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Protozoa play important roles in microbial communities, regulating populations via predation 
and contributing to nutrient cycling. While amoebae have been identified in acid rock drainage 
(ARD) systems, our understanding of their symbioses in these extreme environments is limited. 
Here, we report the first isolation of the amoeba Stemonitis from an ARD environment as well 
as the genome sequence and annotation of an associated bacterium, Dyella terrae strain Ely 
Copper Mine, from Ely Brook at the Ely Copper Mine Superfund site in Vershire, Vermont, 
United States. Fluorescent in situ hybridization analysis showed this bacterium colonizing cells 
of Stemonitis sp. in addition to being outside of amoebal cells. This amoeba-resistant bacterium 
is Gram-negative with a genome size of 5.36 Mbp and GC content of 62.5%. The genome 
of the D. terrae strain Ely Copper Mine encodes de novo biosynthetic pathways for amino 
acids, carbohydrates, nucleic acids, and lipids. Genes involved in nitrate (1) and sulfate (7) 
reduction, metal (229) and antibiotic resistance (37), and secondary metabolite production (6) 
were identified. Notably, 26 hydrolases were identified by RAST as well as other biomass 
degradation genes, suggesting roles in carbon and energy cycling within the microbial 
community. The genome also contains type IV secretion system genes involved in amoebae 
resistance, revealing how this bacterium likely survives predation from Stemonitis sp. This 
genome analysis and the association of D. terrae strain Ely Copper Mine with Stemonitis sp. 
provide insight into the functional roles of amoebae and bacteria within ARD environments.

Keywords: amoeba-associated bacterium, amoebae, Stemonitis sp., Dyella terrae, acid rock drainage

INTRODUCTION

Acid rock drainage (ARD) is one of the main sources of surface water pollution worldwide 
(Dean et  al., 2013). This acidic, metal-rich water results from the exposure of sulfide minerals, 
largely due to mining, to water and oxygen (Nordstrom et  al., 2015). The oxidative dissolution 
of metal sulfides (e.g., pyrite or FeS2) forms hydronium and sulfate ions, lowering the pH of 

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.856908﻿&domain=pdf&date_stamp=2022--�
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.856908
https://creativecommons.org/licenses/by/4.0/
mailto:lgiddings@smith.edu
https://doi.org/10.3389/fmicb.2022.856908
https://www.frontiersin.org/articles/10.3389/fmicb.2022.856908/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.856908/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.856908/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.856908/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.856908/full


Frontiers in Microbiology | www.frontiersin.org	 2	 May 2022 | Volume 13 | Article 856908

Giddings et al.	 Amoeba-Associated Bacterium Dyella terrae

water that drains mines and mine waste, thereby increasing 
the solubility of metal ions (Park et al., 2019). The accumulation 
of toxic levels of acid and metal ions in this drainage can 
pollute nearby bodies of water (Kefeni et  al., 2017), posing a 
threat to the environment and human health (Rezaie and 
Anderson, 2020). This oxidation process is further accelerated 
by the presence of iron-oxidizing bacteria, which thrive in 
these acidic environments containing reduced sulfur and iron 
(Baker and Banfield, 2003; Chen et  al., 2016). While ARD 
microbial communities are dominated by prokaryotes (Méndez-
García et  al., 2015), single-celled eukaryotes (e.g., protists and 
fungi) are present and involved in regulating the microbial 
population as well as the biogeochemical cycling of metals, 
carbon, nitrogen, and sulfur in these extreme ecosystems  
(Baker and Banfield, 2003; Aguilera, 2013). Most unicellular 
eukaryotes that inhabit these environments belong to the 
following supergroups: Excavata (protists), Archaeplastida 
(plants), Ophisthokonta (fungi/metazoa), as well as SAR 
(Stramenophiles + Alveolates + Rhizaria; protists; Chen et al., 2016).

Free-living amoebae (FLA) are ubiquitous in diverse waters, 
soils, and man-made environments, including ARD (Amaral-
Zettler, 2013; Johnson and Aguilera, 2015; Samba-Louaka et al., 
2019). These protists are secondary grazers that feed on bacteria 
and digest them via phagocytosis, influencing the composition 
of the microbial community, mineralization, and nutrient cycles 
(Dunn et  al., 2018; Samba-Louaka et  al., 2019). ARD FLA 
graze on acidophilic bacteria, affecting the oxidation rates of 
metal sulfides (Johnson and Rang, 1993). These amoebae can 
also form symbiotic relationships with bacteria, protecting them 
from harsh environmental conditions as well as providing 
nutrients or genes that confer a selective advantage, increasing 
bacterial virulence (Baker et  al., 2003; Bertelli and Greub, 
2012). Some bacteria have evolved resistance to FLA lysis 
mechanisms and survive by escaping amoebal phagosomes via 
secretion systems (types I–IV and VII) or by modifying 
phagosomal vacuoles, subverting antimicrobial mechanisms 
(Greub and Raoult, 2004; Strassmann and Shu, 2017). However, 
the roles of amoebae and their symbioses with amoeba-resisting 
bacteria remain to be  fully elucidated within ARD ecosystems.

We previously characterized the microbiome and 
transcriptome of the microbial community in ARD at Ely 
Brook, which drains the mine tailings at Ely Copper Mine 
Superfund site in Vershire, VT (Figure  1; Giddings et  al., 
2020a,b). While acid-tolerant Proteobacteria dominated this 
microbial community, several amoebae were identified in 
the Ely Brook metagenome (Giddings et  al., 2020a). Herein, 
we  aimed to isolate and sequence the whole genome of 
some of the identified microorganisms. Using cell culture 
as well as Nanopore and Illumina sequencing, we  report 
the isolation of the slime mold Stemonitis sp. from Ely Brook 
as well as the complete genome of an associated bacterium, 
Dyella terrae strain Ely Copper Mine. This is the first isolation 
of Stemonitis sp. from an ARD environment. Using the 
annotated Dyella genome, potential ecological roles and 
interactions between the amoeba Stemonitis sp. and bacterium 
D. terrae strain Ely Copper Mine in the Ely Brook microbiome 
are discussed.

