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Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause
of hospital-associated (HA) and community-associated (CA) infections globally. The
multi-drug resistant nature of this pathogen and its capacity to cause outbreaks in
hospital and community settings highlight the need for effective interventions, including
its surveillance for prevention and control. This study provides an update on the clonal
distribution of MRSA in Africa.

Methods: A systematic review was conducted by screening for eligible English, French,
and Arabic articles from November 2014 to December 2020, using six electronic
databases (PubMed, EBSCOhost, Web of Science, Scopus, African Journals Online,
and Google Scholar). Data were retrieved and analyzed according to the Preferred
Reporting Items for Systematic Review and Meta-Analysis guidelines (registered at
PROSPERO: CRD42021277238). Genotyping data was based primarily on multilocus
sequence types (STs) and Staphylococcal Cassette Chromosome mec (SCCmec) types.
We utilized the Phyloviz algorithm in the cluster analysis and categorization of the MRSA
STs into various clonal complexes (CCs).

Results: We identified 65 studies and 26 publications from 16 of 54 (30%) African
countries that provided sufficient genotyping data. MRSA with diverse staphylococcal
protein A (spa) and SCCmec types in CC5 and CC8 were reported across the continent.
The ST5-IV [2B] and ST8-IV [2B] were dominant clones in Angola and the Democratic
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Republic of Congo (DRC), respectively. Also, ST88-IV [2B] was widely distributed
across the continent, particularly in three Portuguese-speaking countries (Angola, Cape
Verde, and Sao Tomé and Principe). The ST80-IV [2B] was described in Algeria and
Egypt, while the HA-ST239/S5T241-lll [3A] was only identified in Egypt, Ghana, Kenya,
and South Africa. ST152-MRSA was documented in the DRC, Kenya, Nigeria, and
South Africa. Panton—Valentine leukocidin (PVL)-positive MRSA was observed in several
CGCs across the continent. The median prevalence of PVL-positive MRSA was 33%
(ranged from O to 77%; n = 15).

Conclusion: We observed an increase in the distribution of ST1, ST22, and ST152, but
a decline of ST239/241 in Africa. Data on MRSA clones in Africa is still limited. There is
a need to strengthen genomic surveillance capacity based on a “One-Health” strategy
to prevent and control MRSA in Africa.

Keywords: MRSA - methicillin-resistant Staphylococcus aureus, clonal complex (CC), Panton-Valentine

leukocidin (PVL), molecular typing, Africa

BACKGROUND

Methicillin-resistant Staphylococcus aureus (MRSA) is one of
the important antibiotic-resistant pathogens and a leading
cause of hospital-associated (HA) and community-associated
(CA) infections worldwide (Lee et al, 2018). Recently, the
World Health Organization (WHO) included MRSA as
one of the indicators for antimicrobial resistance in the
Sustainable Development Goals connected to the health target
3.d (WHO, 2021). MRSA is a major burden in hospital-acquired
neonatal infections in sub-Saharan Africa (Okomo et al.,
2019). Vancomycin, a glycopeptide, is considered one of the
last therapeutic agents for MRSA infections (McGuinness
et al., 2017). However, MRSA isolates from clinical samples
exhibiting reduced susceptibility to vancomycin have been
documented in Africa (Fortuin-de Smidt et al., 2015; Zorgani
et al, 2015; Eshetie et al., 2016; Bamigboye et al, 2018;
ElSayed et al.,, 2018). In addition, mecA-positive (Lozano et al.,
2016), mecC-positive MRSA (Dweba and Zishiri, 2019), and
vancomycin-resistant (vanA, vanB-positive) MRSA (Al-Amery
et al, 2019) have been identified in food animals on the
African continent.

