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The integrity of the gastrointestinal tract structure and function is seriously compromised
by two pathological conditions sharing, at least in part, several pathogenetic mechanisms:
inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and
COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in
mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with
perturbations in microbial and human metabolic pathways originating changes in the
blood and fecal metabolome. This review compared the most relevant metabolic and
microbial alterations reported from the literature in patients with IBD with those in patients
with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of
pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most
studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic
producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition,
Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia
muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-
19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory
tract and the resolution of clinical symptoms. Finally, we presented and discussed the
impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand
on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine,
histidine, glutamine, succinate, citrate, and lipids.

Keywords: inflammatory bowel di
microbiomics

, Crohn’s di , ulcerative colitis, SARS-CoV-2, COVID-19, metabolomics,

INTRODUCTION

Since the onset of the pandemic outbreak caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), it emerged that frailty, elderly, and pre-existing chronic diseases,
such as chronic kidney disease, hypertension, cardiovascular disease, and diabetes, are risk
factors for the development of severe and/or fatal coronavirus disease 2019 (COVID-19;
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Grasselli et al, 2020; Falandry et al., 2021). Theoretically,
patients with immune-mediated inflammatory diseases, such
as inflammatory bowel disease (IBD), might be at increased
risk of developing severe COVID-19. However, current knowledge
on the pathophysiology of IBD and COVID-19 points out
that patients with IBD are not at increased risk or have adverse
outcomes for COVID-19 (Neurath, 2020). Strong evidence
supporting this conclusion emerge from clinical studies published
elsewhere (Allocca et al., 2020; D'Amico et al., 2020), including
the discovery that biological therapies (e.g., monoclonal
antibodies) may play a protective role against the cytokine
storm observed in the course of the SARS-CoV-2 infection
(Allocca and Craviotto, 2021). IBD and COVID-19 may share
many alterations in molecular mechanisms, microbial
communities, and biochemical pathways; “omics” technologies
may considerably contribute to decipher mechanisms inducing
these alterations, improving patient care and outcome.
Microbiome and metabolome were primarily investigated in
IBD, and similar but relatively few studies were conducted in
patients with COVID-19; in this review, we examined analogies
and differences in gut microbiota and body fluids metabolome
between IBD and COVID-19 with the aim to identify microbial
and metabolic hallmarks linking IBD, COVID-19 and SARS-
CoV-2 infection.

SARS-CoV-2 INFECTION IN PATIENTS
WITH IBD

IBD is an umbrella term encompassing a group of disorders,
namely, Crohns disease (CD), ulcerative colitis (UC), and
inflammatory bowel disease, type unclassified (IBDU; Satsangi
et al, 2006). IBD is marked by chronic relapsing-remitting
or continuously active idiopathic inflammation and bowel
injuries; both adults and children exhibit an immunological
dysregulation. The etiology of IBD is multifactorial, including
the contribution of genetic, environmental, host factors and
their reciprocal interactions (Flynn and Eisenstein, 2019); recent
data indicate a worldwide 0.3% incidence and prevalence of
IBD (Ng et al.,, 2017). The therapeutic treatment of IBD with
immunomodulators (Park et al., 2020) and biologics (Neurath,
2019) may activate a transient or persistent immunocompromised
state inducing opportunistic infections, especially when multiple
drugs are prescribed simultaneously (Bonovas et al, 2016;
Shah et al,, 2017; Irving et al., 2021). Several research groups
investigated whether patients with IBD may be or not more
susceptible to developing SARS-CoV-2 infection (Monteleone
and Ardizzone, 2020), how they should be managed in the
context of the COVID-19 pandemic, and the risks and benefits
of the therapeutic treatment with immunomodulators, especially
in the pediatric age (Dipasquale et al., 2020; Sultan et al,
2020). An early analysis of data collected from the international
registry Surveillance Epidemiology of Coronavirus Under
Research  Exclusion for Inflammatory Bowel Disease
(SECURE-IBD) showed that among 525 pediatric and adult
patients with IBD and confirmed COVID-19, 31% were
hospitalized, 7% developed severe COVID-19, and 3% died

(Brenner et al.,, 2021). Data from the registry evidenced that
among patients with IBD, corticosteroids treatment may be a
key risk factor for severe COVID-19 (Brenner et al., 2020),
confirming results previously reported elsewhere (Mazza et al.,
2020). A recent multicenter study enrolling 1816 patients with
IBD treated with biologic therapy over the first 2 months of
the pandemic reported an overall COVID-19 incidence of 3.9
per 1,000 patients with a 57% hospitalization rate and 29%
case fatality rate (CFR; Ardizzone et al., 2021). In a cohort
of 1912 patients with an IBD median duration of 17years,
the crude incidence rate of COVID-19 was at 6.2 cases per
1,000 patients, lower than that found in the general population
(6.6 cases per 1,000 individuals); the mortality rate was 0.9
per 1,000 and 1 per 1,000 in patients with IBD and the
general population, respectively (Taxonera et al., 2020). Although
the CFR for IBD cases with COVID-19 was higher than in
the general population (16.7 vs. 13.2%, respectively), the
statistical difference was not significant. Finally, a meta-analysis
including 9,177 patients with IBD from eight studies reported
an incidence of 0.3% for COVID-19; 8.6% required admission
to the intensive care unit, and the mortality rate was 6.3%
(Aziz et al., 2020). In a cohort of patients with IBD, the rate
of positive results for anti-SARS-CoV-2 antibodies
(approximately 4.6% for IgG and IgM, and 6% for IgA) was
found higher than that in healthcare professionals without
inflammatory diseases (approximately 1.6% for IgG and IgM,
and 1% for IgA); interestingly, no SARS-CoV-2-infected patients
with IBD developed symptomatic COVID-19 (Lodyga et al,
2021). Further studies reported similar results, confirming
that SARS-CoV-2 seroprevalence among individuals with IBD
is closely comparable to that in subjects without IBD
(Norsa et al., 2020; Berte et al., 2021).

GUT MICROBIOTA IN IBD

Gut microbiota plays a key role in health and disease; it actively
impacts multiple host systems and organs. A balanced gut
microbial ecosystem with high biodiversity is associated with
the beneficial effects of a myriad of symbiotic interactions
between intra- and inter-microbial species, genera, families,
phyla, and between microbes and host systems and organs,
such as the immune system (Zheng et al., 2020), the brain,
and the lung (Morais et al., 2021; Sencio et al., 2021). Conversely,
perturbations in gut microbial communities, namely, dysbiosis,
induce detrimental effects on these networks and are associated
with diseases (Durack and Lynch, 2019). Gut dysbiosis can
be defined as the loss of the overall microbial biodiversity
with the imbalance between beneficial commensal and
opportunistic pathogens, resulting in excessive production of
pro-inflammatory mediators (Wei et al., 2021). A large body
of literature investigated and evaluated extensively gut dysbiosis
in individuals with IBD; the most frequently observed alterations
are the overgrowth of pro-inflammatory bacterial species (e.g.,
Escherichia coli) associated with the shortfall of anti-inflammatory
species (e.g., Faecalibacterium prausnitzii). The latter are involved
in the generation of short-chain fatty acids (SCFAs), namely,
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butyrate, propionate, and acetate (Zuo and Ng, 2018; Khan
et al,, 2019; Aldars-Garcia et al., 2021; Alshehri et al., 2021).
Regrettably, data on gut microbiota composition are partially
heterogeneous between studies, and results could be categorized
as (a) fully concordant between studies; (b) roughly concordant
with some exceptions; (c) discordant between studies. Table 1
recapitulates the most relevant data on gut dysbiosis in IBD,
obtained from a great proportion of available studies from the
literature (Favier et al., 1997; Seksik et al., 2003; Macfarlane
et al., 2004; Martin et al., 2004; Ott et al., 2004; Gophna et al.,
2006; Manichanh et al., 2006; Scanlan et al., 2006; Frank et al.,
2007; Andoh et al, 2009; Kang et al., 2010; Rehman et al,,
2010; Schwiertz et al., 2010; Willing et al., 2010; Joossens et al.,
2011; Mondot et al., 2011; Rausch et al., 2011; Walker et al.,
2011; Michail et al., 2012; Morgan et al., 2012; Nemoto et al.,
2012; Vigsnzes et al., 2012; Fujimoto et al., 2013; Kabeerdoss
et al., 2013, 2015; Kumari et al., 2013; Prideaux et al., 2013;
Sha et al., 2013; Tong et al., 2013; Varela et al., 2013; Gevers
et al,, 2014; Hedin et al., 2014; Machiels et al., 2014; Walters
et al, 2014; Wang et al, 2014; Hoarau et al, 2016; Jacobs
et al, 2016; Mar et al, 2016; Takahashi et al, 2016; Chen
et al., 2017; Halfvarson et al., 2017; Pascal et al,, 2017; Santoru
et al., 2017; Sokol et al., 2017; Vrakas et al., 2017; Zhang et al.,
2017, 2021; de Meij et al.,, 2018; Laserna-Mendieta et al., 2018;
Nishino et al, 2018; Franzosa et al., 2019; Heidarian et al,
2019; Lloyd-Price et al,, 2019; Yilmaz et al., 2019; Alam et al,,
2020; Ryan et al., 2020; Shahir et al., 2020; Clooney et al.,
2021). No specific pattern of dysbiosis in patients with IBD
has been definitively established; nevertheless, there is a broad
agreement between studies on the imbalance of gut bacterial
abundance in IBD. In particular, most studies report the depletion
of Clostridium genus, C. leptum (cluster IV), C. coccoides (cluster
XIVa) groups, E prausnitzii, E. rectale, R. bromii species,
Ruminococcaceae, Lachnospiraceae families, and the overgrowth
of Enterococcus and Fusobacterium genera, E. coli and E nucleatum
species, Enterobacteriaceae, Veillonellaceae families. Controversial
results may derive from many variables affecting gut microbiota
composition, including the pre-existence of chronic diseases,
the intensive therapeutic treatment in critically ill patients,
especially with antibiotics to prevent secondary bacterial
infections, and sudden and radical changes to eating habits
(Table 2). Gut microbiome composition in IBD is strongly
influenced by complex interactions between microbial
communities and genetically altered host functional pathways
(Huang et al.,, 2014; Knights et al., 2014). In CD, gut dysbiosis
is more pronounced than in UC and is marked by a lower
microbial diversity, a more altered microbiome composition,
and a more unstable microbial community (Pascal et al., 2017).
Microbial diversity and abundance significantly differ between
feces and gut mucosa, as reported in early studies (Lepage
et al., 2005; Gillevet et al., 2010; Morgan et al., 2012) and
confirmed in more recently published papers (Lo Presti et al,
2019; Ryan et al., 2020). In IBD, inflammation alters the mucosal
barrier inducing bacterial translocation; in patients with CD,
bacterial translocation is revealed by the increase in several
bacterial families within the submucosa compared to the
corresponding superjacent mucosa at the advancing disease