MATERIALS AND METHODS

Study Site and Sample Collection
On November 15th, 2018, Ely Brook (43°55′9″ N, 72°17′11″ 
W), 90 m upstream from the mouth of the brook (abbreviated 
EB-90M; Figure  1), was sampled by collecting 2 L of water 
in two autoclaved glass containers, which were stored at 
4°C. Three surface water samples were collected in 120-ml 
high-density polyethylene containers (HDPE Packers, Thermo 
Fisher; Waltham, MA, United  States) for dissolved and total 
trace-metal analyses. Additional water was collected and either 
filtered through a 0.22 μM syringe filter (Millex-GS Syringe 
Filter Unit, MilliporeSigma; Burlington, MA, United  States) 
and/or preserved with sulfuric acid (for organic carbon analyses 
using standard methods, 5310B and 5310C; American Public 
Health Association, 2018) in six 40-ml amber borosilicate vials. 
Three water samples were also collected and preserved with 
nitric acid for sulfate, nitrite, and nitrate analyses using the 
Environmental Protection Agency method 300.0 (Pfaff, 1993). 
The physicochemical properties of samples were either analyzed 
on-site or in a laboratory.

Physicochemical Characterization of 
EB-90M Water
Surface water was analyzed for a variety of field parameters. 
The pH and temperature of water were monitored using a 
portable Hannah HI98194 multimeter with select probes. Water 
was stored at 4°C and analyzed in triplicate for sulfate, nitrate, 
nitrite, nitrogen contained in organic substances as well as 
dissolved organic carbon, and total organic carbon within 48 h 
of collection. Samples were analyzed in Middlebury College’s 
trace-metal laboratory, except for samples analyzed for sulfate, 
nitrate, nitrite, total organic carbon, and dissolved organic 
carbon, which were analyzed at Endyne, Inc. (Williston, VT, 
United  States).

Inductively Coupled Argon Plasma Mass 
Spectrometry Analysis of Water
A Thermo Fisher inductively coupled argon plasma mass 
spectrometry (ICAP-MS) was used to test three water samples 
for dissolved and total trace-metal concentrations using internal 
and external standards. The instrument was tuned using the 
THERMO-5A (Inorganic Ventures; Christiansburg, VA, United   
States) multielement standard according to the manufacturer’s 
instructions. The 2008ISS multielement standard (Inorganic Ventures; 
Christiansburg, VA, United States) was used as an internal reference 
for all samples at a concentration of 100 ppb to correct for 
instrument drift. All water samples, including the standards, were 
spiked with the internal reference. See the Supplementary Material 
for the instrument parameters and standards used.

Isolation of Amoebae From Ely Brook 
Water
Water (100 ml) was filtered through 3-μm nitrocellulose 
filter paper by vacuum filtration. The resulting filter paper 
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was placed upside down on non-nutrient agar (sodium 
chloride, 60 g/L; sodium citrate tribasic, 0.8 g/L; magnesium 
sulfate, 4 mM; monobasic sodium phosphate, 2.5 mM; 
monobasic potassium phosphate, 2.5 mM; calcium chloride, 
0.5 mM; and agar, 15 g/L) plates seeded with 104 Escherichia 
coli K12 strain SMG 123 (PTA-7555, ATCC; Manassas, VA, 
United  States) cells and incubated at 20°C. Plates were 
examined under an inverted microscope every 3 days to 
probe for amoebae along the edges of filter paper. Once 
amoebae were detected, they were recovered by scraping 
and transferred to a Page’s Amoeba Saline Solution (PAS) 
(magnesium sulfate, 4 mM; calcium chloride, 0.4 M; sodium 
citrate dihydrate, 0.1%; monosodium phosphonate, 2.5 mM; 
monopotassium phosphonate, 2.5 mM; and pH adjusted to 
4) supplemented with 5 × 108 E. coli cells in Luria-Bertani 
medium for growth at 20°C. Amoebae were subcultured 
by dilution in PAS once they reached confluency. Regarding 
light microscopic observations, cultures of amoebae were 
transferred into 35 mm dishes with glass coverslips (μ-dish, 
Ibidi; Gräfelfing, Germany). Amoebae were left to adhere 
at room temperature and observed using an inverted 
microscope equipped with differential interference contrast 
(DIC) (Olympus; Tokyo, Japan). The contrast and brightness 
of images were adjusted further using ImageJ (Abramoff 
et  al., 2004).

DNA Extraction, 18S rRNA Sequencing, 
Library Construction, and Whole-Genome 
Sequencing
The amoebal liquid culture (30 ml) was filtered through a 3-μm 
nitrocellulose filter paper and DNA was extracted using the High 
Pure PCR template preparation kit (Roche; Basel, Switzerland) 
followed by ethanol precipitation. Phusion DNA polymerase (Thermo 
Fisher; Waltham, MA, United  States) along with 200 μM 
deoxynucleotide triphosphates, 0.5 μM 566F (5ʹ-CAGCAGCCGC 
GGTAATTCC-3ʹ) and 1200R (5ʹ-CCCGTGTTGAGTCAAATTAA 
GC-3ʹ) primers (Hadziavdic et  al., 2014) were used to amplify 
the 18S rRNA gene from 183 ng of extracted DNA in a total 
volume of 25 μl using the following thermocycling parameters: 
98°C for 30 s, followed by 35 cycles of 98°C for 10 s, 50°C for 
20 s, 72°C for 1 min, and a final extension at 72°C for 7 min. 
Amplicons (~750 bp) were sequenced by the Sanger method, and 
the taxonomy was determined by comparing the sequence to those 
in the NCBI nr database using BLAST (Altschul et  al., 1990).1 
The partial 18S rRNA sequence was deposited to GenBank under 
the accession number OL589616.1.