There are varying prevalence rates of MRSA reported in
Africa (Wangai et al,, 2019), and the epidemiological picture
depicts diverse clonal types within regions and countries. We
published a systematic review on the molecular epidemiology of
MRSA in Africa (Abdulgader et al., 2015). It revealed that the
pandemic MRSA clones: sequence type (ST) 5 and ST239/241
were dominant on the continent. However, some clones were
limited to specific countries (e.g., ST612 in South Africa) or
regions (ST80 in North Africa). Moreover, CA-MRSA (ST8
and ST88) were identified in clinical and non-clinical settings
(Abdulgader et al., 2015). Africa is described as a Panton-
Valentine leukocidin (PVL) endemic region (Schaumburg et al.,
2014). Also, the 2015 review observed a PVL prevalence of
0.3-100% among MRSA identified from humans (carriage
and infection) in Africa. Despite these findings, data is still

limited, and there are knowledge gaps on the clonal nature
of MRSA in Africa.

The epidemiology of MRSA is characterized by the occurrence
and dissemination of new and emerging clones leading to
constant changes globally (Turner et al, 2019). For instance,
a steady increase of ST5 and ST93 as the predominant CA-
MRSA clones have been described in Australia (Bloomfield et al.,
2020), and ST59 has been replaced by $T239 in China (Li et al,,
2018). Furthermore, a decline of ST5 and an increase in ST8
cases have been observed in the United States of America (See
et al., 2020) and Canada (Guthrie et al., 2020). Since MRSA is
a significant public health problem, understanding the changes
in epidemiology through regular monitoring and surveillance
is essential to minimize its healthcare and economic burden.
Therefore, this review aimed to provide an update describing the
clonal characteristics of MRSA in Africa.

METHODS

This systematic review is a 6-year update on the MRSA
clonal diversity in Africa. We performed the systematic
literature search and analysis according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) (Page et al, 2021). The study was registered
in the PROSPERO database (CRD42021277238). Since
this review focused on a narrative description of the
eligible studies instead of effect sizes and other related
quantitative outcomes, methodological features like sample
size, study population, use of appropriate study design were
not assessed. Therefore, we did not do a formal risk of
bias scoring system.

Literature Search Approach

We used six electronic databases to identify and retrieve relevant
information (PubMed, EBSCOhost, Web of Science, Scopus,
African Journals Online, and Google Scholar). The search
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included articles published in English, French, and Arabic from
November 01, 2014, to December 31, 2020. The literature
search date was selected to complement the data previously
described (Abdulgader et al.,, 2015). The literature search was
also complemented with Publish or perish literature and citation
mining algorithm (Harzing, 2007).

Predefined search terms were used (Supplementary Table 1),
first on a continent-wide basis and then for the 54 African
countries. Article titles and abstracts were screened and reviewed
independently by two authors (OL, AS), including full-text
reviews on all eligible studies.

Identification of Eligible Studies

Studies were eligible on the condition that identification of
MRSA was based primarily on the molecular detection of
the methicillin resistance (mecA) gene (including mecC),
and the investigations used at least one molecular tool to
characterize the isolates. We also included global surveys
that involved African countries. All duplicate articles were
removed, and data only on phenotypic antibiotic susceptibility
testing to identify methicillin-susceptible Staphylococcus
aureus (MSSA) and mecA were excluded. Moreover, African
studies that described isolates recovered from humans or
animals not resident on the continent were excluded. Sufficient
genotyping data was based primarily on multilocus sequence
type (MLST) and the Staphylococcal Cassette Chromosome
mec (SCCmec) typing nomenclature as previously reported
(Abdulgader et al, 2015). Also, we included additional
data, e.g., staphylococcal protein A (spa) types and PVL
status. The MRSA STs cluster analysis was performed and
categorized into various clonal complexes (CCs) using Phyloviz
version 2.0.!

Data Extraction and Analyses

We extracted the epidemiological and genotypic data of MRSA
from the eligible articles using standardized forms. Publications
that described a previously analyzed collection within the period
under review were considered as a single study. We determined
the PVL rate from eligible studies with a sample size of
>30 MRSA isolates.