margin (Chiodini et al., 2016). Mucosal and fecal microbiome
differences may explain, at least in part, some discrepancies
between studies; for example, the increase in fecal F prausnitzii
(Table 1) corresponds to the decreased proportion of this
bacterium at the mucosal surface (Walters et al., 2014). Differences
in the abundance of various bacterial species and families (e.g.,
Lactobacilli, C. leptum group, E. coli, and E prausnitzii) were
observed between ulcerated (inflamed) and non-ulcerated
(non-inflamed) mucosa (Zhang et al., 2007; Li et al., 2012) as
well as between patients with high clinical activity indexes
and/or sigmoidoscopy scores and patients with low clinical
activity indexes and/or sigmoidoscopy scores (Fite et al., 2013).
Other studies reported no difference in microbiota composition
and enrichment between inflamed and non-inflamed mucosa
(Kabeerdoss et al., 2015; Nishino et al., 2018). The abundance
of some bacteria, such as the genus of Faecalibacterium and
the family of Enterobacteriaceae, significantly differs between
ileal CD and colonic CD (Dicksved et al., 2008; Naftali et al,,
2016); for example, F prausnitzii is markedly reduced in CD
localized in the ileum compared with colonic localization (Willing
et al, 2010). Interestingly, in current smokers with CD, the
abundance of Bacteroides—Prevotella genera is higher than in
non-smokers with CD (Benjamin et al., 2012a). Significant
differences in several microbial taxa can be observed between
young adults with IBD and IBD adults aged 60years or older;
in particular, Bifidobacterium genus decrease with age, and
Bacteroides genus increase with age, probably reflecting body
mass index and diet changes over time (Morgan et al., 2012).
Researchers have a unanimous consensus on the E. coli overgrowth
in IBD. E. coli overgrowth has been found in children with
severe IBD (Schwiertz et al., 2010; Michail et al., 2012; Gevers
et al., 2014; de Meij et al., 2018) and in adults with CD (Mondot
et al, 2011). In patients with CD, the high prevalence of E. coli
strictly adhering to the ileal mucosa has led to the identification
of a new group of E. coli strains (Nadalian et al., 2021). This
pathogenic group, called adherent-invasive E. coli (AIEC), has
the ability to adhere and colonize enterocytes as well as to
internalize into macrophages and replicate within their cytoplasm,
inducing the release of tumor necrosis factor-a (TNF-a) and
the cytotoxic response of Th17 and CD8" (Lee et al, 2019).
Thus, AIEC is involved in the pathogenesis of IBD, specifically
CD (Palmela et al, 2018; Chervy et al, 2020), by promoting
inflammatory diseases that originated from the adaptative
evolution of the genome (Nash et al., 2010; Ellermann et al.,
2015). The recognition of AIEC is unusual in patients with
UGC; rather, UC is associated with the intestinal enrichment of
a heterogeneous, diarrheagenic group of E. coli strains, termed
diffusely adherent E. coli (DAEC); this group was found expressed
not only in children and young adults with UC but even in
those with CD (Walczuk et al., 2019).

GUT MICROBIOTA IN SARS-CoV-2
INFECTION

Although the lung is considered the main entry route for
SARS-CoV-2, the gastrointestinal tract is equally a key target
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TABLE 1 | Gut dysbiosis in patients with IBD and COVID-19 compared with healthy subjects (s, stool sample; m, mucosal biopsy; e, endoscopic lavage).

Bacterial taxa

Inflammatory bowel disease (IBD)

Coronavirus Disease 2019 (COVID-19)

Enriched

Underrepresented

Enriched Underrepresented

Firmicutes
e Clostridium

e Clostridium cluster IV
(C. leptum)

o Clostridium cluster
XlVa (C. coccoides)

* F. prausnitzii Walters et al., 2014 (s)

* E. rectale

e Enterococcus

Morgan et al., 2012 (s,m)

Gophna et al., 2006 (m), Michail et al., 2012 (s),
Tong et al., 2013 (g), Walters et al., 2014 (s),
Gevers et al., 2014 (m), Chen et al., 2017 (s),
Nishino et al., 2018 (m)

Seksik et al., 2003 (s), Scanlan et al., 2006 (s),
Manichanh et al., 2006 (s), Andoh et al., 2009
(s), Schwiertz et al., 2010 (s), Mondot et al.,
2011 (s), Morgan et al., 2012 (s,m), Kabeerdoss
etal., 2013 (s), Sha et al., 2013 (s), Kumari et al.,
2013 (s), Fujimoto et al., 2013 (s), Wang et al.,
2014 (s,m), Hedin et al., 2014 (s), Kabeerdoss
etal., 2015 (m), Vrakas et al., 2017 (m), Laserna-
Mendieta et al., 2018 (s), Shahir et al., 2020 (m)
Seksik et al., 2003 (s), Scanlan et al., 2006 (s),
Andoh et al., 2009 (s), Schwiertz et al., 2010 (s),
Joossens et al., 2011 (s), Morgan et al., 2012
(s,m), Nemoto et al., 2012 (s), Sha et al., 2013
(s), Kumari et al., 2013 (s), Prideaux et al., 2013
(m), Hedin et al., 2014 (s), Machiels et al., 2014
(s), Kabeerdoss et al., 2015 (m), Vrakas et al.,
2017 (m), Clooney et al., 2021 (s)

Frank et al., 2007 (m), Schwiertz et al., 2010 (s),
Willing et al., 2010 (s), Rehman et al., 2010 (m),
Mondot et al., 2011 (s), Joossens et al., 2011

(s), Rausch et al., 2011 (m), Morgan et al., 2012
(s,m), Fujimoto et al., 2013 (s), Varela et al., 2013
(s), Tong et al., 2013 (g), Kabeerdoss et al., 2013
(s), Kumari et al., 2013 (s), Prideaux et al., 2013
(m), Machiels et al., 2014 (s), Wang et al., 2014
(s,m), Hedin et al., 2014 (s), Gevers et al., 2014
(m), Takahashi et al., 2016 (s), Mar et al., 2016
(s), Hoarau et al., 2016 (s), Jacobs et al., 2016
(s), Sokol et al., 2017 (s), Vrakas et al., 2017 (m),
Pascal et al., 2017 (s), Halfvarson et al., 2017 (s),
Santoru et al., 2017 (s), Laserna-Mendieta et al.,
2018 (s), Franzosa et al., 2019 (s), Lloyd-Price
etal., 2019 (s,m), Yilmaz et al., 2019 (m),
Heidarian et al., 2019 (s), Ryan et al., 2020 (m),
Clooney et al., 2021 (s), Zhang et al., 2021 (s,m)
Macfarlane et al., 2004 (m), Mondot et al., 2011
(s), Kumari et al., 2013 (s), Gevers et al., 2014 (m),
Kabeerdoss et al., 2015 (m), Franzosa et al., 2019
(s), Clooney et al., 2021 (s)

Macfarlane et al., 2004 (m),

Kang et al., 2010 (s), Mondot
etal., 2011 (s), Nemoto et al.,
2012 (s), Tong et al., 2013 (e),
Gevers et al., 2014 (m),
Takahashi et al., 2016 (s), Mar
et al., 2016 (), Zhang et al.,
2017 (s), Pascal et al., 2017 (s),
Franzosa et al., 2019 (s)

® Ruminococcaceae

* R. bromii

Morgan et al., 2012 (s,m), Hedin et al., 2014 (s),
Mar et al., 2016 (s), Halfvarson et al., 2017 (s),
Sokol et al., 2017 (s), Zhang et al., 2021 (s,m),
Nishino et al., 2018 (m),

Frank et al., 2007 (m), Mondot et al., 2011 (s),
Prideaux et al., 2013 (m), Hoarau et al., 2016 (s),
Sokol et al., 2017 (s), Nishino et al., 2018 (m),
Ryan et al., 2020 (m),

Zuo et al., 2020
(s), Tao et al., 2020
(s) [C. hathewayi]

Tang et al., 2020 (s), Yeoh et al.,
2021 (s) [during antibiotic therapy]

Tang et al., 2020 (s), Zuo et al.,
2020 (s) [during antibiotic
therapy], Tao et al., 2020 (s), Yeoh
et al., 2021 (s), Gaibani et al.,
2021 (s)

Tang et al., 2020 (s), Zuo et al.,
2020 (s) [during antibiotic
therapy], Yeoh et al., 2021 (s)

Tang et al., 2020
(s), Wu et al., 2021
(s), Gaibani et al.,
2021 (s)

Gu et al., 2020 (s), He et al., 2021
(s), Gaibani et al., 2021 (s)

Yeoh et al., 2021 (s)

(Continued)
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TABLE 1 | Continued

Bacterial taxa

Inflammatory bowel disease (IBD)

Coronavirus Disease 2019 (COVID-19)

Enriched

Underrepresented

Enriched Underrepresented

* R. gnavus

e [ achnospiraceae

* R. hominis

e D, forminigenerans

e [actobacillus

* Veillonellaceae

Proteobacteria

® Enterobacteriaceae

e E. coli

e Shigella

Willing et al., 2010 (s), Joossens
et al,, 2011 (s), Machiels et al.,
2014 (s), Hoarau et al., 2016
(s), Sokol et al., 2017 (s),
Nishino et al., 2018 (m),
Franzosa et al., 2019 (s), Lloyd-
Price et al., 2019 (s,m), Yimaz
et al., 2019 (m), Ryan et al.,
2020 (m), Clooney et al., 2021
(s),

Alam et al., 2020 (s)