For whole-genome sequencing of the isolated amoeba, library 
preparation and sequencing were performed at the University 

1�https://blast.ncbi.nlm.nih.gov/Blast.cgi

FIGURE 1  |  Study site. Map and photograph of Ely Brook (EB-90M) at Ely Copper Mine Superfund site in Vershire, VT on 15 November 2018.
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of Illinois at Chicago Sequencing Core. Nanopore sequencing 
libraries were generated from genomic DNA using the Oxford 
Nanopore genomic DNA library protocol SQK-LSK109 according 
to the manufacturer’s instructions (Oxford Nanopore 
Technologies). Sequencing was performed using a FLO-MIN106 
(R10 Version) flow cell on a GridION sequencer. An Illumina 
library was prepared using the Nextera FLEX Workflow 
(#20018705 Illumina Inc. San Diego, CA, United  States) with 
100 ng template and 5 cycles of PCR according to the 
manufacturer’s instructions. The library was quantified using 
a Qubit DNA High Sensitivity kit (Life Technologies, #Q32851, 
Grand Island, NY, United  States), and size distribution was 
assessed using an Agilent 4200 TapeStation System (Agilent 
Technologies, G2991AA, Santa Clara, CA, United  States) using 
TapeStation D5000 ScreenTape, ladder, and assay (Agilent 
Technologies, # 5067–5588, 5067–5590 and 5067–5589, Santa 
Clara, CA, United  States). The library was finally pooled and 
run on an Illumina MiSeq instrument using MiSeq Reagent 
Nano Kit, v2 (300 cycles) (Illumina, TG-142-1,001, Foster City, 
CA, United  States) for quality control and library balancing 
purposes. A new pool was made based on the MiSeq run 
results, quantified as described above, and sequenced on an 
Illumina NextSeq  500 Instrument in paired end mode (2 × 150 
bp) (Illumina, FC-404-2004, Foster City, CA, United  States) 
with a 1% phiX spike-in.

Data Preprocessing and Genome 
Assembly
Raw data from Nanopore sequencing were basecalled using 
Guppy 3.6.1 (Oxford Nanopore Technologies; Oxford, 
United Kingdom) and data quality control was performed with 
pycoQC v2.5.0.14 (Leger and Leonardi, 2019). Porechop V 
0.2.4 (Wick and Holt, 2021) was then used to filter and remove 
adapters from the basecalled data. Flye 2.8 (Kolmogorov et  al., 
2019, 2020) was used to make the assembly, which was 
benchmarked using both single-genome and meta modes and 
the following parameters: -min-overlap 1, 1.5 kb; and the default 
as well as -iterations 2, 5, and 10. Another assembler, Canu 
(Koren et  al., 2017), was used to validate the assembly from 
Flye using the following parameters: minReadLength = 1,000 
-minOverlapLength = 500 -nanopore-raw.

Genome Polishing and Busco Analyses
The genome was self-polished by Medaka v 0.8.1 (Oxford 
Nanopore Technologies, 2018) with the Nanopore reads used 
for the assembly. Once the assembly was self-polished, Illumina 
data was used to polish the genome. Illumina data underwent 
the standard preprocessing steps and FastQC v0.11.9 (Andrews, 
2010) was used to check the read quality. Adapters and reads 
of poor quality were filtered by Fastp v. 0.21.0 (Chen et  al., 
2018). Contaminating reads were filtered using a mapping 
approach targeting the human and E. coli genomes using Bowtie2 
(Langmead and Salzberg, 2012). The self-polished genome was 
polished using Polypolish v0.4.3 (Wick and Holt, 2021). To 
assess the quality of the assembly, Busco v 5.0.0 (Manni et  al., 
2021) was used with the following three levels of taxonomy: 

phylum (proteobacteria_odb10), class (gammaproteobacteria_
odb10), and order (xanthomonadales) with 219, 366, and 1,152 
ortholog groups, respectively.

Bacterial Identification and Genome 
Annotation
Blastn (Altschul et  al., 1990) was used to compare the largest 
contig against the NCBI nt database for phylogenetic classification. 
The raw genome was annotated by Prokka v 1.14.6 (Seemann, 
2014) using default parameters. Once the bacterial taxonomy 
was confirmed, a protein database containing 169,481 Dyella 
sp. proteins from NCBI was constructed and used to annotate 
the coding sequences from the assembled genome. Ribosomal 
RNA gene sequences were extracted from the annotation and 
used to accurately identify the genus and species using the 
EzBioCloud platform (Yoon et  al., 2017).

Phylogenetic Analysis
To determine the phylogenetic position of the associated 
bacterium, a representative set of 16S rRNA gene sequences 
were compiled from the non-redundant nucleotide database 
of the NCBI. A total of 24 full or near-full length sequences, 
including the complete 16S rRNA sequence for the bacterium, 
were collected, manually inspected, and aligned using MUSCLE 
v3.8.31 (Edgar, 2004), resulting in a global alignment of 1,542 
nucleotide positions. ModelFinder (Kalyaanamoorthy et  al., 
2017) was used to determine the best substitution model for 
phylogenetic inferences. Based on the best Bayesian information 
criterion score, the HKY + F + I model was selected. Inference 
of the phylogeny was done by maximum likelihood using 
IQ-TREE v 2.0.3 (Minh et  al., 2020). The robustness of the 
inference was tested by further applying 1,000 iterations of 
conventional bootstraps and SH-approximate likelihood ratio 
tests. The resulting tree was rendered in FigTree v 1.4.4 
(Rambaut, 2021).