Cluster Analysis and Minimum Spanning

Tree

The relationship between the MRSA STs described in this review
with other common lineages reported worldwide was analyzed
as previously described (Abdulgader et al., 2015). Briefly, we
downloaded the allelic profiles of the African MRSA STs from
the MLST website.> Furthermore, 236 randomly selected STs
representing the diversity in the database and based on the
differences in their allelic profiles were included (Supplementary
Table 2). The minimum spanning tree was constructed with
the goeBURST algorithm using the Phyloviz version 2.0 (see
text footnote 1).

Uhttp://www.phyloviz.net
Zhttps://pubmlst.org/organisms/staphylococcus-aureus

RESULTS

Literature Search and Description of the

Articles Included in the Review

The systematic search yielded 3367 articles (Figure 1). We
screened 314 full-text articles after removing duplicate studies
and assessing titles and abstracts. Overall, 65 studies were
considered eligible for the qualitative analysis. The data from
these studies were obtained from investigations conducted in
22 countries. Most of the single-center studies were from
Egypt (n = 9), Nigeria (n = 9), South Africa (n = 8), Algeria
(n = 6), and Ghana (n = 5) (Table 1). Multicentre studies
were from six reports. They included four investigations in
Portuguese-speaking African countries: Angola, Cape Verde, and
Sao Tomé and Principe (Conceicdo et al,, 2015a,b; Aires-de-
Sousa et al., 2018; Rodrigues et al., 2018). Others were one study
each from Cameroon and South Africa (Founou et al., 2019),
Cote d’Ivoire and the Democratic Republic of Congo (DRC)
(Schaumburg et al., 2015).

Identification of S. aureus in more than 50% (36/65) of
the eligible studies was based on protein profiling (MALDI-
TOF) or methods established on PCR detection of conserved
(16S rRNA, nuc, tuf, gltB) genes, or the combination of both.
The detection of antibiotic resistance and toxin/virulence genes
were described only in 37% (24/65) and 83% (54/65) of the
studies, respectively (Table 1). One study reported mecC-positive
MRSA from animals (Dweba and Zishiri, 2019). While all the
eligible studies characterized MRSA using at least one molecular
typing technique, only 40% (26/65) from 16 African countries
provided sufficient genotyping data (Supplementary Table 3).
Furthermore, 12 studies performed whole-genome sequencing
(WGS), of which eight carried out adequate analyses to infer
MRSA clones (Table 1).

Source of Methicillin-Resistant

Staphylococcus aureus

Methicillin-resistant  Staphylococcus aureus from the eligible
studies was classified as either HA, CA, or livestock-associated
(LA) based on their source of isolation as provided in the
articles. Overall, 40% (26/65) of the studies were on HA-
MRSA, while 18% (12/65) each were from the community and
animal/livestock settings (Table 1). Additionally, 22% (14/65) of
studies characterized MRSA from either two (HA-CA: n = 10;
HA-LA: n=2; CA-LA: n=1) or all the study settings (HA-CA-LA:
n =1). We could not infer the source of isolates in one study.

High Clonal Diversity Among
Methicillin-Resistant Staphylococcus

aureus lsolates Reported in Africa

We observed a high genetic heterogeneity among MRSA in
the 26 eligible studies that provided sufficient genotyping data.
Based on MLST, they were classified into 39 STs, four of which
were unassigned types (Supplementary Table 3). The MLST
cluster analysis using Phyloviz based on the geoBURST algorithm
revealed 15 CCs. They comprised mainly CC1, CC5, CC8, CC22,
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-
3,367 records identified from searching the six databases
(PubMed, EBSCOhost, Web of Science, Scopus, African
¥Joumals Online, and Google Scholar) )
\ 4
e A
1,099 duplicate records were removed
. J
A 4
e A
2,268 records screened after the removal of duplicate hits 1,954 records were excluded based solely on the title and
abstract review
\ J
i 249 full text articles were excluded based on
e N * Only MSSA or other staphylococci being studied
314 full text articles were assessed for eligibility —| iny phenotypic fletectmn of MRSA
* No MRSA detection
\. J * Studies not reporting data from African countries
* Studies not performing molecular genotyping
Y
e - N
65 eligible studies were critically reviewed
\ J
FIGURE 1 | Standard preferred reporting item for systematic reviews. MSSA, methicillin susceptible Staphylococcus aureus; MRSA, methicillin-resistant
Staphylococcus aureus.

