility information for clindamycin and oxacillin in
the Linkou cohort.

XXXXXXXXClindamycin
Oxacillin

Susceptible Resistant Total

Susceptible 11,453 3,761 15,214

Resistant 1,539 10,099 11,638

Total 12,992 13,860 26,852

TABLE 2 | Susceptibility information for clindamycin and oxacillin in the
Kaohsiung cohort.

XXXXXXXXClindamycin
Oxacillin

Susceptible Resistant Total

Susceptible 2,303 800 3,103

Resistant 288 1,572 1,860

Total 2,591 2,372 4,963

collected from 2015 to 2017 as another independent cohort
and treated with the consistent processing procedures as
the Linkou cohort.

Besides the label information, more basic information for
samples including specimen types, gender, and age is shown
in Figure 2. In each subgraph, the sample composition
under each category is presented. For Figures 2A,B, the
subgraphs in both mainly share the same composition situation
corresponding to the same horizontal coordinate (specimen
types, gender, and age).

Specimens are treated individually and separately with
corresponding methods for sample culture. Notably, 1.2 ml of
0.9% saline solution is added to rinse the W swab specimens.
Following, transfer equivalently onto four kinds of culture media
including blood plate agar, eosin methylene blue agar, Columbia
nalidixic acid, and chocolate agar. As for blood, we used a blood
culture kit (BD BACTECTM FX), which is for commercial use
and from Becton, Dickinson and Company, to isolate pathogens.
Following the positive blood culture bottle, we inoculated it
on blood plate agar to regain single colonies. Sharing a similar

FIGURE 1 | Overview of the study. The flowchart mainly contains sample collection, matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry
(MALDI-TOF) process, and multi-label model construction and evaluation.
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FIGURE 2 | Data composition information in isolated Staphylococcus aureus for Linkou cohort in subgraph (A) (discovery population) and Kaohsiung cohort in (B)
(replication population). The turtle in the graph stands for clindamycin susceptibility and oxacillin susceptibility. R is for resistant, and S is for susceptible.
(A) Specimen types, gender, and age map to multi-labels in the discovery population. (B) Specimen types, gender, and age map to multi-labels in replication
population.

protocol, such as W swab specimens, sterile body fluid is
added onto the four agars, same as the W swab specimens,
and rinsed by liquid thioglycolate for microorganisms’ isolation.
After getting the culture prepared, agars and media were put
into a 37◦C CO2 incubator for 18–24 h. After the culture, we
selected single colonies on the agar plate for the analysis of
MALDI-TOF mass spectrometry. The isolates were collected
consecutively. One isolate was generally for one patient. If
there were multiple isolates of the same species, the first
isolate was used. With the identification of the S. aureus from
the colonies, oxacillin and clindamycin susceptibility tests are
applied to label the two susceptibilities to the colonies. The
technique and reagents are originated from the cefoxitin disk
(Clinical and Laboratory Standards Institute guideline)1 for
non-sterile specimens. For the sterile specimens including B
specimens, the broth microdilution method is used as the
resistance test.

Our cohorts were analyzed under MALDI-TOF MS (Microflex
LT MALDI-TOF System, Bruker Daltonik GmbH). The
operation requirement and processes were run under the
manufacturer’s guidance. Each step is as follows. (1) prepare a
MALDI steel target plate, smear the colonies after culture with
a thin film adding formic acid (1 µl, 70%), and get dried at
25◦C, (2) prepare the matrix solution based on the guidance and
kit (1% α-cyano-4-hydroxycinnamic acid in 50% acetonitrile
containing 2.5% trifluoroacetic acid), (3) add the matrix solution
to the film and get dried under room temperature, and (4)
microflex LT MALDI-TOF analyzer was operated to analyze the
samples (linear ionization mode; accelerating voltage, 20 kV;
nitrogen laser frequency: 60 Hz; 240 laser shots). In the end, we

1www.clsi.org

generated the raw MALDI-TOF data, whose m/z ratio ranged
from 2,000 to 20,000 Da.