Fluorescence in situ Hybridization 
Experiments With Confocal Microscopy
Isolated amoebae (105 cells per well) were seeded on a microscope 
slide 10-well (Thermo Scientific Cel-Line® Brand; Waltham, 
MA, United  States). Cells were fixed using PAS-4% 
paraformaldehyde for 15 min at room temperature. After the 
removal of the fixing solution, the slide was stored at −20°C.

FISH probes were designed based on 16S and 18S rRNA 
sequences recovered from the isolates from this study. Candidate 
probes were further tested in silico using Decipher (Wright, 
2013) and Mathfish (Yilmaz et  al., 2011) to validate their 
specificity and theoretical formamide curves. Ultimately, specific 
probes, Stemonitis_383 (5ʹ-Cy5-TTCACCACTAGCCCGGC-3ʹ) 
and Dyellaterrae_176 (5ʹ-Cy3-CCAACCGCGCAAGGCCC- 
Cy3-3ʹ), were used in addition to the eubacterial probes, EUB338 
I-III (5ʹ-FITC-GCTGCCTCCCGTAGGAGT-FITC-3ʹ; 5ʹ-FITC-
GCACCCACCCGTAGGTGT-FITC-3ʹ; and 5ʹ-FITC-GCTCC 
CACCCGTAGGTGT-FITC-3ʹ) at concentrations of 0.5 mM. In 
situ hybridization was performed according to a previously 
published protocol, freely available at the website of the SILVA 
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database2 (standard FISH protocol). Optimal formamide 
concentration for achieving FISH was experimentally estimated 
to be 20%. After hybridization, all samples were mounted using 
Citifluor™ AF1 plus 4′,6-diamidino-2-phenylindole (DAPI). 
Samples were examined with a laser scanning confocal microscope 
(Olympus FV3000; Tokyo, Japan). Laser lines (405, 488, 561, 
and 640 nm) were used for the excitation of DAPI, fluorescein 
isothiocyanate (FITC), cyanine 3, and cyanine 5, respectively. 
Emission fluorescence was recorded through spectral detection 
channels between 430 and 470  nm (blue), 500 and 540 nm 
(green), 570 and 620 nm (red), and 650 and 750 nm (far red) 
fluorescence emission. Images (1,024 × 1,024 pixels) were acquired 
with UPLAPO100XOHR NA:1.50 objective lens and x2 numerical 
zooming (0.06 μm pixel size). A 3-dimensional optical sectioning 
of 0.2 was driven with a step Z-axis motor. Images were 
analyzed for 3-dimensional rendering with Imaris software 
(Bitplane; Zürich, Switzerland).

Functional Annotations and Analysis of 
Bacterial Genes Involved in Lignin 
Degradation, Natural Product 
Biosynthesis, and Metal Resistance
Open reading frames (ORFs) of the associated bacterium were 
annotated by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) automatic annotation server (KAAS)3 using prokaryote 
and bidirectional best hit parameters as the assignment method 
(Kanehisa and Goto, 2000). KAAS functionally annotated genes 
using BLAST comparisons to a curated KEGG database were 
used to identify KEGG orthologs (KOs) and metabolic pathways. 
KOs (or K numbers) were then assigned to KEGG pathways 
and biomolecular reaction pathways for information transfer 
and expression (BRITE) hierarchies. ORFs were also annotated 
via the RAST web annotation tool version 2.0 (Aziz et  al., 
2008) using the RasTtk annotation pipeline to identify 
lignocellulose decomposition-related enzymes for comparison 
with other publicly available Dyella genomes, including D. terrae 
KACC 12748 (BioProject: PRJNA523522), D. jiangningensis SBZ 
3-12 (BioProject: PRJEB16000), and D. jiangningensis FCAV 
SCS01 (BioProject PRJNA386033), a species speculated to 
be  involved in lignin degradation (Desiderato et  al., 2018; 
Constancio et  al., 2020). While only the D. jiangningensis SBZ 
3-12 genome was complete, the other genomes had a completeness 
of 100%, according to the checkM metrics database (Parks 
et  al., 2015).

Prokka-annotated ORFs involved in lignin degradation were 
compared against the Laccase Engineering Database (LccED; 
Sirim et  al., 2011), which contains curated entries for genes 
involved in lignin metabolism. HMMER v. 3.1b (Wheeler and 
Eddy, 2013) profiles from families of LccED were generated 
and used to annotate predicted ORFs. If a sequence was 
annotated in multiple LccED families with an e-value less than 
1E-5, then the annotation that gave the lowest e-value was 
kept. False positives were detected using CD-Search 

2�https://www.arb-silva.de/fish-probes/fish-protocols/
3�https://www.genome.jp/kegg/

(Marchler-Bauer and Bryant, 2004) to ensure all genes had 
copper-binding domains. All matches had e-values below 1E-5. 
The genome was then mined for secondary metabolite 
biosynthetic gene clusters (BGCs) using the bacterial AntiSMASH 
6.0 (Blin et  al., 2021) web server. Default parameters and the 
following features were used to identify BGCs: knowncluster 
blast, subcluster blast, and active site finder. DIAMOND (Buchfink 
et  al., 2015) blastp was used to mine the genome for metal 
resistance genes by querying genes against 285 experimentally 
validated metal resistance genes (a total of 419 sequences) in 
the BacMet database (Pal et al., 2013). Using the “more sensitive” 
mode, DIAMOND (Buchfink et  al., 2015) annotated translated 
protein sequences with a maximum target sequence of 15 and 
e-values below 1E-5. The genome was also mined for antibiotic 
resistance genes that were within proximity or colocalized  
with BGCs using Antibiotic Resistant Target Seeker (ARTS) 
version 2 (Mungan et  al., 2020) using default parameters. 
Duplication and BCG proximity, resistance model screens, and 
genomes that mapped to the following phylum was selected: 
Gammaproteobacteria.