CC30, and CC88. Others were CC7, CC15, CC20, CC45, CC80,
CC97, CCl121, CC152, and CC398 (Figures 2, 3).

Clonal Complex 1

This clone was identified in six countries (Figure 3). PVL-positive
t590-ST1-V [5C2] was documented from nasal samples both in
hospitalized patients and health care workers (HCWs) in Séao
Tomé and Principe (Conceigdo et al.,, 2015a,b). Another PVL-
positive lineage: t657-ST772-V [5C2] (Bengal Bay Clone), was
detected from human nasal samples in the community setting
in Nigeria (Ogundipe et al, 2020). Moreover, PVL-negative
t127-ST1-IV [2B] was described in a nasal sample of a non-
hospitalized individual in Morocco (Mourabit et al., 2017), while
it’s variant (t127-ST1-V [5C2]) was identified from non-human
specimens (milk products) in Uganda (Asiimwe et al., 2017b).
ST1-V [5C2] and ST913-V [5C2] were recovered from clinical
samples in Egypt (Soliman et al., 2020). In South Africa, t465-
ST1-1[1B]/IV [2B] was isolated from patients with cystic fibrosis
(CF) (Mahomed et al., 2018).

Clonal Complex 5

This lineage was reported in 10 countries (Figure 3). The PVL-
negative t105-ST5-IV [2B] was the dominant lineage colonizing
patients and HCWs (Conceigdo et al., 2015b; Rodrigues et al.,
2018), as well as inanimate surfaces in Angola (Aires-de-Sousa
etal., 2018). Also, it was detected in nasal samples of patients and
HCWs in Sdo Tomé and Principe (Concei¢io et al., 2015b), and
a community patient admitted to a hospital in Algeria (Djoudi
et al,, 2014). In the DRC, three ST5-IV [2B] variants (t002-
ST5-1V [2B], t105-ST5-1V [2B], and PVL-positive t311-ST5-1V

[2B]) were described (Lebughe et al., 2017; Vandendriessche
et al., 2017). In Kenya, t13150-ST5-II [2A] and t007-ST39-1I
[2A] were identified from clinical samples (Omuse et al., 2016;
Kyany’a et al., 2019). ST5-VI [4B] was reported in a tertiary
care hospital in Egypt (Soliman et al.,, 2020) and Cape Verde
(Concei¢io et al., 2015b). ST5-VII [5C1] was recovered from
a patient in the nephrology ward in Algeria (Djoudi et al,
2014). Other reports include ST5-III/V/non-typeable (NT) in
South Africa (Abdulgader et al., 2020; Singh-Moodley et al.,
2020). The related genotypes such as t6065-ST5/5ST2629-V [5C2]
in Angola (Concei¢do et al.,, 2015a,b), t6065-ST69-V [5C2] in
Libya (Khemiri et al., 2017), and t002-ST105-11 [2A] in Sdo Tomé
and Principe (Conceigdo et al., 2015b) were also noted. One study
reported t002/t11469-ST5-V [5C2] in poultry birds (Nworie et al.,
2017) in Nigeria (Supplementary Table 3).