Willing et al., 2010 (s), Kang
et al., 2010 (s), Fujimoto et al.,
2013 (s), Wang et al., 2014
(s,m), Kabeerdoss et al., 2015
(m), Zhang et al., 2021 (s,m)

Macfarlane et al., 2004 (m),
Michail et al., 2012 (s), Gevers
et al., 2014 (m), Santoru et al.,
2017 (s), Lloyd-Price et al.,
2019 (s,m), Alam et al., 2020
(s), Ryan et al., 2020 (m)

Seksik et al., 2003 (s), Frank

et al., 2007 (m), Andoh et al.,
2009 (s), Michail et al., 2012 (s),
Nishino et al., 2018 (m), Alam
et al., 2020 (s), Ryan et al., 2020
(m), Shahir et al., 2020 (m)
Martin et al., 2004 (m), Gophna
et al., 2006 (m), Schwiertz et al.,
2010 (s), Wiling et al., 2010 (s),
Rehman et al., 2010 (m), Mondot
etal., 2011 (s), Michalil et al.,
2012 (s), Morgan et al., 2012
(s,;m), Tong et al., 2013 (g), Sha
etal., 2013 (s), Gevers et al.,
2014 (m), Wang et al., 2014
(s,m), Kabeerdoss et al., 2015
(m), Hoarau et al., 2016 (s),
Takahashi et al., 2016 (s), Zhang
etal., 2017 (s), Pascal et al.,
2017 (s), Santoru et al., 2017 (s),
Vrakas et al., 2017 (m), Chen
etal., 2017 (s), de Meij et al.,
2018 (s), Franzosa et al., 2019
(s), Lloyd-Price et al., 2019 (s,m),
Zhang et al., 2021 (s,m)

Willing et al., 2010 (s), Kang

et al.,, 2010 (s), Morgan et al.,
2012 (s,m)

Frank et al., 2007 (m), Gevers et al., 2014 (m)

Frank et al., 2007 (m), Rausch et al., 2011 (m),
Kumari et al., 2013 (s), Prideaux et al., 2013 (m),
Mar et al., 2016 (s), Chen et al., 2017 (s), Sokol
et al., 2017 (s), Nishino et al., 2018 (m), Yilmaz
et al., 2019 (m), Ryan et al., 2020 (m),

Tong et al., 2013 (e), Machiels et al., 2014 (s),
Franzosa et al., 2019 (s), Lloyd-Price et al., 2019
(s,m)

Franzosa et al., 2019 (s), Zhang et al., 2021
(s,m)

Ott et al., 2004 (m), Frank et al., 2007 (m),
Rausch et al., 2011 (m), Vigsnaes et al., 2012
(s), Sha et al., 2013 (s), Vrakas et al., 2017 (m),
Zhang et al., 2017 (s)

Yeoh et al., 2021
()

Zuo et al., 2020 (s) [during
antibiotic therapy], Gu et al., 2020
(s), Zuo et al., 2021 (s), Gaibani
etal., 2021 (s), He et al., 2021 (s),
Wu et al., 2021 (s)

Yeoh et al., 2021 (s) [during
antibiotic therapy]

Guetal, 2020 (s), Tang et al., 2020 (s)

Tao et al., 2020 (s),

Yeoh et al., 2021

(s), Wu et al., 2021

(s) Gaibani et al.,

2021 (s)

Gu et al., 2020 (s),

Gaibani et al.,

2021 (s)

Tang et al., 2020 (s)

(Continued)
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TABLE 1 | Continued

Bacterial taxa

Inflammatory bowel disease (IBD)

Coronavirus Disease 2019 (COVID-19)

Enriched

Underrepresented

Enriched

Underrepresented

* P mirabilis
e Sutterella

Fusobacteria
® Fusobacterium

® F nucleatum

Bacteroidetes
® Bacteroides

* B. fragilis

* B. vulgatus

e B. ovatus

* Prevotellaceae

e Alistipes

Verrucomicrobia
e A muciniphila

Actinobacteria
* Bifidobacterium

* B. bifidum

e B. adolescentis

e Collinsella

Zhang et al., 2021 (s,m)
Frank et al., 2007 (m), Michail
etal., 2012 (s), Pascal et al.,
2017 (s)

Michail et al., 2012 (s), Alam
et al., 2020 (s), Zhang et al.,
2021 (s,m)

Gevers et al., 2014 (m), Pascal
et al., 2017 (s), Santoru et al.,
2017 (s), Clooney et al., 2021
(s)

Andoh et al., 2009 (s), Walker
etal.,, 2011 (m), Wang et al.,
2014 (s,m), Kabeerdoss et al.,
2015 (m), Hoarau et al., 2016
(s), Vrakas et al., 2017 (m)

Gophna et al., 2006 (m),
Wallters et al., 2014 (s), Ryan
et al., 2020 (m), Shahir et al.,
2020 (m)

Manichanh et al., 2006 (s),
Andoh et al., 2009 (s), Walker
et al., 2011 (m), Kabeerdoss
et al., 2015 (m), Alam et al.,
2020 (s)

Walker et al., 2011 (m), Rausch
et al., 2011 (m), Shahir et al.,
2020 (m)

Willing et al., 2010 (s), Wang
et al., 2014 (s,m), Takahashi
etal., 2016 (s),

Jacobs et al., 2016 (s), Mar
et al., 2016 (s)

Willing et al., 2010 (s)

Rausch et al., 2011 (m)

Seksik et al., 2003 (s), Ott et al., 2004 (m),
Rehman et al., 2010 (m), Nemoto et al., 2012 (s),
Sha et al., 2013 (s), Fujimoto et al., 2013 (s),
Gevers et al., 2014 (m), Takahashi et al., 2016
(s), Mar et al., 2016 (s), Sokol et al., 2017 (g),
Heidarian et al., 2019 (s)

Manichanh et al., 2006 (s), Scanlan et al., 2006
(s), Macfarlane et al., 2004 (m), Kang et al., 2010
(s), Sha et al., 2013 (s), Jacobs et al., 2016 (s),
de Meij et al., 2018 (s)

Macfarlane et al., 2004 (m), Gevers et al., 2014
(m), Ryan et al., 2020 (m)

Frank et al., 2007 (m), Macfarlane et al., 2004
(m), Santoru et al., 2017 (s), Shahir et al., 2020
(m)

Seksik et al., 2003 (s), Ott et al., 2004 (m),
Kang et al., 2010 (s), Rausch et al., 2011 (m),
Sha et al., 2013 (s), Fujimoto et al., 2013 (s),
Prideaux et al., 2013 (m), Hedin et al., 2014
(s), Takahashi et al., 2016 (s), Mar et al., 2016
(s), Hoarau et al., 2016 (s), Santoru et al.,
2017 (s), Sokol et al., 2017 (s), Nishino et al.,
2018 (m), Heidarian et al., 2019 (s)

Frank et al., 2007 (m), Willing et al., 2010 (s),
Mondot et al., 2011 (s), Gevers et al., 2014,
Ryan et al., 2020 (m), (m), Chen et al., 2017 (s),
Sokol et al., 2017 (s), Halfvarson et al., 2017 (s),
Nishino et al., 2018 (m), de Meij et al., 2018 (s),
Franzosa et al., 2019 (s), Lloyd-Price et al., 2019
(s,m), Shahir et al., 2020 (m)

Vigsnaes et al., 2012 (s), Jacobs et al., 2016 (s),
Santoru et al., 2017 (s), de Meij et al., 2018 (s)

Favier et al., 1997 (s), Seksik et al., 2008 (s),
Schwiertz et al., 2010 (s), Kang et al., 2010 (s),
Sha et al., 2013 (s), Sokol et al., 2017 (s),
Zhang et al., 2017 (s), Vrakas et al., 2017 (m),
Yilmaz et al., 2019 (m), Alam et al., 2020 (s)
Macfarlane et al., 2004 (m), Mondot et al., 2011
(s), Gevers et al., 2014 (m)

Macfarlane et al., 2004 (m), Joossens et al.,
2011 (s), Hedin et al., 2014 (s), Gevers et al.,
2014 (m), Machiels et al., 2014 (s)

Joossens et al., 2011 (s), Santoru et al., 2017
(s), Pascal et al., 2017 (s), Nishino et al., 2018
(m),

Yeoh et al., 2021

(s) [during antibiotic

therapy]

Zuo et al., 2020
(s), Yeoh et al.,
2021 (s) [B. dorei
during antibiotic
therapy], He et al.,
2021 (s)

Yeoh et al., 2021
()
Yeoh et al., 2021
)

Gaibani et al.,
2021 (s)

Tao et al., 2020 (s),
Wu et al., 2021 (s)

Zuo et al., 2021
(s), Gaibani et al.,
2021 (s)

Tao et al., 2020 (s), Zuo et al.,
2021 (s), Wu et al., 2020 (s)
[during patient’s admission in ICU]

Gaibani et al., 2021 (s)

Zuo et al., 2021 (s), Yeoh et al.,
2021 (s) [A. putredinis during
antibiotic therapy]

Tang et al., 2020 (s)

Yeoh et al., 2021 (s)

Yeoh et al., 2021 (s), Wu et al.,
2021 (s)
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of the virus (Xiao et al., 2020; Qian et al., 2021). Indeed, the
brush border of human enterocytes exhibits the highest expression
of the SARS-CoV-2 receptor angiotensin-converting enzyme 2
(ACE2; Qi et al., 2020); even the transmembrane serine protease
2 (TMPRSS2), mediating the entry of SARS-CoV-2, is expressed
on the luminal surface of enterocytes from ileum and colon
as well as on the epithelial and gland cells of the esophagus
(Knyazev et al., 2021). Thus, it is not surprising that SARS-
CoV-2 infects human gut enterocytes (Lamers et al.,, 2020),
promoting gut mucosal inflammatory infiltration with activated
immune cells and cytokines (Lehmann et al, 2021). These
findings support (a) the frequently observed gastrointestinal
symptoms in patients with COVID-19, including severe
abdominal pain, diarrhea, nausea, and vomiting (Devaux et al.,
2021); (b) the persistence of viral RNA in patients stool even
after the virus clearance from oropharyngeal swab (Morone
et al., 2020); (c) the likelihood of SARS-CoV-2 transmission
by the fecal-oral route (Cheung et al., 2020; Guo et al., 2021);
(d) gut dysbiosis in asymptomatic infected individuals and
patients with COVID-19 (Yamamoto et al., 2021). SARS-CoV-2
gut colonization significantly alters the gut microbial ecosystem,
leading to dysbiosis; on the other hand, gut dysbiosis, due to
aging, unhealthy lifestyle habits, and pre-existing chronic diseases
(e.g., hypertension, type-2 diabetes, autoimmune diseases, and
metabolic syndrome), is a key risk factor for developing
COVID-19 (Magalhaes et al., 2021). In hospitalized patients
with COVID-19, the reduction in gut microbiota diversity, the
depletion of beneficial bacterial symbionts, and the enrichment
of opportunistic pathogens closely correlate with the host
immune response and, in turn, with the disease severity and
the clinical outcome (Villapol, 2020). The variety of the
therapeutic treatment for COVID-19 may impact changes in
gut microbiome composition, as highlighted in a recent review
(Aktas and Aslim, 2021). Gut dysbiosis continues after the
clearance of the viral RNA from the upper respiratory tract
and the resolution of clinical symptoms. These associations
result from complex interactions between the gut and the lung
microbiota, the so-called gut-lung axis (de Oliveira et al., 2021).
In particular, a balanced gut microbial ecosystem enhances
the pulmonary defense against viral infections, for example,
by stimulating the lung’s synthesis of type I interferons (Cyprian
et al, 2021). Conversely, gut dysbiosis negatively influences
the progression of the viral infection, COVID-19 development,
and patient outcome (Hussain et al., 2021).