Data Sharing and Nucleotide Accession 
Numbers
Raw sequence data, assembled genome, and metadata were 
submitted to the National Center for Biotechnology Information 
and are accessible under BioProject PRJNA771916.

RESULTS

Physicochemical Properties
The temperature and pH of sampled water at EB-90 M were 
0.7°C and 3.93, respectively. Water sulfate levels (127 ± 6 mg/L) 
were within EPA-recommended concentrations (<250 mg/L; 
United States Environmental Protection Agency, 2003). Most 
nutrients, including nitrate and nitrite (<0.02 mg/L) were below 
the detection limit. Low levels of total (1.8 ± 0.3 mg/L) and 
dissolved organic carbon (1.5 ± 0.3 mg/L) were detected in water 
in addition to high metal concentrations. The most abundant 
elements in water were Mg, Al, and Fe (3.00–4.05 mg/L; Table 1), 
and the amounts of total and dissolved elements were similar 
across water samples.

Isolation of Amoeba and Associated 
Bacterium at EB-90M
Amoebae that grew in E. coli-PAS were recovered from the filter 
grown on E. coli-non-nutrient agar plates. After several subcultures, 
microscopic observations revealed the isolation of at least two 
different forms of the same amoeba, rounded and flagellated 
(Figure  2). The latter had one or two flagella from one pole of 
the cell, which were roughly 7 μm in diameter. Similar to Stemonitis 
fusca, we  observed transparent, rounded, and irregular shaped 
flagellated protoplasts 7.5–10 μm in length (Dai et  al., 2020). The 
18S rRNA gene sequence had a best hit (e-value = 2E-120) 
corresponding to a member of the Amoebozoa supergroup, 
Stemonitis sp., with 99.79% identity (see phylogeny in 
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Supplementary Figure  1). These genetic and microscopic data 
provide strong evidence that the isolated amoeba was Stemonitis sp.

While attempts to sequence and characterize the Stemonitis 
genome are incomplete, we  did obtain a complete bacterial 
genome instead, for which the best hit for the 16S rRNA gene 
sequence corresponded to the bacterium D. terrae. The full-
length 16S rRNA sequence of the Dyella isolate is closely related 
to D. terrae M40 and M7, with high sequence similarities of 
99.02% and 99.93%, respectively (Figure  3). We  refer to this 
bacterium as D. terrae strain Ely Copper Mine, which appears 
to be associated with Stemonitis sp. after successive generations 
in PAS. Phylogenetic inference conducted by maximum likelihood 
confirmed the close phylogenetic relationship of the isolate 
with representative D. terrae species from various locales 

(Figure  3). Based on its phylogeny and the presence of 
liposaccharide biosynthesis, assembly, and transport proteins, 
we  inferred that D. terrae strain Ely Copper Mine is Gram-
negative (Bertani and Ruiz, 2018).

FISH Experiments
To confirm the association between D. terrae strain Ely Copper 
Mine and Stemonitis sp., we  performed a FISH experiment 
with bacterial 16S rRNA probes. We  observed the presence of 
bacteria inside and nearby cells of Stemonitis sp. (Figures 4, 5). The 
in-depth, 3-dimensional analysis showed D. terrae strain Ely 
Copper Mine inside Stemonitis vacuoles (Figure  5). We  also 
found other bacteria stained by the eubacteria probe (not the 
Dyella probe) inside Stemonitis (Figures  4, 5). Given that the 
Dyella was identified by two probes, a Dyella-specific probe 
and eubacterial probe, Figures 4, 5 also demonstrate that other 
non-Dyella eubacteria were associated with this strain of 
Stemonitis. These non-Dyella bacteria could be  other 
environmental bacteria or the E. coli food source for Stemonitis sp.

Amoeba-Associated Bacterial Genome
Sequencing resulted in 949,080 raw Nanopore reads, which 
were filtered to 800,193. The reads were assembled using Flye 
in single-genome mode, resulting in six contigs. Two contigs 
had no associated phylogeny and three were shown to contain 
sequences corresponding to amoebal RNA and mitochondrial 
DNA according to NCBI nt, NR, and RNAmmer. The remaining 
contig, the focus of this study, had 5.36 Mbp of circular DNA 
with 543x coverage and 62.5% GC content. Protein coding 
genes (4,841) were identified as well as six rRNA-, 49 tRNA-, 
one tmRNA-, and 25 miscellaneous RNA-coding genes. When 
genes were compared against the NCBI nt database, most hits 
belonged to the Dyella genus. KEGG assigned 2,149 (44%) 

TABLE 1  |  Chemical composition of EB-90M water.

Element Dissolved Total

Na 1.24 1.25
Mg 3.08 3.00
Al 3.00 3.06
Cr <0.01 <0.01
Mn 0.255 0.279
Fe 3.44 4.05
Co 0.0606 0.0669
Ni 0.0233 0.0264
Cu 1.74 1.84
Zn 2.82 3.11
As 0.384 0.289
Cd <0.01 <0.01
Sb <0.01 <0.01
Ba <0.01 0.0104
Pb <0.01 <0.01

Selected elemental analysis for dissolved and total elements in EB-90M water in mg/L. 
All values were determined in triplicate by ICAP-MS.