Clonal Complex 8

ST8-IV [2B] (with diverse spa types) was documented in
hospitalized patients and HCWs in Angola, Cape Verde, and Sao
Tomé and Principe (Conceicdo et al., 2015a; Rodrigues et al.,
2018), and clinical samples in Ghana (Egyir et al.,, 2015) and
Kenya (Omuse et al., 2016). PVL-positive t121-ST8-IV [2B] was
identified in Cape Verde (Conceicao et al., 2015b), Ghana (Egyir
etal., 2015), and Sdo Tomé and Principe (Rodrigues et al., 2018).
The t451-ST8-V [5C2] was one of the dominant clones among
hospitalized patients and HCWs in Sdo Tomé and Principe
(Conceigao et al., 2015a,b; Rodrigues et al., 2018). Also, ST8-V
[5C2] was described in hospital settings in Angola (Concei¢ao
et al., 2015b; Aires-de-Sousa et al., 2018), Egypt (Soliman et al.,
2020), Ghana (Egyir et al., 2015), and Kenya (Omuse et al., 2016).
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The PVL-negative ST8-V/VII (largely t1476) was the major
clone in the DRC (Lebughe et al., 2017; Vandendriessche et al.,
2017), and Angola (Aires-de-Sousa et al., 2018). Two countries,
i.e., Morocco (Mourabit et al., 2017) and Nigeria (Ogundipe
et al., 2020), described ST8-V [5C2] with different spa types
(t2231, 2658, and t12236) in non-clinical settings. The t456-
ST8-I [1B] was only identified in South Africa (Mahomed et al.,
2018). Furthermore, ST239/ST241-11I [3A] was noted in hospital
settings in Egypt (Soliman et al., 2020), Ghana (Egyir et al., 2015),
Kenya (Omuse et al., 2016; Kyany’a et al., 2019), and South Africa
(Abdulgader et al., 2020; Singh-Moodley et al., 2020). ST612-IV
[2B], which comprised mainly spa type t1257, was a major clone
in clinical (Singh-Moodley et al., 2020) and non-clinical settings
(Amoako et al., 2019) in South Africa. Other related STs include
ST72-V [5C2] in Angola (Concei¢io et al., 2015b; Aires-de-Sousa
et al,, 2018; Rodrigues et al., 2018) and ST4705-1IT [3A] in Kenya
(Kyany’a et al., 2019).

Clonal Complex 22

ST22-MRSA was identified in six African countries. They include
Angola (Conceigdo et al., 2015b), Algeria (Djoudi et al., 2014),
Egypt (Soliman et al., 2020), Kenya (Omuse et al., 2016), and
South Africa (Abdulgader et al., 2020; Singh-Moodley et al.,
2020). Various spa types (t005, t012, t022, t032, 223, t6397,
t11293, and t13149) were associated with this lineage that
harbored the SCCmec IV element (Supplementary Table 3).
Moreover, it was the major clone recovered from nasal samples of
volunteers and outpatients in Tangier, Morocco (Mourabit et al.,
2017). Most MRSA isolates from Algeria and Morocco possessed
the gene encoding for toxic shock syndrome (#st).

Clonal Complex 30

This clone was observed in both human and animal samples.
We identified seven spa types (t012, t018, t030, t037, t045,
t064, and t6278; Supplementary Table 3). In South Africa,
ST30-II [2A], ST36-II [2A], and ST36-III [3A] were identified
from bacteremic patients (Abdulgader et al, 2020; Singh-
Moodley et al., 2020), including ST30-1/IV [2B] from CF patients
(Mahomed et al., 2018). ST30-V [5C2] was reported in different
settings in Angola (Conceigdo et al., 2015a,b; Rodrigues et al.,
2018), and from a chicken meat sample in Tunisia (Chairat
et al., 2015). One isolate characterized as t018-ST36-1I [2A] was
described in Ghana (Egyir et al, 2015) and from the rinsate
of processed animals in an abattoir in South Africa (Amoako
et al., 2019). Furthermore, the genetically related ST535-1V [2B]
was described in a patient in a nephrology ward in Algeria
(Djoudi et al., 2014).