MALDI-TOF Data Preprocessing and
Pseudo-Ion Peak Intensity Matrix
Generation
In the part of raw data preprocessing, three techniques were
used to treat the data by order. An external calibration (Bruker
Daltonics Bacterial Test Standard) was applied as the first step.
Later, peak smoothing was performed using the Savitzky–Golay
filter, and baseline correction was performed using the Top-hat
filter. Peaks with a signal-to-noise ratio were set larger or equal to
2 for further analysis.

The preprocessed data based on the raw data consist of two
categories of the variable for each sample: m/z and peak intensity.
For the further preprocess, first, filter the unqualified mass spectra
that the number of peaks is lower than 100 or larger than 200.
Subsequently, by considering the sparsity of MS data when the
m/z ratio is larger than 8,000 Da and signal regarding phenol-
soluble modulin (PSM)-mec was studied earlier, which is a
peptide with 2,415 m/z encoded by resistance gene, mecA (Josten
et al., 2014), the MS data are extracted for each sample based on
the range of m/z from 2,000 to 8,000 Da. Meanwhile, to minimize
the impact of peak shift caused by different fragmentation results
due to the initial point, the window size of 20 Da is considered
to modify the data and transfer the m/z ratio into pseudo-ions.
Specifically, the first pseudo-ion includes the intensity for the m/z
ratio ranges from 2,000 to 2,010 Da as same as the last pseudo-
ion. Other pseudo-ions between them stand for an interval lasting
for 20 Da. In the end, a total of 301 pseudo-ions are generated,
and the intensity corresponding to a pseudo-ion is the intensity
sum within the interval. The intensity of the ith (i = 1,. . .,301)
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pseudo-ion for one sample can be calculated as follows:

intensity′(i) =
interval (i)∑

j=1

intensity(j)

where in one sample, intensity
′

(i) stands for the intensity
corresponding to ith pseudo-ion. Interval (i) refers to the m/z
ratios within the interval, and intensity(j) is the intensity for a
specific m/z ratio.

Multi-Label Classification
Multi-label learning studies the problem where each example is
represented by a single instance while associated with a set of
labels simultaneously (Zhang and Zhou, 2014). In this study,
the pseudo-ion-intensity data are the observation data, and the
results of the susceptibility test for oxacillin and clindamycin are
assigned as the label data. All the multi-label learning algorithms
are from scikit-multilearn 0.2.0 (Szymański and Kajdanowicz,
2017), a library for multi-label classification built on top of the
scikit-learn ecosystem, using Python 3.68.

Binary Relevance
Binary relevance is the most intuitive idea to deal with multi-
label prediction. It treats the multi-label separately by considering
multiple independent binary classifications for each label instead
of viewing it as a group of labels. Like in this study, for the binary
relevance, it needs to train two models, and the output is the
union of two separated predictions.

Classifier Chain
Classifier chain is the improved transformer of binary relevance
by the construction of a Bayesian conditioned chain. Similar to
the binary relevance, the classifier chain treats each label as a
separated classier but not independent. Although the first classier
is only trained using the input data (observation), the classifiers
after are trained on the input space and all previous classifiers in
the chain based on the Bayesian chain rule by order.

Lowest Power Set
Unlike the previous two methods, the lowest power set is to
transform a multi-label problem into a multi-class problem. Like
this study, for 2 labels totally, it will eventually transform into a
4-class classifier.

Quality Measures for Multi-Label Model
Two measurements are applied to evaluate the multi-label model
in this study. The first measures are the hamming loss, which
stands for the proportion of the incorrect prediction for all
labels among the whole samples. The other measurement is
the accuracy score. It means the fraction of samples for those
prediction sets that exactly match the real label sets.

Logistic Regression
Inside the multi-label algorithm, the classifier needs to be defined.
Logistic regression is a common classifier to predict the resistance
in the biological field (Moradigaravand et al., 2018). In this

study, the discovery samples, the Linkou cohort, are used in
the model training, while the Kaohsiung cohort is responsible
for the independent test. The logistic regression (LR) model
is realized using the Python package sklearn. Grid search is
applied for the parameter tuning based on the criteria of the
area under the receiver operating characteristic (ROC) curve by
the adjustment of parameters including the penalty, C-value, and
solver. Each model during the tuning is evaluated by the 5-fold
cross-validation. For the tuned model, using L1 normalization
as the penalty, 1 for the C-value, and liblinear, a library for
large linear classification, as the solver is the tuned parameters.
The area under the curve (AUC) will be applied to evaluate the
training model in the replication cohort. The model training and
parameter tuning are achieved in the Python package, scikit learn.
The presentation of the ROC curve is generated from the Python
package, Matplotlib.