Since SCFAs inhibit the overgrowth of opportunistic
pathogens, activate the adaptive immune response by enhancing
antiviral immunity, and contribute to maintaining the integrity
of the intestinal mucosal barrier, the depletion of SCFAs
producer bacteria is closely associated with COVID-19 severity
and adverse outcome; therefore, the number of SCFAs producer
bacteria could predict the severity of the disease
(Tang et al., 2020). Based on the observation that the
Enterococcus/ Enterobacteriaceae ratio is altered in approximately
74% of patients with severe/critical COVID-19, being
significantly increased in non-survivors compared with survivors,
it was proposed that this index may be useful to predict
death in critically ill patients (Tang et al., 2020). However, a

strong limitation may be the heterogeneity of this ratio.
Enterococcus is a genus belonging to the Enterococcaceae family
(Firmicutes phylum), while Enterobacteriaceae family belongs
to Proteobacteria phylum. Despite the limited number of studies
on the gut microbiome in patients with COVID-19, the pattern
of gut dysbiosis associated with the disease has been partially
defined (Table 1). When compared with non-infected individuals,
gut dysbiosis in patients with COVID-19 is marked by the
depletion of C. leptum (cluster IV) group, E prausnitzii, and
E. rectale species, Ruminococcaceae, and Lachnospiraceae families,
in conjunction with the overgrowth of Enterococcus genus,
Veillonellaceae, and Enterobacteriaceae families (Tang et al,
2020; Tao et al.,, 2020; Zuo et al., 2020, 2021; Gaibani et al,,
2021; He et al, 2021; Wu et al, 2021; Yeoh et al., 2021).
The abundance of Coprobacillus, C. ramosum, C. hathewayi
(Zuo et al, 2020), and Enterococcus (Gaibani et al., 2021)
was found positively correlated with COVID-19 severity;
conversely, an inverse correlation was observed between the
disease severity and the abundance of C. leptum (cluster IV)
group, Lactobacillus, Bifidobacterium, C. butyricum (Tang et al.,
2020), Bilophila, Citrobacter (Tao et al., 2020), Bacteroides
(Gaibani et al., 2021), E prausnitzii, E. rectale (Tang et al,
2020; Yeoh et al., 2021), B. bifidum, and B. adolescentis (Yeoh
et al., 2021). In addition, the abundance of some microbial
taxa, including Erysipelotrichaceae bacterium 2_2_44A (Zuo
etal., 2020), P. copri, E. dolichum (Wu et al., 2021), C. aerofaciens,
C. tanakaei, S. infantis (Zuo et al., 2021) positively correlates
with the fecal SARS-CoV-2 load. Conversely, the abundance
of B. dorei, B. thetaiotaomicron, B. massiliens, B. ovatus (Zuo
et al., 2020), S. anginosus, Dialister, Alistipes, Ruminococcus,
C. citroniae, Bifidobacterium, Haemophilus, H. parainfluenzae
(Wu et al., 2021), P. merdae, B. stercoris, A. onderdonkii, and
Lachnospiraceae bacterium 1_1_57FAA (Zuo et al.,, 2021) was
inversely correlated with the fecal viral load. The increased
gut colonization of bacteria usually resident in the oral and
respiratory tracts, such as Actinomyces (Gu et al., 2020; Zuo
et al., 2020; Gaibani et al, 2021; Wu et al., 2021) and
Granulicatella (Wu et al., 2021), is associated with COVID-19
and its severity, confirming the active interchange between
the gut, oral, and respiratory tract microbiota. The close
relationship between gut microbiota and the immune-mediate
response to SARS-CoV-2 infection and COVID-19 progression
and outcome is supported by the correlation between the
abundance of some gut microbial taxa and biomarkers of
inflammation. For example, in critical patients with COVID-
19, a negative correlation was observed between serum C-reactive
protein (CRP) levels and the gut abundance of C. butyricum
and E prausnitzii (Tang et al, 2020). Fecal inflammatory
cytokine IL-18 concentration was positively correlated with
the abundance of Peptostreptococcus, Fusobacterium, and
Citrobacter in patients with COVID-19 (Tao et al, 2020).
Similarly, B. dorei and A. muciniphila abundance was found
positively correlated with the serum level of IL-1p, IL-6, and
C-X-C motif ligand 8 (CXCL8), whereas F. prausnitzii, E. rectale,
and B. adolescentis were negatively correlated with serum level
of TNF-a, IL-10, C-C motif ligand 2 (CCL2), and CXCL10
(Yeoh et al., 2021).
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TABLE 2 | Main factors affecting the variability of the results between published
studies on gut microbiota composition in 1BD.
1. Host genetic polymorphisms and gene expression

2. Mucosal immune system interactions (e.g., with Treg/Th17, PRRs, TLRs,
and NLRs)

3. Disease phenotype based on clinical activity indices and sigmoidoscopy
scores

~

. Type of disease (e.g., Crohn’s Disease and Ulcerative Colitis)

5. Type of biological sample (e.g., stool, endoscopic biopsies, or resection
specimens)

6. Site of the biopsy sampling (e.g., terminal ileum and large bowel)
7. Host demographics (e.g., gender and aging)

8. Environmental stimuli and patient’s life style (e.g., smoking)

9. Diet and medications (e.g., antibiotics)

10. Inter-individual variability between patients

11. Methods for the microbiome analysis (e.g., fluorescence in situ, terminal
restriction fragment length polymorphism, 16S rDNA sequencing, and
whole-genome sequence)

METABOLOMICS IN IBD AND COVID-19

Metabolomics is an evolving “omic” discipline allowing the
identification and the quantification of endogenous and exogenous
products of the cellular metabolism, namely, metabolites, within
a biological system in a high-throughput manner (Liu and
Locasale, 2017). The set of metabolites recognizable in a biological
matrix is called metabolome or metabolic profile; it is a highly
personalized readout of the current metabolism and metabolic
activity that occurred in the past (Zamboni et al, 2015).
Qualitative and quantitative data on metabolites reveal basic
information on changes and perturbations of metabolic pathways
deriving from interactions between genome, environment,
microbiome, nutrients, and the intake of drugs and toxicants
in health and disease states (Ashrafian et al., 2020). An updated
PubMed literature search, querying the keyword metabolomics,
results in approximately 26,200 studies, including in vitro
experimental studies, studies on animal models, and clinical
studies on patients with various diseases (Kang et al., 2021).
Approximately 200 studies used the metabolomic approach in
patients with IBD (Gallagher et al,, 2021) and 25 in patients
with COVID-19 (Mussap and Fanos, 2021). The most relevant
findings are reported below.

Tryptophan Metabolism

Tryptophan (TRP) is an essential amino acid mainly derived
from the diet and involved in serotonin, melatonin, and niacin
biosynthesis, as detailed in Figure 1. More than 95% of TRP
is metabolized along the kynurenine pathway; in the liver, the
enzyme tryptophan dioxygenase (TDO) converts tryptophan
into kynurenine. In the brain and the immunocompetent cells,
the conversion is catalyzed by indoleamine 2,3-dioxygenase
(IDO-1 and 2; Gao et al,, 2018; Agus et al,, 2018). Kynurenine
can be converted either into neurotoxic metabolites, namely,
3-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic acid,
or neuroprotective metabolites, such as kynurenic acid, anthranilic

acid, xanthurenic acid, and picolinic acid (Savitz, 2020).
Depending on gut microbiota composition, approximately 4-6%
of tryptophan is converted into various intermediates. For
example, the prevalence of Clostridium sporogenes and
Ruminococcus gnavus spp. originates tryptamine (Williams et al.,
2014), whereas the prevalence of Lactobacillus, Bacteroides, and
Clostridium genera originates indole derivatives (Roager and
Licht, 2018). Among bacterial metabolites, indoles play a crucial
role in the regulation of gastrointestinal barrier function and
integrity by their binding with the pregnane X receptor (PXR),
also known as steroid and xenobiotic receptor (SXR; Venkatesh
etal,, 2014; Oladimeji and Chen, 2018). Finally, 1-2% tryptophan
is converted into serotonin (5-hydroxytryptamine), a
neurotransmitter and key regulator of intestinal secretion and
motility. More than 90% of serotonin is synthesized by the
rate-limiting enzyme tryptophan hydroxylase (Tph/TPH) 1
within enterochromaffin cells of the gut (Stasi et al, 2019);
notably, gut microbiota may considerably affect serotonergic
regulation via microbiota-derived SCFA (Reigstad et al., 2015).