Clonal Complex 88

ST88-IV [2B] with diverse spa types (t186, t325, t335, t786,
t1451, t1603, t1814, t3869, and t12827) was documented in eight
studies from seven African countries (Supplementary Table 3
and Figure 3), particularly in Portuguese-speaking nations. It was
widely distributed in Angola (Conceigao et al., 2015a,b; Aires-de-
Sousa et al., 2018; Rodrigues et al., 2018), Cape Verde (Conceigao
et al., 2015b), and Sao Tomé and Principe (Conceigdo et al,
2015a,b; Aires-de-Sousa et al., 2018; Rodrigues et al., 2018). Other

reports include the DRC (Lebughe et al., 2017; Vandendriessche
et al., 2017), and Ghana (Egyir et al., 2015; Wolters et al., 2020).
PVL-negative ST88-IV [2B] was recovered from nasal samples
of both humans and pigs in Nigeria (Otalu et al., 2018), and
ST88-V [5C2] was detected in a blood culture sample in the DRC
(Vandendriessche et al., 2017). ST88-MRSA with a NT SCCmec
was identified in Kenya (Omuse et al., 2016).

Other Clonal Complexes

These include eight clones that belonged to smaller (in number or
limited spread across countries) groups (Supplementary Table 3
and Figure 3). They consist of CC7 (ST789-IV [2B]/V [5C2])
(Egyir et al., 2015; Omuse et al., 2016; Ogundipe et al., 2020),
CCl15 (ST15-V [5C2], and ST1535-V [5C2]) (Nworie et al., 2017;
Soliman et al., 2020), and CC20 (ST20-IV [2B]) (Mahomed et al.,
2018). CC45 comprising ST45-1 [1B], ST45-1V [2B], and ST508-1
[1B] was detected in CF patients in South Africa (Mahomed et al.,
2018). Also, ST508-V [5C2] associated with CC45 was described
in Ghana (Egyir et al., 2015). PVL-positive CC80 (ST80-1V [2B])
was only described in Algeria (Djoudi et al., 2014; Agabou et al.,
2017) and Egypt (Soliman et al.,, 2020). CC152 (mostly PVL-
positive) with various spa types (t355, t715, t4960, t5691, and
t15644) and SCCmec types (I, II, IV, V, and VII) were identified
in four countries. They include the DRC (Lebughe et al., 2017;
Vandendriessche et al., 2017), Kenya (Kyanya et al, 2019),
Nigeria (Ogundipe et al., 2020), and South Africa (Mahomed
etal., 2018). ST121-V [5C2] was documented in Egypt (Soliman
et al., 2020) and Uganda (Asiimwe et al., 2017b), in addition
to PVL-positive isolates in Nigeria (Ogundipe et al., 2020). The
LA ST398-1V [2B]/V [5C2] was recovered from the rectal and
nasal samples of pigs in Cameroon, South Africa (Founou et al.,
2019), and in the nasal sample of a healthy individual in Morocco
(Mourabit et al., 2017). Also, ST398-1V [2B] was detected in raw
meat samples in Tunisia (Chairat et al., 2015). MRSA with the
genotype ST140-IV [2B] (associated with CC398) was recovered
from inanimate surfaces in a health care institution in Angola
(Aires-de-Sousa et al., 2018).