A B

C

FIGURE 2  |  Differential interference contrast micrographs of isolated amoeba. Images show morphology features highlighting the diversity of shapes and sizes of 
the isolated amoeba. (A) Global view of the different shapes of amoebae. Panels (B) and (C) focus on rounded (arrows) and flagellated (arrows) amoebae, 
respectively. The bar length represents 10 µm for all panels.
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out of 4,841 protein coding genes to K numbers (KO identifiers), 
some of which were indicative of assimilatory sulfate reduction 
(e.g., cysHIJ; see Supplementary Table  3), nitrate reduction 
(napAB; K02568), and the oxidation of aromatic carbons found 
in lignin (gst; K00799). Genes were assigned to KEGG pathways 
(273), including nitrogen and sulfur metabolism and xenobiotic 
degradation. Annotated genes were then assigned to BRITE 
hierarchies, a classification system for connections that can 
exist between genes and proteins in biological systems. Most 
BRITE level 1-annotated genes were involved in metabolism 
(505), particularly carbohydrate and amino acid metabolism 
(Supplementary Tables 4 and 5). Genes were also involved 
in BRITE hierarchies (395) mainly related to protein families: 
signaling and cellular processes as well as protein families: 
genetic information processing (Supplementary Tables 4 and 5). 
Seventeen genes involved in type IV secretion systems 

(BR:ko02044; Supplementary Table  6), commonly associated 
with bacterial resistance to amoebae, were also identified, as 
well as genes involved in virulence in eukaryotes, including 
a gene encoding an ankyrin repeat (ANK) domain-containing 
protein (K10380; BR:ko04812). With the exception of nitrate 
reduction, similar BRITE level 1-annotated genes and KEGG 
pathways were found in the previously sequenced D. terrae 
KACC 12748 (Supplementary Tables 4 and 7).

Genes Involved in Lignin Degradation, 
Secondary Metabolism, and Metal 
Resistance
Several genes are putatively involved in lignin degradation, including 
26 RAST-annotated hydrolases (Supplementary Table  8), a 
dye-decolorizing (DyP) peroxidase, and four laccases containing 

FIGURE 3  |  Maximum likelihood tree based on near-complete 16S rRNA gene sequences showing the phylogeny of Dyella sp. Sequences of Frateuria were used 
as an outgroup. Bootstrap (left) and SH-like approximate likelihood ratio (right) support values are expressed in percentages at nodes. Bar represents 0.01 
substitutions per nucleotide position. Circle and square symbols represent species isolated from water and soil, respectively. The colors of the symbols indicate 
whether the environment was acidic (red) or either neutral/no pH was reported (orange). Isolates without associated metadata have no symbol.
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copper-binding domains (HMMER annotation using LccED; 
Supplementary Table 9; Janusz et al., 2017). Hydrolases, a DyP-type 
peroxidase, and laccases were also found in the closely related 
D. terrae KACC 12748 genome and strains of D. jiangningensis 
(Supplementary Tables 8–10) characterized as having lignin-
degrading capabilities (Desiderato et  al., 2018; Constancio et  al., 
2020). In addition to having lignin-degrading genes, the D. terrae 
strain Ely Copper Mine genome also contained a total of six 
putative biosynthetic gene clusters (BGCs) dedicated to secondary 
metabolism (antiSMASH annotation; Supplementary Table  11). 
The BGCs were involved in the biosynthesis of a polyketide/
non-ribosomal peptide, arylpolyene, terpenes, and post-
translationally modified peptide products (RiPP) secondary 
metabolites. All of these BGCs are predicted to produce unknown 
secondary metabolites. Five BGCs were identified in the genome 
of D. terrae KACC 12748 and not all are predicted to produce 
the same classes of secondary metabolites (Supplementary  
Table  11).

Putative metal resistance genes (229) were also identified 
in the genome, most of which were copR (25), czcR (12), and 
wtpC (11), which are involved in copper (Mills et  al., 1994), 
zinc/cadmium/cobalt (Perron et  al., 2004), and tungsten/
molybdenum resistance (Bevers et  al., 2006), respectively. Of 
the 285 experimentally validated metal resistance genes in the 
BacMet database, 89 unique genes were identified in the genome 
(Supplementary Table  12). The same analysis of the genomes 
of D. terrae KACC 12748 and other strains of D. jiangningensis 
yielded a similar distribution of metal resistance genes 
(Supplementary Table 12). Lastly, 37 antibiotic resistance genes 
were identified, most of which encoded resistance nodulation 
cell division (RND) efflux pumps (Supplementary Table  13). 

Antibiotic resistance genes (OTCace, an ornithine/aspartate 
binding domain; AAC3, an aminoglycoside acetyltransferase) 
also colocalized with two BGCs involved in the synthesis of 
terpenes and RiPPs.

DISCUSSION

Amoebae are reservoirs for bacteria (Shi et  al., 2021) and 
thought to provide nutrients and protect bacteria growing under 
harsh conditions, but our understanding of their roles and 
symbioses in ARD remains limited (Baker and Banfield, 2003; 
Greub and Raoult, 2004; Hilbi et  al., 2011). In previously 
collected metagenomic data sets from ARD in Ely Brook 
(Giddings et  al., 2020a,b), we  identified protozoa in EB-90M 
water and sediment metagenomes. Here, we report the isolation 
of an amoeba corresponding to the genus Stemonitis from 
acidic, metal-rich EB-90M water. After several passages in PAS, 
we  also identified an associated bacterium belonging to the 
genus Dyella and characterized its genome to understand its 
role in ARD as well as its unprecedented association with 
Stemonitis sp.