Tryptophan and indole-3-acetic are decreased in the blood
of patients with IBD (Table 3; Ooi et al., 2011; Kohashi et al.,
2014; Nikolaus et al., 2017; Bosch et al., 2018; Lai et al., 2019).
Conversely, kynurenine and quinolinic acid are increased (Forrest
et al, 2002; Yau et al., 2014; Nikolaus et al., 2017; Whiley
et al, 2019). In the urine and stool of patients with IBD,
tryptophan is increased (Schicho et al, 2012; Bosch et al,
2018). Kynurenic acid blood levels were increased in IBD
(Forrest et al., 2002); similarly, picolinic acid was increased
(Yau et al., 2014). More recently, kynurenic acid and picolinic
acid were found decreased in patients with IBD (Nikolaus
et al, 2017; Whiley et al, 2019). These alterations seem to
be closely related to gut dysbiosis (de Meij et al, 2018),
promoting the massive activation of pro-inflammatory cytokines
(e.g., INF-y and TNF-a), and the upregulation of the IDO
expression (Wu et al., 2018). Gut dysbiosis significantly affects
the conversion of tryptophan into indole derivatives, such as
indole-3 acetic acid and indole-3-acetaldehyde. Low blood levels
of indole-3-acetic acid have been associated with the overgrowth
of Clostridium and Lactobacillus genera; both bacterial genera
decarboxylate indole-3-acetic acid in 3-methylindole, also known
as skatole. As a result, indole-3-acetic acid is metabolized with
the concomitant accumulation of skatole. In patients with IBD,
skatole blood levels were significantly increased (Lai et al,
2019). Most indole derivatives are ligands of the Aryl
Hydrocarbon Receptor (AHR), a cytosolic ligand-dependent
transcription factor widely expressed by cells of the immune
system and involved in antimicrobial activity and gut immune
homeostasis (Stockinger et al., 2014; Lamas et al., 2018). The
indole derivatives-induced AHR activation promotes the local
synthesis of the anti-inflammatory cytokine IL-22 by the innate
lymphoid cells (Monteleone et al., 2011; Qiu et al., 2012; Yang
et al., 2020); IL-22 protects the mucosa integrity against fungal
infection by Candida albicans, commonly observed in patients
with IBD (Sokol et al., 2017; Gronke et al, 2019). In healthy
subjects with gut eubiosis, the activation of AHR modulates
local IL-22 production; conversely, in IBD patients, the decrease
of indole-3 acetic acid due to the imbalance of gut flora reduces
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the AHR activity and hence IL-22 synthesis, as observed in
an animal model (Lamas et al., 2016). In patients with COVID-
19, most metabolomics-based studies reported a significant
decrease in blood tryptophan level in conjunction with the
significant increase of kynurenine, kynurenic acid, and
downstream metabolites of the kynurenine pathway (Barberis
et al., 2020; Fraser et al., 2020; Thomas et al., 2020; Lawler
etal., 2021). The decrease of tryptophan was inversely correlated
with biomarkers of inflammation, such as IL-6 and CRP (Thomas
etal., 2020). The increase of kynurenine is significantly associated
with the increase of several cytokines, including interferon
y-induced protein 10 (IP-10), the mitogen-inducible cytokine
macrophage inflammatory protein-1 p (MIP-1-f), also known
as CCL4, TNF-q, interleukin-1 receptor antagonist (IL-1RA),
IL-7, IL-18, and IL-8 (Lawler et al., 2021). Controversial results
on indole-3-acetic acid in patients with COVID-19 have been
published. On the one hand, it was found decreased (Lawler
et al, 2021), and this finding remains unclear. A possible
explanation may be the decrease of indole-3 acetic acid produced
by the host because of the upregulation of the kynurenine
pathway. This assumption is plausible, taking into account that
a fraction of indole-3 acetic acid is produced by mammalian
cells (Zhang et al., 2020). On the other hand, indole-3 acetic
acid has been found increased (Blasco et al., 2020); this finding
is coherent with gut dysbiosis marked by the prevalence of
bacteria converting tryptophan into indoles.

Glutamine

Glutamine is an L-a gluconeogenic and proteogenic amino
acid containing five carbons and two amino groups. L-glutamine
is considered a conditionally essential amino acid; it is obtained
mainly through the diet, as well as it is synthesized de novo
from glutamate and ammonia in almost all the human cells
by the activity of glutamine synthase (E.C.: 6.3.1.2.). In rapidly
diving cells, such as enterocytes of the small intestine
(Windmueller and Spaeth, 1974), lymphocytes, neutrophils,
macrophages, and tumor cells, as well as under catabolic stressed
conditions, including severe infections and sepsis, the endogenous
synthesis does not meet the energy cell demand and the amount
deriving from digested food absorbed through the small intestine
becomes vitally important (Cruzat et al., 2018). Glutamine is
involved in many cytoplasmatic and mitochondrial pathways,
such as (a) the preservation of the reactive oxygen species
(ROS) homeostasis, by contributing to the synthesis of the
glutathione (Matés et al, 2002); (b) the biosynthesis of
hexosamine, nucleotides, asparagine; and (c) the activation of
glutaminolysis (Yoo et al, 2020). In the gut, the role of
L-glutamine is crucial (Kim and Kim, 2017). Firstly, glutamine
exerts an anti-inflammatory activity, preventing the expression
of pro-inflammatory cytokines through the inhibition of both
nuclear factor k light chain-enhancer of activated B cells (NF-kB)
and signal transducer and activator of transcription (STAT)
proteins (Kretzmann et al., 2008). Secondly, L-glutamine enhances
tight junction integrity, as demonstrated in animal models
(Wang et al., 2016), triggering the mitogen-activated protein
kinase (MAPK) function (Basuroy et al., 2006; Perna et al,
2019); in addition, L-glutamine is pivotal for gut cells proliferation

(Rhoads et al., 1997). Finally, L-glutamine modulates NO
synthetase expression (Hecker et al., 1990; Swierkosz et al,
1990). Thus, it is not surprising that L-glutamine is the most
abundant free amino acid in humans. L-glutamine provides
energy as a substitute fuel to the tricarboxylic acid (TCA)
cycle to produce adenosine triphosphate (ATP; Curi et al,
2005); recently, it was postulated that L-glutamine is the fuel
for the immune system, generating the concept of
immunometabolism (Wang et al.,, 2019).

In IBD, L-glutamine plasma levels are decreased (Table 4),
especially during the acute exacerbation of CD (Sido et al,
2006; Bjerrum et al., 2010; Ooi et al., 2011; Scoville et al,
2018). Supplementation improves inflammation (Sugihara et al.,
2019) and the mucosal barrier integrity in patients with remissive
CD (Benjamin et al, 2012b). Glutamine is reduced in the
blood of patients with non-severe COVID19 and much more
in severe forms (Thomas et al., 2020; Dogan et al., 2021; Meoni
et al., 2021; Table 4). In patients with COVID-19, it was
observed a 19% reduction in glutamine blood level compared
to that before the onset of the disease (Bruzzone et al., 2020).
This finding may be related to higher consumption of
gluconeogenic amino acids, especially in patients with severe
forms, because of the significant scarcity of amino acids (Fanos
etal, 2021). A further possible explanation may be the increased
conversion of L-glutamine into glutamate, supported by the
blood Krebs cycle’s intermediates elevation and by the increase
in oxidative stress (Pdez-Franco et al., 2021).

Histidine

Histidine is an essential amino acid playing a crucial role as
a ROS scavenger and anti-inflammatory mediator (Son et al,,
2005; Holecek, 2020). The decarboxylation of histidine, catalyzed
by histidine decarboxylase, originates histamine, a primary
mediator in allergic diseases and a neurotransmitter involved
in the control of food intake and sleep biorhythm. Histidine
decarboxylase is expressed in bacteria of the large intestine
and human muscle, liver, lung, and gastric mucosa (Moro
et al., 2020). Blood histidine has been found significantly
decreased in patients with IBD (Bjerrum et al, 2010; Ooi
et al,, 2011; Dawiskiba et al., 2014; Kohashi et al., 2014; Bosch
et al., 2018; Probert et al, 2018). An early study found that
histidine was significantly decreased in a large cohort (n=387)
of IBD patients (Hisamatsu et al., 2012); interestingly, plasma
histidine was significantly lower in patients with active disease
than in those in remission. Furthermore, a significant inverse
correlation was observed between plasma histidine and serum
CRP in patients with UC and CD. Authors postulated that
the decrease in plasma histidine may reflect chronic inflammation
in patients with IBD, suggesting supplementation with histidine
as a novel therapy. In a subsequent 1-year follow-up of patients
with UC in clinical remission, the same research group found
that the decrease in histidine plasma level over time was
associated with the increased risk of clinical relapse (Hisamatsu
et al., 2015). Previous in vitro studies and in animal models
suggested that low levels of histidine do not allow the effective
suppression of NF-kB (Andou et al., 2009; Hasegawa et al.,
2011); thus, LPS-induced TNF-a expression cannot be inhibited,
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4-6% AhR metabolites

pathway; blue background=TpH1 pathway.

1-29% TpH1

FIGURE 1 | Schema summarizing the main metabolic pathways deriving from tryptophan. Details are reported in the text. Abbreviations: PXR, Pregnane X
Receptor; AhR, Aryl Hydrocarbon Receptor; ARNT, AhR Nuclear Translocator protein; PTGS2, Prostaglandin G/H Synthase 2; CYP1A1, Cytochrome P450 1A1;
VEGFA, vascular endothelial growth factor A; TpH1, tryptophan hydroxylase-1; TDO, tryptophan dioxygenase; IDO-1, indoleamine 2,3-dioxygenase-1. White
font=name of the metabolic pathway; purple background =tryptophan pathway; yellow background =TDO/IDO-1 pathway; green background =AhR metabolic

—
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resulting in the exacerbation of inflammation. This was confirmed
by the amelioration of intestinal inflammation after oral
administration of histidine. A recent metabolomics-based study
on serum and stool samples in pediatric patients with IBD
found controversial results. Compared with healthy controls,
fecal histidine was significantly decreased in children with CD
and significantly increased in those with UC (Kolho et al,
2017). Moreover, in the group of children with UC, serum
histidine inversely correlated with erythrocyte sedimentation
rate (ESR). Histidine fecal levels have been positively associated
with more extended disease in UC but not in CD pediatric
patients (Jagt et al., 2021). A possible explanation may be either
the colonic leakage of histidine and other amino acids or

malabsorption. However, the overgrowth of Bacteroides vulgatus
in patients with UC leads to an increased fecal proteolytic
and elastase activity (Galipeau et al., 2021). Therefore, it is
reasonable to assume that the increased proteolytic and elastase
activity might be the main factor promoting the high
concentrations of fecal histidine rather than the protein-losing
enteropathy. Several studies found L-histidine significantly
decreased in the serum/plasma of patients with COVID-19
(Table 4; Barberis et al., 2020; Bruzzone et al., 2020; Thomas
et al, 2020); the magnitude of L-histidine decline correlated
with the disease severity (Lawler et al., 2021; Meoni et al,
2021). COVID-19 is marked by the activation of gluconeogenesis
that is positively correlated with the severity of the disease.
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TABLE 3 | Changes in the tryptophan metabolism in IBD and in COVID-19.