XGBoost
XGBoost is a scalable machine learning system for the tree
boost, offering parallel tree boosting (Chen and Guestrin, 2016).
Choosing XGBoost as the classifier in the multi-label model, such
as the LR above, the Linkou cohort is treated as the training
data, and the Kaohsiung cohort is used for the independent test
by orders. Package xgboost from Python is applied to realized
XGBoost model. Parameters shown in Table 3 were tuned
through grid search. The result evaluation of the model is the
same procedure as the LR.

Permutation Importance
Permutation importance is a technique used to generate the
feature importance for the trained model. It is defined as the
decrease of significance P-values for each feature when the value
is randomly shuffled (Altmann et al., 2010).

TABLE 3 | Parameters tuned for XGBoost under multi-label learning.

Parameter Function Tuned result

max_depth Maximum depth of a tree 3

min_child_weight Minimum sum of weight for a child 1

Gamma Minimum loss requirement for node partition 0

subsample Subsample ratio within the training samples 0.6

colsample_bytree Subsample ratio of columns when constructing
each tree

0.6

TABLE 4 | Model evaluation in multi-label ensembles using LR and XGBoost
correspondingly.

XXXXXXXCriteria
Ensembles

BinaryRelevance
LR (XGBoost)

ClassifierChain
LR (XGBoost)

Lowest Power
set LR (XGBoost)

Hamming loss 0.2023 (0.1622) 0.2015 (0.1628) 0.2044 (0.1524)

Accuracy score 0.6863 (0.7334) 0.6885 (0.7553) 0.7119 (0.7717)

Jaccard score 0.6019 (0.6677) 0.6038 (0.6676) 0.6033 (0.6839)

Hamming loss, accuracy score, and Jaccard score are used to evaluate the multi-
label model primarily. Hamming loss refers to the average fraction of the wrong
prediction of each sublabel. The accuracy score is based on the accuracy of the
serial label prediction. Jaccard score measures the proportion of prediction for a
sample to its true label. Bold values refer to better performance based on each
criterion.
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TABLE 5 | Evaluation of partial susceptibility prediction in discovery and replication
cohort.

Precision Recall Precision Recall

Discovery OSSA 0.81 (0.88) 0.85 (0.90) CSSA 0.82 (0.87) 0.88 (0.93)

Linkou ORSA 0.86 (0.91) 0.81 (0.89) CRSA 0.82 (0.89) 0.75 (0.82)

Cohort Accuracy 0.83 (0.89) 0.82 (0.88)

Replication OSSA 0.78 (0.82) 0.83 (0.88) CSSA 0.83 (0.84) 0.86 (0.90)

Kaohsiung ORSA 0.80 (0.86) 0.74 (0.79) CRSA 0.75 (0.82) 0.71 (0.72)

Cohort Accuracy 0.79 (0.84) 0.80 (0.83)

The data outside the bracket are generated by the Lowest Power set ensemble
with logistic regression. The data within the bracket are generated by the Lowest
Power set ensemble with XGBoost. Bold values refer to better performance based
on each criterion.

RESULTS

Performance of Multi-Label Prediction
Learning Using Logistic Regression and
XGBoost
To realize the goal of serial antibiotic resistances prediction, the
study adopted three multi-learning ensembles provided by scikit-
multilearn 0.2.0, including BinaryRelevance, ClassifierChain, and

Lowest Power set. For each ensemble, the study applied LR and
XGBoost as the classifier, respectively. Based on the ensembles
and classifiers, the prediction model could provide prediction
to the susceptibilities of oxacillin and clindamycin within one-
step training among the Linkou cohort for each sample. The
primary model evaluation among the Kaohsiung cohort is shown
in Table 4.