Stemonitis spp. are slime molds with unique characteristics, 
such as a spore-to-spore life cycle, and commonly found on 
decaying plant matter in terrestrial ecosystems (Stephenson 
and Stempen, 1994). Depending on growth conditions, they 
can be found as cellular uninucleate amoeboflagellates, acellular 
multinucleate plasmodia, and stationary spore-bearing sporocarps 
(Dai et  al., 2020). While we  only observed unicellular and 
flagellated states, the composition of our media could explain 
the absence of plasmodia and sporocarps, as the formation 

A B

C D

E

FIGURE 4  |  FISH showing Dyella in association with Stemonitis sp. FISH was performed using (A) a Stemonitis-specific Cy5 probe; (B) EUB3338 I-III FITC probes 
for labeling eubacteria; (C) DAPI; and (D) a Dyella-specific probe Cy3 probe. (E) The composite image of all labeling highlights the superimposition of eubacteria- 
and Dyella-specific FISH. The bar length represents 5 μm for all panels.
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of plasmodia and sporulation commonly occur on water- or 
oat-agar surfaces (Dai et  al., 2020). Temperature, pH, numbers 
of cells, and the duration of photoperiods are also important 
variables that affect how plasmodial slime molds complete their 
life cycles (Gao et  al., 2017; Zhu et  al., 2019; Dai et  al., 2020). 
Determining the Stemonitis life cycle will be  important for 

further characterization, as species in Myxogastria are classically 
identified by the structural characteristics of their sporocarps 
and plasmodia (Clark and Haskins, 2014). These forms are 
also commonly reported to associate with bacteria, enabling 
them to fix nitrogen, degrade wood, and produce extracellular 
enzymes (Kalyanasundaram, 2004).

Interestingly, D. terrae strain Ely Copper Mine was observed 
to have a stable association with unicellular states of the isolated 
amoeba after successive culturing. Dyella terrae belong to the 
order and family, Xanthomonadales and Rhodanobacteraceae 
(Naushad et  al., 2015), respectively, which are involved in sulfur 
and carbon biogeochemical cycling (Pujalte et  al., 2014) and 
have been found in ARD environments (Gruzdev et  al., 2020; 
Valkanas et  al., 2021). In particular, the Dyella genus has been 
detected in the metagenomes of acidic, metal-rich environments 
(Valentín-Vargas et al., 2018), including EB-90M (Giddings et al., 
2020b), with similar physicochemical properties to those of 
samples collected in this study (Table  1). Dyella terrae appears 
to be acid-tolerant, as this species is reported to thrive at neutral 
pH (Weon et  al., 2009) and most sequenced strains are not 
from acidic, metal-rich ecosystems (Figure  3). The size of the 
bacterial genome is similar to those of Dyella strains with 
genomes ranging from 4.0 to 5.49 Mbp (He et  al., 2017; Ou 
et  al., 2019). Dyella terrae strain Ely Copper Mine does not 
have a reduced genome, has similar GC content (59.1%–65.2%) 
to that of other Dyella strains (Desiderato et al., 2018; Ou et al., 
2019), and can exist outside amoebal cells (Figure 5), indicating 
that it is likely a facultative symbiont of Stemonitis sp. (McCutcheon 
and Moran, 2012). The bacterium could be  in an early stage 
of association without the necessary evolutionary time or selective 
pressure for genome reduction (Fisher et  al., 2017). Confocal 
microscopy (Figures  4, 5) confirmed the association between 
the strains of Dyella and Stemonitis. This association may be related 
to “farming behavior” (Kutschera and Hoppe, 2019), in which 
amoebae, such as Dictyostelium discoideum, do not consume 
all bacteria, but rather store some as a food source by incorporating 
them into fruiting bodies and then seed them upon arriving 
to a new location (Brock et  al., 2011).

KEGG annotations provided insight into potential roles of 
D. terrae strain Ely Copper Mine in EB-90M water. Assigned 
KOs indicated the sulfate-reducing ability of D. terrae strain 
Ely Copper Mine, which could be used to biomine or bioremediate 
ARD sites given the appropriate pH for catalytic activity 
(Sánchez-Andrea et  al., 2014; Chen et  al., 2016). Similar genes 
were identified in the D. terrae KACC 12748 genome 
(Supplementary Table  3). While other species of Dyella 
(D. japonica, D. soli, and D. koreensis) have been reported to 
reduce nitrate, D. terrae sp. nov JS14-6T did not reduce nitrate 
(Xie and Yokota, 2005; Weon et  al., 2009). We  also could not 
identify nitrate reduction genes in the D. terrae KACC 12748 
genome. However, our analysis of the genome of the D. terrae 
strain Ely Copper Mine showed it has the genetic potential 
to reduce nitrate as it contains the napA gene (K02567; Weon 
et  al., 2009). Dyella terrae sp. nov JS14-6 was also previously 
reported to not hydrolyze carbohydrates, such as α-glucosidase 
(Weon et  al., 2009). Yet, genes involved in the hydrolysis of 
carbohydrates (K01187; α-glucosidase) and the oxidation of 

A
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FIGURE 5  |  Three-dimensional FISH analysis of D. terrae strain Ely Copper 
Mine inside Stemonitis sp.  FISH microscopy images were analyzed in-depth 
to determine the extracellular (panel A) and the intracellular (panel B) location 
of Dyella (in red) and other bacteria (in green, panel C). The margin images 
underneath and to the right of panels (A-C) represent projections through x-y 
and z planes, respectively. The colors white and blue correspond to the cy5 
probe against Stemonitis and DAPI, respectively. The bar length represents 
2 µm for all panels.
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aromatic carbons (K00799; glutathione-S-transferase) found in 
lignin were identified in D. terrae strain Ely Copper Mine 
and D. terrae KACC 12748. Thus, given the appropriate 
environmental conditions, these genes could provide a carbon 
source, which could be useful in carbon-limited environments, 
such as EB-90M.