Metabolite Inflammatory bowel disease (IBD) Coronavirus disease 2019 (COVID-19)
Trend Ref. Trend Ref.
Tryptophan (blood) Decreased Qoi et al., 2011; Kohashi et al., Decreased Barberis et al., 2020; Thomas
2014; Nikolaus et al., 2017; et al., 2020; Lawler et al., 2021
Bosch et al., 2018
Tryptophan (urine) Increased Schicho et al., 2012
Tryptophan (stool) Increased Bosch et al., 2018
Kynurenine (blood) Increased Forrest et al., 2002; Nikolaus  Increased Fraser et al., 2020; Thomas et al.,
et al., 2017; Whiley et al., 2020; Lawler et al., 2021
2019

Quinalinic acid (blood) Increased Yau et al., 2014; Nikolaus Increased Lawler et al., 2021
etal, 2017;

Kynurenic acid (blood) Increased Forrest et al., 2002 Increased Thomas et al., 2020 (only in
patients with high levels of
interleukine-6)

Decreased Nikolaus et al., 2017; Whiley
et al., 2019 (statistically not
significant)

Indole-3-acetic acid (blood) Decreased Laietal., 2019 (estimated by ~ Decreased Lawler et al., 2021

the increase in skatole)
Increased Blasco et al., 2020

Picolinic acid (blood) Increased Yau et al., 2014 Increased Thomas et al., 2020

Decreased Nikolaus et al., 2017; Whiley

etal, 2019

TABLE 4 | Changes in the concentration of various amino acids in patients with IBD and COVID-19.

Metabolite Inflammatory bowel disease (IBD) Coronavirus disease 2019 (COVID-19)
Trend Ref. Ref.
L-Glutamine (blood) Decreased Sido et al., 2006; Bjerrum Bruzzone et al., 2020; Thomas
etal., 2010; Ooi et al., 2011; et al., 2020; Meoni et al., 2021;
Scoville et al., 2018 Dogan et al., 2021
L-Glutamine (gut mucosa) Decreased QOoi et al., 2011
Histidine (blood) Decreased Bjerrum et al., 2010; Ooi et al., Thomas et al., 2020; Barberis
2011; Hisamatsu et al., 2012; et al., 2020; Bruzzone et al.,
Kohashi et al., 2014; 2020; Kimhofer et al., 2020;
Dawiskiba et al., 2014; Bosch Lawler et al., 2021; Meoni et al.,
et al., 2018; Probert et al., 2021
2018
Histidine (stools) Decreased Kolho et al., 2017
Histidine (stools) Increased Kolho et al., 2017
Phenylalanine (serum) Increased Zhang et al., 2013 ; Kimhofer et al., 2020; Shi et al.,
Dawiskiba et al., 2014 2021
Barberis et al., 2020; Bruzzone
et al., 2020
Phenylalanine (urine) Increased Alonso et al., 2016
Phenylalanine (stools) Increased Jansson et al., 2009; Kolho
etal., 2017; Bosch et al., 2018
Succinate (blood, urine) Increased QOoi et al., 2011; Macias-Ceja Barberis et al., 2020; Bruzzone
etal., 2019 et al., 2020
Decreased Schicho et al., 2012; Stephens Song et al., 2020
et al., 2013; Dawiskiba et al.,
2014
Succinate (gut mucosa) Increased Macias-Ceja et al., 2019
Decreased Ooi et al., 2011
Citrate (blood, urine) Decreased Schicho et al., 2012; Stephens Paez-Franco et al., 2021
et al., 2013; Dawiskiba et al.,
2014
Bruzzone et al., 2020
Citrate (Qut mucosa) Decreased Ooi et al.,, 2011
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In patients with COVID-19, it was observed a 16% reduction
in L-histidine blood levels compared to those before the onset
of the disease, similarly to glutamine (Bruzzone et al., 2020).
In COVID-19, low L-histidine serum levels may be related to
the skeletal muscle breakdown (Kimhofer et al., 2020).

Phenylalanine
Phenylalanine is an aromatic, hydrophobic essential amino acid
involved in the biosynthesis of catecholamines (Matthews, 2007).
Phenylalanine is hydroxylated to tyrosine by phenylalanine
4-hydroxylase; this reaction primarily occurs in the liver and
the kidney. In turn, tyrosine is hydroxylated to L-DOPA
(3,4-Dihydroxyphenylalanine) by tyrosine-5 hydrolase, and the
enzyme DOPA-decarboxylase converts L-DOPA into Dopamine.
A restricted number of gut bacteria, mainly belonging to the
phylum Firmicutes, such as Clostridium sporogenes and
C. botulinum spp., metabolize aromatic amino acids tryptophan,
phenylalanine, and tyrosine to their corresponding propionic
acid  derivatives, namely, phenylpropionic acid and
4-hydroxyphenylpropionic acid (Elsden et al, 1976). In
C. sporogens, this metabolic pathway can produce nine
metabolites; they accumulate in host serum and exhibit specificity
by engaging receptors and altering host biology, especially
systemic immunity and gut permeability (Dodd et al., 2017).
Although an early metabolomics-based study focused on amino
acids did not report any data on phenylalanine level in stool
samples from adults with IBD (Marchesi et al., 2007), further
studies found a significant increase of phenylalanine in serum
(Zhang et al., 2013; Dawiskiba et al, 2014), urine (Alonso
et al., 2016), and stools (Jansson et al., 2009; Kolho et al,
2017; Bosch et al,, 2018). Interestingly, the magnitude of fecal
phenylalanine increase differed between CD and UC, and no
correlation was found between the disease activity and fecal
phenylalanine concentration (Bosch et al., 2018). Given that
the activity of phenylalanine-4-hydroxylase is impaired during
immune activation and inflammation (Scholl-Biirgi et al., 2013),
it is reasonable to assume that the increase of phenylalanine
in patients with IBD may originate from the accumulation of
this amino acid. A further contribution to the fecal phenylalanine
increase in IBD may be related to the microbial biosynthesis
of aromatic amino acids via the shikimate pathway (Sprenger,
2006). The condensation of phosphoenolpyruvate with erythrose
4-phosphate, deriving from the glycolysis pathway and the
non-oxidative branch of the pentose phosphate pathway,
respectively, yields 3-deoxy-d-arabino-heptulosonate-7-phosphate
(DAHP), which is converted into chorismic acid and then
into aromatic amino acids L-phenylalanine, L-tyrosine, and
L-tryptophan. Approximately one-third of gut bacteria expresses
all the transcripts coded from the genes of the shikimate
pathway, including A. muciniphila (Mesnage and Antoniou,
2020); the remaining bacteria species do not exhibit a complete
shikimate pathway, having lost either one enzyme (nearly 22%)
or five or more enzymes (nearly 74%; Zucko et al., 2010).
In COVID-19, the considerable generation of ROS, due to
cytokine activation, induces the irreversible non-enzymatic
oxidation of 5, 6, 7, 8-tetrahydrobiopterin (BH4), a cofactor
of phenylalanine 4-hydroxylase (PAH), the enzyme catalyzing

the conversion of phenylalanine to tyrosine. BH4 shortage
induces the loss of PAH activity, with the reduced biosynthesis
of tyrosine and the accumulation of phenylalanine. Data on
phenylalanine emerging from metabolomic studies in patients
with COVID-19 are heterogeneous and discordant: both
phenylalanine and tyrosine were decreased, especially in severe
and fatal outcomes (Barberis et al., 2020) or increased (Kimhofer
et al, 2020; Shi et al, 2021). Interestingly, in non-survivors,
phenylalanine serum levels are significantly higher than in
(Shi et al, 2021). Moreover, the increase in
phenylalanine was associated with the decrease in tyrosine
(Bruzzone et al, 2020). The role of phenylalanine in SARS-
CoV-2 infection seems to be crucial. In a multicenter study
on elderly patients with COVID-19, phenylalanine and tyrosine
metabolisms were highly upregulated in 132 deceased patients
(median age 74years) compared with 91 survivors (median
age 70years), suggesting that these amino acids contribute as
building blocks for the production of internal SARS-CoV-2
protein and its subsequent assembly into viral particles (Mei
et al,, 2021).

survivors

Succinate and Citrate
Succinate and citrate are intermediates of the TCA cycle.
Succinate is generated within mitochondria via the TCA cycle
from succinyl-CoA; then, succinate is oxidized to fumarate by
succinate dehydrogenase. Succinate is also a product of the
glyoxylate cycle, a pathway active in many bacteria, plants,
and fungi. Overall, succinate accumulation is a metabolic
signature of anoxia, asphyxia, and ischemia; the dysregulation
of succinate metabolism can lead to pathological conditions,
such as malignant transformation, inflammation, and tissue
injury. Metabolomics-based studies carried out in serum, plasma,
and urine of patients with IBD found that succinate and citrate
significantly decreased in CD and UC compared to non-IBD
individuals (Schicho et al., 2012; Stephens et al., 2013; Dawiskiba
et al, 2014). Succinate and citrate are strongly involved in
energy metabolism, and their depletion confirms the increased
demand and the rapid utilization of cellular energy in IBD. In
this context, citrate depletion may be associated with the increase
in fatty acids biosynthesis. Indeed, citrate is essential for carrying
acetyl-CoA from mitochondria to the cytosol. The significant
increase in circulating triglycerides, observed in several studies
on IBD, can be considered further evidence (Levy et al., 2000;
Sappati Biyyani et al., 2010; Tefas et al., 2020). Beyond the
role of succinate as an energy supplier, this amino acid is an
inflammation mediator; it selectively binds to and activates
the succinate receptor-1 (SUCNRIL), which promotes
pro-inflammatory signaling pathways (Mills and O'Neill, 2014).
In patients with CD, hypoxia, inflammation, and necrosis
promote the accumulation of succinate in gut inflamed areas,
with a further activation and infiltration of macrophages and
fibroblasts, the overexpression of pro-inflammatory cytokines,
and ultimately the acceleration of fibrosis (Macias-Ceja
et al,, 2019).