The Dynamics of Methicillin-Resistant
Staphylococcus aureus Clones
(2014-2020)

We compared MRSA clones reported from a previous study
(Abdulgader et al,, 2015) and the period under review. New
genotyping data were available from Cape Verde, Ethiopia, the
DRC, Libya, and Uganda. However, reports on MRSA clones
from Senegal, Gabon, and Madagascar in the previous study were
absent in the current period under review. Overall, genotyping
data from 11 African countries (Angola, Algeria, Cameroon,
Egypt, Ghana, Kenya, Tunisia, Morocco, Nigeria, Sdo Tomé
and Principe, and South Africa) in the two study periods were
identified and compared (Figure 3). We observed an increase
in the number of MRSA clones reported in seven (Angola,
Egypt, Kenya, Morocco, Nigeria, S0 Tomé and Principe, and
South Africa) of the 11 countries. Specifically, CC1, previously
described only in Nigeria and Tunisia (Abdulgader et al., 2015),
was identified in clinical and non-clinical settings in six countries
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TABLE 1 | Summary of the characteristics of eligible articles on the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Africa.

Country Study Sample type Host No of Staphylococcus No of Settings Molecular typing methods Detection of genes References
period S. aureus aureus ID MRSA
isolates coa agr spa PFGE SCCmec MLST WGS PVL *Virulence Antibiotic
typing resistance
Algeria 2010- Nasal swabs Human 159 NR 9 HA - - - - v v - v v - Djoudi et al.,
2012 2014
2011- NR Human NR NR 99 NR - v v - - v - - v v Elhani et al., 2015
2012
2015- Nasalswabs  Camel, 118 MALDI-TOF 6 LA - v - - v v - v v v Agabou et al.,
2016  from animals horses, 2017
sheep,
monkeys,
cattle
2014- Diverse raw Food 1563 MALDI-TOF 26 CA - - - - v - - v v - Chaalal et al.,
2015  and processed 2018
food products
2014- Raw milk Cows 69 23 rBRNA gene PCR 11 CA - - v v - v - v v v Titouche et al.,
2015 2019
2017- Dairy and meat Animal 104 23 rRNA 5 CA - - v - - v - v v v Titouche et al.,
2018  samples 2020
DR Congo 2013- SSTI, UTI, Human 186 NR 55 HA - v v - v v v v v v Lebughe et al.,
2014 ear-eye-nose- 20179
throat infection,
blood
2009- Blood samples Human 108 NR 27 HA - - v - v v - v v v Vandendriessche
2012 etal., 2017
Egypt 2010- Human: pus, Human, 133 nuc gene PCR 30 HA/LA v - v - v - - v - - Abd El-Hamid
2012 sputum, urine, mastitic and Bendary,
cerebrospinal  cow 2015
fluid, swabs,
mastitic cow
milk
2011 Nasalswabs  Human 54 nuc gene PCR 33 CA - - v - v - - Vv - - Abou Shady
etal., 2015
2014  Diabetic foot,  Human 136 NR 85 HA v - - v - - - v - El-baz et al.,
nasal 2017
discharge,
boils,
abscesses,
sputum, urine,
wounds, burns,
vaginal smear
2013  Nasal swabs of Human 112 16S rRNA gene 34 HA - - v - v - - v v v Khairalla et al.,
health care PCR 2017
workers,
hospital
environmental
surfaces
(Continued)
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TABLE 1 | (Continued)