Lignin is a complex polycyclic aromatic hydrocarbon that 
is a major component of plant biomass. Its hydrolysis, oxidation, 
and depolymerization plays a critical role in carbon recycling 
(Kamimura et  al., 2017). Several genes encoding peroxidases, 
hydrolases, and multicopper oxidases (e.g., laccases) involved 
in this process have been identified in D. terrae strain Ely 
Copper Mine in comparable numbers to those in other lignin-
degrading Dyella (Supplementary Tables 8–10; De Gonzalo 
et al., 2016; Desiderato et al., 2018). While the lignin-degrading 
capabilities of D. jiangningensis FCSAV SCS01 were based on 
several of its genes encoding hydrolases (Desiderato et  al., 
2018), a D. jiangningensis isolate was observed to exhibit 
extracellular cellulase and amylase enzyme activities involved 
in lignin degradation (Constancio et  al., 2020). Thus, these 
genes are likely involved in lignin degradation and could 
influence amoebae growth in carbon-limited EB-90M water, 
as low concentrations of lignin can be  an indicator of high 
amoebal density (Krashevska et  al., 2017, 2018).

Although most closely related strains of Dyella have not 
been isolated from metal contaminated sites (Figure  3), Dyella 
have been detected at other metal-rich sites (Zhao et  al., 2013; 
McGee et al., 2017; Banach et al., 2020). In fact, D. jiangningensis 
XL23 has been used in the remediation of these locales for 
its metal resistance genes (He et  al., 2017). Thus, it is not 
surprising that D. terrae strain Ely Copper mine has several 
metal resistance genes (30% of 285 experimentally verified 
BacMet metal resistance genes) involved in resistance to the 
following metals: copper (copR); zinc, cadmium, and cobalt 
(czcR); and tungsten/molybdenum (wtpC). These genes have 
also been detected in D. terrae KACC 12748 and D. jiangningensis 
genomes (Supplementary Table  12; Desiderato et  al., 2018), 
and copper resistance genes, including copABCD, have also 
been found in Dyella at metal contaminated sites (McGee et al., 
2017). These genes are likely important for these metal-tolerant 
bacteria to survive within this metal-rich environment (Table 1).

In addition to metal resistance and lignin degradation, 
D. terrae strain Ely Copper Mine has the potential to produce 
new secondary metabolites, as its BGCs are not similar to 
those involved in the D. terrae KACC 12748 genome as well 
as those involved in making known compounds (e.g., >30% 
sequence similarity). Two of the BGCs involved in producing 
RiPPs and terpenes colocalized with antibiotic resistance genes, 
suggesting that the secondary metabolites produced may have 
antibacterial activity (Alanjary et al., 2017). Aside from potentially 
having novel bioactivity, these secondary metabolites may also 
be  involved in the bacterial association with Stemonitis. For 
example, strains of Dyella have been shown to produce volatile 
compounds (i.e., terpenes) that impact amoebal growth (Schulz-
Bohm et al., 2017). Terpenes play a role in mediating bacterial-
protist interactions and there are two BGCs in the Dyella 
genome dedicated to making terpenes (Supplementary Table 11).

Several amoebae resistance genes, such as those involved in 
secretion systems, were also found in the D. terrae strain Ely 
Copper Mine genome. The type IV secretion system is one of 
the most common mechanisms of resistance against amoebae 
(Christie, 2004). This secretion system transfers proteins and 
DNA, facilitating horizontal gene transfers. The D. terrae strain 
Ely Copper Mine genome contains a virB/D4 type IV secretion 
system, including virB2, virB3, virB4, virB9, virB10, virB11, virD2, 
and virD4 genes, some of which are clustered together. These 
are secretion P-type DNA transfer genes that aid in substrate 
secretion through a cell envelope spanning structure, preventing 
bacterial cell lysis and encouraging cell growth (Christie, 2004). 
Dyella terrae strain Ely Copper Mine may have evolved these 
mechanisms as an adaptive response to predation pressure, 
enhancing its persistence (Hoque et  al., 2021). Other virulence 
genes were also found in the genome, including those encoding 
an ANK-containing protein, which has unclear origins but may 
be  acquired from eukaryotes via horizontal gene transfer or 
result from convergent evolution (Al-Khodor et  al., 2010). 
ANK-containing proteins are involved in bacterial virulence and 
commonly found in eukaryotes, mediating protein–protein 
interactions within host-cell metabolism (Moliner et  al., 2010). 
Similar virulence genes, such as virB and those encoding an 
ANK-containing protein, were also identified in the D. terrae 
KACC 12748 genome. These genes may be  key to D. terrae 
strain Ely Copper Mine occupying Stemonitis sp.

While the association between Dyella and Stemonitis has 
not been reported before, Dyella have been shown to affect 
the performance of protozoa, such as Vermamoeba and 
Saccamoeba, by reducing their trophic activity, motility, and 
growth (Schulz-Bohm et  al., 2017). Protozoa-associated 
prokaryotes commonly serve as electron sinks (e.g., sulfate 
reduction; Ohkuma et  al., 2015), provide chemical defense 
against predators (e.g., secondary metabolites; Görtz, 2006), and/
or provide nutrition for the host cell (Gast et  al., 2009). Dyella 
terrae strain Ely Copper Mine could function in all three roles, 
especially being a nutrient source for the host cell in this 
nutrient-limited environment. Alternatively, the isolated Stemonitis 
could simply serve as a suitable growth environment (e.g., being 
neutrophilic) for acid-tolerant bacteria conferring resistance to 
predation (Baker et  al., 2003). The presence of other bacteria 
within Stemonitis (Figures  4, 5) could also influence these 
interactions. While additional experiments are required to further 
explore the association between these strains of Dyella and 
Stemonitis, D. terrae strain Ely Copper Mine likely plays many 
roles within the ARD community, including biomass production 
via lignin degradation, metal resistance, and the biosynthesis 
of secondary metabolites.
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