From the evaluation criteria shown in Table 4, when applying
XGBoost as the classifier in all of three multi-label ensembles, the
performance in serial label prediction (Accuracy score) or partial
label within the prediction (Hamming loss and Jaccard score)
both indicated an improved model than using LR as the classifier.
Based on the accuracy score, approximately 6% of improvement
using XGBoost could be observed from 0.69 on average to 0.75
on average, which presents a refinement that exists in multi-label
prediction for antibiotic susceptibility.

Besides the evaluation for the multi-label prediction, analysis
that was related to partial or single susceptibility is conducted
by dividing the serial label prediction for each sample
into susceptibility prediction for oxacillin and clindamycin
correspondingly. Herein, the ensemble Lowest Power set with LR
and XGBoost is adopted to evaluate the partial performance for
its best serial performance in Table 4. The evaluation information

FIGURE 3 | Receiver operating characteristic curve for the oxacillin and clindamycin susceptibility prediction under replication cohort in multi-label learning model,
respectively. The area under the curve (AUC) is noted in the curve. (A) Receiver operating characteristic (ROC) for the oxacillin susceptibility prediction in replication
cohort using Lowest Power set with logistic regression (LR); (B) ROC for the oxacillin susceptibility prediction in replication cohort using Lowest Power set with
XGBoost; (C) ROC for the clindamycin susceptibility prediction in replication cohort using Lowest Power set with LR; and (D) ROC for the clindamycin susceptibility
prediction in replication cohort using Lowest Power set with XGBoost.
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FIGURE 4 | Significant permutation importance comparison between LR and
XGBoost under Lowest Power set ensemble.

including precision and recall in each class and total accuracy
among discovery and replication cohort is presented in Table 5.
Both from the discovery and replication cohort, the ensemble that
is applied with XGBoost shows more reliable performance than

the ensemble that is applied with LR in oxacillin and clindamycin.
The discovery accuracy gets increased from 0.83 (oxacillin) and
0.82 (clindamycin) to 0.89 and 0.88. The replication accuracy
gets increased from 0.79 (oxacillin) and 0.80 (clindamycin)
to 0.84 and 0.83.

Meanwhile, with the consideration of specificity and
sensitivity of prediction models, the area under the ROC curve
was used to measure the model performance. The AUC of
oxacillin and clindamycin prediction using LR or XGBoost
as the classifier in the multi-label learning model is shown in
Figure 3. The AUC for oxacillin susceptibility prediction under
XGBoost is 0.93, while it is only 0.86 for the model applying
LR. The performance for oxacillin resistance prediction got
improved compared with the AUC of 0.80 from DRIAMS
(Weis et al., 2022) as well. Meanwhile, the AUC of clindamycin
susceptibility prediction gets increased from 0.85 to 0.89 by
turning LR into XGBoost.

To visualize and identify the performance improvement,
permutation importance of features under Lowest Power
set using LR and XGBoost is conducted, respectively. After
calculating the permutation importance in each model, each

FIGURE 5 | Receiver operating characteristic curve for the oxacillin and clindamycin susceptibility prediction under replication cohort in multi-label learning model,
respectively. The AUC is noted in the curve. (A) ROC for the oxacillin susceptibility prediction in replication cohort using XGBoost; (B) ROC for the oxacillin
susceptibility prediction in replication cohort using Lowest Power set with XGBoost; (C) ROC for the clindamycin susceptibility prediction in replication cohort using
XGBoost; and (D) ROC for the clindamycin susceptibility prediction in replication cohort using L Lowest Power set with XGBoost.
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feature is assigned with an importance value ranging from 1
to −1, which indicates the feature contribution to the model
performance. The whole permutation importance is shown
in the Supplementary Material. To analyze the main feature
importance between LR and XGBoost under Lowest Power set,
features that contribute higher than 0.01 permutation importance
in either LR or XGBoost model are extracted for comparison
(Figure 4). Based on permutation importance comparison, the
multi-label prediction model using Lowest Power set with LR
mainly focuses on pseudo-ion with low and high m/z-ratio-
relatively-in-the-MALDI-TOF-data-(pseudo-ions 10, 15, 27, 32,
44, 176, 230, and 242). For instance, the multi-label model using
LR assigns high permutation importance to pseudo ion 15, which
stands for protein fragments from 2,310 to 2,330 m/z, and pseudo
ion 242, which stands for protein fragments from 6,850 to 6,870
m/z. Although the multi-label prediction model using XGBoost
shown in Figure 4 indicates some shared important features, such
as pseudo ions 21 and 230, it presents a focus on the medial
features, such as pseudo ions 64 and 132. On the whole, the over-
refinement between applying LR or XGBoost as the classier in the
multi-label prediction model reflects on the relief of permutation
importance in the protein fragments with low or high m/z ratio
and a new focus on the medial pseudo ions.