Data on succinate emerging from metabolomics-based studies
in COVID-19 are controversial (Table 4); the concentration
of this amino acid has been found increased (Barberis et al.,
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TABLE 5 | Changes in lipid concentration in IBD and in COVID-19.

Metabolite Inflammatory bowel disease (IBD) Coronavirus disease 2019 (COVID-19)
Trend Ref. Trend Ref.
3-B-hydroxybutyrate Increased Zhang et al., 2013; Increased Barberis et al., 2020;
Dawiskiba et al., 2014; Bruzzone et al., 2020; San
Kohashi et al., 2014; Juan et al., 2020; Paez-
Keshteli et al., 2017 Franco et al., 2021; Meoni
et al., 2021
Acetone Increased Keshteli et al., 2017 Increased Bruzzone et al., 2020; San
Juan et al., 2020
Acetoacetate Increased Dawiskiba et al., 2014; Increased Bruzzone et al., 2020; San
Keshteli et al., 2017 Juan et al., 2020
Glycerophospholipids Decreased Bjerrum et al., 2010, 2017;  Decreased Barberis et al., 2020; Wu
Fan et al., 2015; Kolho et al., 2020; Song et al.,
etal., 2017; Scoville et al., 2020; Shen et al., 2020;
2018; Tefas et al., 2019, Schwarz et al., 2021
2020
Lysophospholipids Decreased Increased Barberis et al., 2020; Song
et al., 2020; Schwarz et al.,
2021
Sphingolipids Decreased Fan et al., 2015 ; Kolho Decreased Barberis et al., 2020; Shen
etal., 2017 et al., 2020; Schwarz et al.,
2021
Increased Song et al., 2020
Arachidonic acid (blood) Decreased Esteve-Comas et al., 1992;  Increased Barberis et al., 2020;
Scoville et al., 2018; Lai Schwarz et al., 2021;
etal., 2019; Manfredi et al., Thomas et al., 2020
2019
Arachidonic acid (stools) Increased Jansson et al., 2009

2020; Bruzzone et al., 2020) decreased in moderate and severe
disease (Song et al., 2020), or unchanged (Thomas et al., 2020).
Differences between patients normo-oxygenate and patients
undergoing intense respiratory treatment may affect results
obtained in different studies. In the paper of Bruzzone, the
increase in succinate and citrate (156 and 12%, respectively)
has been associated with central carbon metabolism dysfunction
(Bruzzone et al., 2020). In severe COVID-19, the association
of citrate decrease with succinate increase could be related to
mitochondrial dysfunction due to hypoxia (Paez-Franco et al,
2021). Hypoxia inhibits oxidative phosphorylation, and thus
energy is supplied by the anaerobic glycolysis, which is activated
by the accumulation of the hypoxia-inducible factor 1o (HIF
la; Majmundar et al., 2010). As a result, the TCA is blocked,
with the consequent accumulation of succinate, depletion of
citrate, and increased demand for glucose. In turn, the latter
induces the decreased availability of gluconeogenic amino acids
and oxaloacetate, being utilized as substrates for gluconeogenesis.
Oxaloacetate is converted into glucose, whereas mitochondrial
acetyl-CoA oxidation is drastically reduced, and acetyl-CoA
is redirected to the synthesis of ketone bodies.

Ketone Bodies

Ketone bodies are small lipid-derived molecules, namely,
3-B-hydroxybutyrate, acetone, and acetoacetate (Laffel, 1999).
During fasting or prolonged exercise, the liver converts fatty
acids mobilized from adipocytes into ketone bodies; then, they
enter circulation, serving as an energy source. Ketone bodies

are crucial regulators of metabolic health and longevity; in
fact, they are neuroprotective and cytoprotective (Yang et al.,
2019), having the ability to inhibit histone deacetylase activity
and thereby epigenetic gene regulation (Newman and Verdin,
2014). On the one hand, ketone bodies were increased in the
serum of patients with IBD (Table 5), and this finding was
correlated to the increased energy demand (Zhang et al., 2013;
Dawiskiba et al, 2014; Kohashi et al, 2014; Keshteli et al,
2017). On the other hand, ketone bodies may play a strategic
role in IBD when supplemented with diet, thanks to their
capacity to protect from toxic effects of chronic inflammation.
An experimental study demonstrated that 3-3-hydroxybutyrate
suppresses the activation of the NLRP3 inflammasome in
response to urate crystals, ATP, and lipotoxic fatty acids (Youm
et al,, 2015). Then, in a mouse model of NLRP3-mediated
diseases, authors observed that 3-p-hydroxybutyrate attenuates
caspase-1 activation and the release of pro-inflammatory
cytokines IL-1B and IL-18 from macrophages, reducing in
definitive the severity of NLRP3-mediated chronic inflammatory
diseases. The same effect was obtained by applying a ketogenic
diet or supplementing 3-B-hydroxybutyrate (Youm et al., 2015).
The accumulation of ketone bodies following a ketogenic diet
strongly impacts gut microbiota composition; in vivo and in
vitro experiments demonstrated that ketone bodies selectively
inhibit the growth of several Bifidobacterial spp., with downstream
consequences for gut immune cells, especially Th17, and induce
the decrease in the relative abundance of Actinobacteria (Ang
et al., 2020). In an animal model of inflammatory colitis, it
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was observed that the ketogenic diet alters gut microbiota and
serum metabolome, alleviating colitis (Kong et al., 2021). In
particular, Akkermansia, Roseburia, and Ruminococcaceae genera
were enriched. After colitis induction, the ketogenic diet protected
intestinal Dbarrier function and reduced the presence of
RORgt'CD3” group 3 innate lymphoid cells and related
inflammatory cytokines (IL-17a, IL-18, IL-22, and Ccl4). As
a result, the ketogenic diet in patients with IBD may substantially
contribute to control inflammation and shape gut microbiota.

Ketone bodies accumulate in the serum of patients with
COVID-19, mimicking diabetic ketoacidosis (Li et al., 2020).
Further studies confirmed the elevation of circulating ketone
bodies in COVID-19 (Table 5), suggesting their role as an
alternative energy source during SARS-CoV-2 replication
(Barberis et al., 2020; Bruzzone et al., 2020; San Juan et al.,
2020; Meoni et al., 2021; P4ez-Franco et al., 2021). The increase
in 3-B-hydroxybutyrate could interfere with viral replication
by upregulating the expression of antioxidant genes, the
cytoplasmic NADPH, and directly scavenging free radicals
(Stubbs et al., 2020). In addition, 3-B-hydroxybutyrate may
induce the closing of mitochondrial permeability transition
pore, apoptosis, and the inhibition of glycolysis. It was postulated
that ketone bodies inactivate the extracellular virions (Shaheen,
2021). Ketone bodies have carbonyl groups reacting with the
e-amino group of lysine to form a Schiff base. Given that
SARS-CoV-2 spike protein contains approximately 4.5% lysine
residues, almost equally distributed between the two subunits,
the reaction between the ketone body, mainly acetoacetate,
and the lysine residues of the spike protein forms Schiff bases,
altering the conformation of the spike protein. This change
promotes the separation of the spike protein from the virion,
either by the separation between S1 and S2 subunits or promoting
its bending. As a result, acetoacetate induces protein
conformational changes by altering the secondary structure,
namely, reducing the o-helix content (Bohlooli et al., 2016).
The sum of these researches has raised the question of whether
or not it may be effective to induce ketosis both in asymptomatic
individuals infected with SARS-CoV-2 and in patients with
COVID-19 (Bradshaw et al., 2020).

Phospholipids

Glycerophospholipids, commonly termed phospholipids, their
by-product lysophospholipids, and sphingolipids are key
components of the cellular membrane; remarkably, phospholipids
are involved in the metabolism of cell signaling. Phospholipids
are essential for the biosynthesis of lipoproteins. As reported
in Table 5, in patients with IBD, circulating phospholipids
were found decreased in various studies (Bjerrum et al., 2010,
2017; Fan et al,, 2015; Kolho et al., 2017; Scoville et al., 2018;
Tefas et al., 2019, 2020). Factors, such as the compromised
integrity of the intestinal mucosa, TNF-a, NF-kB, mitogen-
activated protein kinase (MAPK) pathway, and peroxisome
proliferator-activated receptor (PPAR) signaling, seem to
be closely implicated in  phospholipids  depletion.
Glycerophosphocholine was significantly decreased in two
subsequent studies (Bjerrum et al., 2010, 2017); more recently,
in patients with extensive UC and colonic CD, tetracosanoic

acid, phosphatidylcholine, (PC) lysophosphatidylcholine (LPC),
sphingomyelin (SM), and diacylglycerol were found decreased
compared with healthy controls; interestingly, saturated LPC
(18:2) was found decreased whereas polyunsaturated LPC (20:4)
and LPC (22:6) increased (Tefas et al., 2019, 2020). It is likely
that the anti-inflammatory polyunsaturated LPC effectively
antagonized the pro-inflammatory activity of saturated LPC. Two
studies found sphingolipids significantly reduced in patients
with IBD (Fan et al.,, 2015; Kolho et al., 2017). The significant
depletion in sphingolipids may be the result of the increased
activity of sphingomyelinases, which are activated in IBD by
the combined action of TNF-a, NF-kB, and IFN-y (Schiitze
et al.,, 1992).

Phospholipids metabolism is strongly influenced by COVID-19
and by the severity of the disease (Mussap and Fanos, 2021);
data emerging from the literature suggest that SARS-CoV-2
infection promotes the downregulation of most phospholipids
and sphingolipids (Table 5), while various lysophospholipids are
either overexpressed or unchanged (Barberis et al., 2020; Shen
et al., 2020; Song et al, 2020; Wu et al,, 2020; Schwarz et al,
2021). The downregulation of phospholipids may originate from
the liver impairment in patients with severe COVID-19, whereas
lysophospholipids upregulation is the result of the increased
activity of phospholipase A,. Low-risk infected patients are well
discriminated from non-infected individuals by high levels of
phosphatidylcholine (PC38:8), phosphatidylethanolamine (PE38:4),
and phosphatidylglycerol (PG20:5). In patients with COVID-19,
the predominance of inflammation over the macrophage-driven
anti-inflammatory response leads to the underexpression of
sphingosine 1-phosphate (Shen et al.,, 2020; Song et al., 2020).
The considerable number of lipids belonging to any lipid class
gives a limited value to the definition of upregulation and
downregulation of phospholipids, lysophospholipids, and
sphingolipids in COVID-19; recently, a targeted lipidomic analysis
measured a considerable number of phospholipids (1n=90),
lysophospholipids (n=14), and sphingolipids (n=15), discovering
that certain lipids decrease and other increase within the same
lipid class (Caterino et al., 2021).

Arachidonic Acid and Phospholipases

Arachidonic acid is a 20-carbon chain belonging to the w-6
(n-6) polyunsaturated fatty acids (PUFAs); it is obtained from
food and then incorporated in phospholipids (Tallima and El
Ridi, 2017). Arachidonic acid is the primary precursor for the
biosynthesis of eicosanoids, a complex family of lipid signaling
mediators including but not limited to leukotrienes,
prostaglandins, thromboxane, and prostacyclin A, (Calder, 2020).
By the cleavage of arachidonic acid from membrane
phospholipids, phospholipases A,-IID, -IIF, -III, and -X initiate
the arachidonic acid cascade and eicosanoid production
(Murakami et al, 2020). Eicosanoids are generated by three
main pathways, namely, cyclooxygenases, lipoxygenases, and
cytochrome P-450 epoxygenase pathways (Dennis and Norris,
2015). Beyond their crucial role in a broad range of physiological
processes, eicosanoids are involved in the pathogenesis of IBD
(Alhouayek et al., 2021). During the acute phase of the disease,
their concentration significantly increases within the inflamed
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intestinal mucosa (Wallace, 2019). In patients with IBD,
arachidonic acid was increased in feces (Jansson et al., 2009)
and decreased in the blood (Table 5); these variations were
often associated with the exacerbation of the disease activity
(Esteve-Comas et al.,, 1992; Scoville et al., 2018; Lai et al.,
2019; Manfredi et al., 2019; Gallagher et al., 2021). Based on
current knowledge, the decrease of circulating arachidonic acid
in IBD might be related to the increased synthesis of eicosanoids
in the gut (Shores et al., 2011). SARS-CoV-2 infection induces
the overexpression of phospholipase A, especially in
macrophages, T, and B cells; as a consequence, the biosynthesis
of arachidonic acid is upregulated in patients with COVID-19
(Table 5). The arachidonic acid upregulation positively correlates
with the IL-6 concentration and the disease’s severity (Barberis
et al, 2020; Thomas et al., 2020; Schwarz et al, 2021). In
patients with COVID-19 and severe liver injury, however,
arachidonic acid may be downregulated (Shen et al.,, 2020).
Arachidonic acid is a potent antiviral PUFA that can inactivate
the enveloped viruses, including SARS-CoV-2 (Hoxha, 2020);
human cells infected by HCoV-229E and MERS-CoV are
inhibited by arachidonic acid (Yan et al., 2019). The increased
activity of the cytosolic phospholipase A,a (cPLA,a) in cells
infected by SARS-CoV-2 generates the overproduction of
lysophospholipids that are essential for the viral replication
(Casari et al., 2021); the pharmacological inhibition of cPLA,a
in human Huh-7 cells infected with coronavirus 229E drastically
reduces the viral RNA synthesis, blocking an early step in the
replication cycle (Miiller et al., 2018). This finding opens new
perspectives on the effective treatment of SARS-CoV-2 infection.
A recent study performed a targeted lipidomic analysis of
bronchoalveolar lavages fluids (BALs) from patients with severe
COVID-19 (Archambault et al., 2021). The most relevant finding
was the significant increase in several bioactive lipids, such
as thromboxane, leukotrienes, and 15-lipoxygenase metabolites
derived from linoleic acid, linolenic acid, and dihomo-y-linolenic
acid (Table 5). During the early stage of inflammation, the
enzymatic oxygenation of essential fatty acids, including
arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid,
and docosahexaenoic acid, generates a class of bioactive lipids,
the so-called specialized pro-resolving mediators (SPMs; Serhan
et al., 2000). This class includes lipoxins, resolvins, maresins,
and protectins (Basil and Levy, 2016). Interestingly, BALs from
patients with severe COVID-19 were also marked by the increase
in SPMs. Increased levels of pro-inflammatory bioactive lipids
and anti-inflammatory SPMs have also been reported in serum
samples collected from hospital inpatients with a confirmed
diagnosis of COVID-19 (Turnbull et al., 2022).

CONCLUSIVE AND PROSPECTIVE
REMARKS

IBD and COVID-19 are characterized by gut dysbiosis associated
with impaired gut barrier function and immune-mediated
chronic inflammation. However, COVID-19 can rapidly evolve
to multisystemic organ damage due to a dysregulated, fulminant
inflammatory response, the so-called “cytokine storm”

(Jain, 2020; Hu et al., 2021). The evident imbalance between
the number of studies on gut microbiota in IBD and that in
SARS-CoV-2 does not exclude a reliable data analysis; we noticed
more similarities than differences in gut microbial alterations
between IBD and COVID-19 (Table 1). The depletion in
E prausnitzii, E. rectale, R, bromii, Lachnospiraceae, C. leptum
(cluster IV), and the overgrowth of Enterococcus, E. coli, Shigella,
P. mirabilis, Fusobacterium, Veillonellaceae are common patterns
of dysbiosis, playing a key role in the severity and clinical
outcome of IBD and COVID-19. An intriguing dissimilarity
between IBD and COVID-19 is the abundance of A. muciniphila
(Table 1), a Gram-negative bacterium belonging to the
Verrucomicrobia phylum. A. muciniphila colonizes the mucus
layer close to gut epithelial cells and is able to degrade mucin
sugars and the protein backbone by specific enzymes, such as
sialidases and fucosidases, providing carbon and nitrogen for
bacteria unable to produce these enzymes (van Passel et al.,
2011). Mucus degradation by A. muciniphila generates SCFAs,
which are strongly involved in promoting host metabolic health.
Therefore, A. muciniphila has several beneficial effects on host
health by reducing inflammation, stimulating mucin biosynthesis
and mucus thickness, preserving the integrity of the mucosal
barrier, increasing the expression of tight junction proteins
(e.g., occluding), and modulating the intestinal adaptative
immune response (Ottman et al., 2017; Ansaldo et al., 2019;
Ashrafian et al, 2019; Liu et al, 2021). The depletion of
A. muciniphila in IBD (Table 1), reported by several studies,
confirms the well-known inverse relationship between this
bacterium and IBD (Rajili¢c-Stojanovi¢ et al., 2013); on the
other hand, the enrichment in A. muciniphila in patients with
COVID-19 has been associated with that of opportunistic
pathogens, such as Enterococcus, Staphylococcus, Serratia,
Collinsella, Actinomyces, and many others (Gaibani et al., 2021).
Concerns emerge about results on the probiotic strains Lactobacilli
and Bifidobacteria, especially in patients with COVID-19
(Table 1). These strains are Gram-positive, non-spore-forming,
lactic acid producer bacteria with the antiviral activity performed
by various mechanisms, including the synthesis of antiviral
inhibitory metabolites, the upregulation of the protective immune
responses, and by competing for nutrients and colonization
sites with the virus and, more extensively, with pathogens
(Kesika et al, 2021). Five studies reported Lactobacillus
enrichment in patients with COVID-19 (Table 1), confuting
the general notion that gut dysbiosis due to severe infections
promotes the depletion of these strains (Harper et al.,, 2021).
Very few data support the depletion of Lactobacillus and
Bifidobacterium in patients with COVID-19. Two articles cited
in the PubMed library, written in Chinese with the same
English abstract and the same digital object identifier (doi),
described gut dysbiosis in “some patients” with COVID-19
marked by the decrease in Lactobacillus and Bifidobacterium
abundance (Xu et al., 2020a,b). Clearly, these data are unreliable.
Therefore, further studies are required to elucidate the significance
of Lactobacillus and Bifidobacterium enrichment in COVID-19.

Metabolomics reveals considerable similarities in the
tryptophan metabolism between IBD and COVID-19 (Table 3).
In IBD, the increase in quinolinic acid is associated with the
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decrease in picolinic acid, a non-selective metal ion chelating
agent with antimicrobial, antiviral, and antifungal activity formed
by a non-enzymic cyclization of aminomuconic acid
semialdehyde. In COVID-19, the increase in quinolinic acid
is associated with the increase of kynurenic acid; the biochemical
mechanism underlying this unusual association should
be clarified. In fact, quinolinic acid and kynurenic acid are
closely related to each other by an inverse relationship that
becomes imbalanced in various diseases. In COVID-19, the
increase in picolinic acid reflects the activation of the enzymatic
conversion of 2-amino-3-carboxymuconate-6-semialdehyde
(ACMS) to 2-aminomuconic-6-semialdehyde. In turn, the latter
undergoes either non-enzymatic cyclization to form picolinic
acid or enzymatic transformation to 2-aminomuconic acid,
yielding acetyl-CoA (Badawy, 2017). It is unclear why picolinic
acid is increased in COVID-19, taking into account the alteration
of brain functions during the disease (Chou et al, 2021;
Marshall, 2021). It is reasonable to assume that the limited
number of metabolic differences between IBD and COVID-19
(Tables 4, 5), for example, blood arachidonic acid, originates
from the acute systemic damage and impairment of organs,
tissues, and biological systems (e.g., coagulation) in COVID-
19, while IBD remains a chronic disease localized in the
gastrointestinal tract with a broad spectrum of extraintestinal
symptoms and comorbidities (Argollo et al.,, 2019). Emerging
evidence indicates the role of the microbiome in modulating
the immune response to vaccination and the role of metabolic
profile in predicting vaccination outcome (Hagan et al., 2019;
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