Performance of Multi-Label Prediction
Learning and Single Label Prediction
Learning
With the hypothesis that whether the model is trained under a
single label or multi labels has an influence on the prediction
performance, this study constructs two models for oxacillin
susceptibility and clindamycin susceptibility, respectively, and
separately using XGBoost. Precisely, it refers to using only
one susceptibility label from the discovery cohort to train the
XGBoost model for the prediction in the replication cohort.
During the model training process, RandomOverSampler is
adopted to balance the class size from the Python package,
Imbalanced-learn (Lemaître et al., 2017). The multi-label
prediction model, in this study, still applied XGBoost in the
Lowest Power set ensemble.

The ROC and AUC for performance comparison among the
multi-label prediction model and single label prediction model
are shown in Figure 5. Initially, considering due to the multi-label
learning, the boundary conditions or hyperplanes for the model
may need to be relaxed relatively compared with the single label
prediction. However, the model performance using XGBoost as
the classier in the multi-label prediction model actually presents
approaches to the single susceptibility prediction model and even
better to the single one.

To visualize the refinement reflection, permutation
importance provides insights to model construction. The
full permutation importance of pseudo ion is attached to the
Supplementary Document. The pseudo ions with permutation
importance larger than 0.01 were used for comparison (Figure 6).
For the oxacillin susceptibility prediction, within the multi-label
prediction model, it shows a diverse focus among pseudo ions
with different m/z ratios. For instance, the model assigned more

FIGURE 6 | Significant permutation importance comparison between
multi-label learning model and single label learning model. (A) Permutation
importance comparison for oxacillin susceptibility prediction and (B)
permutation importance comparison for clindamycin susceptibility prediction.

significant permutation importance to pseudo ion 21 with its
m/z ratio from 2,410 to 2,430, ion 50 with its m/z ratio from
3,010 to 3,030, ion 64 with its m/z ratio from 3,290 to 3,310,
ion 132 with its m/z ratio from 4,650 to 4,670 and ion 230
with its m/z ratio from 6,610 to 6,630. In terms of clindamycin
susceptibility prediction, the multi-label prediction model shows
a consensus that it majorly focuses on pseudo ion with the
m/z ratio from 3,000 to 4,000, determining higher permutation
importance on pseudo ions 64, 125, 132, 140, and 176 than
the single label model. Besides, compared with the single label
prediction model for oxacillin and clindamycin susceptibility
together, the multi-label learning model addresses pseudo ions
21, 64, 125, 132, and 230.

DISCUSSION AND CONCLUSION

To deal with potential consideration for the efficiency and
accuracy of detection, efforts during the whole experiment are
conducted for the realization of a practical model. First, in our
study, five kinds of specimens with oxacillin and clindamycin
susceptibility labels were used to convince the model. In the
future, more kinds of specimens could be used to strengthen
our model. Second, the large size of the discovery cohort and
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the offer of replication cohort largely support the machine
learning model. The size of 26,852 for the discovery cohort from
2013 to 2019 from the Linkou, Taiwan area, is fundamental
to train the model solidly. Meanwhile, the replication cohort
with 4,963 samples from Kaohsiung served as the validation
set. Third, instead of constructing a machine learning model
for only one antibiotic susceptibility, our study uses the Lowest
Power set ensemble and applies XGBoost as the classifier to
build up a multi-label prediction model, which could predict
the susceptibilities of the oxacillin and clindamycin at the same
time with only one-step training. From the model performance,
the multi-label model combined with XGBoost shows better
performance (AUC and accuracy) than choosing LR as the
classifier, which is commonly used for susceptibility prediction in
previous studies (Moradigaravand et al., 2018; Wang et al., 2020).
In terms of the output type, the multi-label prediction model
performs better than the single label model with only one training
process. Furthermore, feature importance was used to analyze the
improvement between models, and several potential biological
insights were generated.

Based on the prediction performances between single
label prediction model and multi-label prediction model and
permutation importance results, feature contribution analysis
was conducted. For the oxacillin susceptibility prediction, the
dominant importance increase of pseudo ions 21 and 50,
referring to 2,410–2,430 Da and 2,990–3,010 Da, respectively,
matches with the research of Josten et al. (2014). Their study
regarded the fragment with an m/z ratio of 2,413 Da as a
marker for the presence of phenol-soluble modulin (PSM)-
mec, which is a small excreted peptide encoded by the mec
gene. Besides, the PSM-mec is excreted by agr-positive strains,
where it presents with the delta-toxin with an m/z ratio of
3,007 Da. For the clindamycin susceptibility prediction, fragment
around pseudo ion 64, the m/z ratio of 3,270 Da–3,290 Da is
present to show the expression of Cfr. Gene Cfr induces the
resistance to clindamycin. Beyond pseudo ion 64, ions 50 and
52 could be potential entry for biological insight analysis for
their high permutation importance on clindamycin susceptibility
prediction. The synergy importance increase occurred on pseudo
ions 64, 132, and 230, covering m/z of 3,270–3,290 Da, 4,630–
4,650 Da, and 6,590–6,610 Da. The hypothesis of synergy effect
between the susceptibility of oxacillin and clindamycin or even
among multidrug resistance could likely be tested by considering
the three ions above.

There are several limitations and restrictions in our study.
First, the discovery and replication cohorts are actually based
on the local part in the Taiwan area, and the model needs
more samples worldwide to become a practical susceptibility
prediction model at a global level. Second, in our study, we
only possessed and considered the susceptibilities of oxacillin
and clindamycin, the simplest case of the multi-label prediction.
There is a simple correlation analysis between two susceptibilities.
In the future, during the sample recruitment, information
about more than three kinds of susceptibilities could be tested
and collected to realize more complex serial label predictions.
Meanwhile, the statistical methods for isolate selection for
MALDI-TOF need to be improved. Previous study has concluded

that single isolate selection in MALDI-TOF may generate
biased results if missed to identify the diversity among isolates
(Pinar-Méndez et al., 2021). Considering the variation among
isolates, the MALDI-TOF result from one isolate for each
patient is not representative enough as the input data for
susceptibility prediction. Optimized statistical methods are
needed, such as multi-isolate selection or MS data integration
from multi isolates, which could be conducted in the future
study for a comprehensive prediction model. In addition, future
studies can adopt a novel ensemble method that considers
the relation among labels or susceptibilities instead of Lowest
Power set in this study for better serial prediction performance.
A platform or database combining resistance information, such
as prediction or tendency with large sample size and diverse drug
susceptibilities, could be continuous for future study. During
the permutation importance analysis, some pseudo ions were
pointed out to respond for the model refinement. These ions
could be considered as the potential biomarker or functional
segments and needed to analyze in the laboratory. Although
the AUC for oxacillin and clindamycin susceptibility prediction
indicates good performances, the accuracy for serial susceptibility
prediction still does not satisfy the clinical requirements.
However, our model presents the possibility of a proteomic-
based model with a machine learning algorithm for rapid serial
susceptibility prediction.

To summarize our study, we successfully constructed a multi-
label prediction model applying XGBoost in Lowest Power
set for oxacillin and clindamycin susceptibilities based on the
MALDI-TOF MS data with the output of serial labels. Multidrug
resistance is a threat to disturb treatment effects and usually
tested by AST, which is limited by the labor and facility
resource. Under large-scale size in the discovery cohort and
replication cohort, our model could realize serial susceptibility
prediction solidly, which ideally help patients and doctor with
clinical guidance and insights to the antibiotic usage efficiently
and accurately. In a nutshell, combing MALDI-TOF MS and
machine learning algorithm will widely spread a proteomic-
based antibiotic susceptibility test clinically taking advantage of
speed and accuracy and saving the resources that originally are
consumed for the costing and inefficient AST.
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