Country Study Sample type Host No of Staphylococcus No of Settings Molecular typing methods Detection of genes References
period S. aureus aureus 1D MRSA
isolates coa agr  spa PFGE SCCmec MLST WGS PVL *Virulence  Antibiotic
typing resistance
2016- Human: pus, Human, 65 16S rRNA and nuc 65 HA[20]LA v v v - v v - v v v Abd El-Hamid
2017  blood, sheep, gene PCR [22], CA etal., 2019
cerebrospinal  and cows [23]
fluid, pericardial
fluid, sputum,
urine, swabs
from human;
Sheep and
COow: pus,
meat, and milk
from mastitic
animals
NR Clinical and Cows 17 nuc gene PCR 5 LA - - - - - v - - - - Oreiby et al.,
milk samples 2019
from mastitic
cow
2014- Blood, sputum, Human NR nuc gene PCR 120 HA[80], CA - - - - v - - v - - Shehata et al.,
2016  and pus [40] 2019
2017-  Milk from Cows 42 MALDI-TOF 12 LA - v v - - - - v v v El-Ashker et al.,
2018  mastitic cow 2020
2017- Diverse Human NR NR 18 HA - - - - v v v v v v Soliman et al.,
2018 samples from 20209
ICU
Ethiopia 2016- Nasal swabs Farm 70 nuc gene PCR 1 LA - - v - v - - - - - Kalayu et al.,
2017  from workers  workers/ 2020
and cow udder cows
2014~ Blood, wound ~ Human 80 MALDI-TOF, 16S 1 HA - - - - v v - Vv v - Verdu-Exposito
2018  lesions rRNA PCR et al., 2020
Gabon 2012-  Throat swabs, Human 103 NR 3 CA - - - - v - - v v v Okuda et al.,
2013  skin lesions 2016
Ghana 2010- Clinical Human 24 Microarray 24 HA,CA v v v - v v - v - - Egyir et al., 2015
2013  samples, nasal
swabs
2007- Blood, sputum, Human 56 MALDI-TOF, nuc 1 HA - - v - - - - v - - Dekker et al.,
2012  and pus gene PCR 2016
2014- Nasal swabs Human 123 NR 2 HA - - v - - v - Vv v - Eibach et al.,
2015 2017
NR Nasal swabs Human/ 25 MALDI-TOF 2 CA - - v - - v v v v v Egyir et al., 2020
from cattle, animals
pigs, goats,
sheep, and
handlers

(Continued)
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TABLE 1 | (Continued)

Country Study Sample type Host No of Staphylococcus No of MRSA  Settings Molecular typing methods Detection of genes References
period S. aureus aureus ID
isolates coa agr  spa PFGE SCCmec MLST WGS PVL *Virulence Antibiotic
typing resistance
2016 Wound Human 28 NR 8 HA - - - - v v v v - v Wolters et al.,
20209
Kenya NR Nasal swabs,  Human 93 NR 32 HA - - v v v v - - - - Omuse et al.,
pus, blood, 2016
tracheal
aspirate, axillary
swab, ear
swab, sputum,
vulva swabs
2015- NR Human 32 VITEK 2 8 HA - - v - v v v - v v Kyany’'a et al.,
2018 20199
Libya 2008, Swabs;nose, Human NR NR 95 HA/CA - - v - - v - v - - Ahmed et al.,
2014  ears, wounds, 2017
throat; pus,
sputum, urine
2013  Wound Human NR nuc gene PCR 32 HA - - - v v v - v v v Khemiri et al.,
2017
Madagascar NR Nasal swabs ~ Human 171 nuc gene PCR 20 HA[14], CA - - v - - - - v v - Hogan et al.,
6] 2016
Morocco 2012- Nasal swabs Human 400 16S rRNA and nuc 17 CA - - v v v v - v v - Mourabit et al.,
2013 gene PCR 2017
Nigeria 2013  Clinical Human 156 API 20 66 HA - - - - v - - v v - Alli et al., 2015
samples
2010- Nasal swabs, Human 290 nuc gene PCR 7 HA [, CA - - v - - - - v - - Ayepola et al.,
2011 wounds, 2] 2015
vaginal
discharge,
blood, urine,
sputum
NR Cloacal Birds 247 Staph Latex 15 LA - - v - v v - Vv - v Nworie et al.,
samples from Agglutination (subsampled 2017
birds 8 MRSA
isolates)
NR Blood, urine, Human 92 VITEK 2 12 HA - - - - v - - v - - Enwuru et al.,
wound, sputum 2018
NR Nasal swabs ~ Human 109 MALDI-TOF and tuf 18 LA - - v - - - - - - - Odetokun et al.,
from food and gene PCR 2018
animals and animals
abattoir
workers and
environmental
samples
(Continued)
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TABLE 1 | (Continued)

Country Study Sample type Host No of Staphylococcus No of MRSA  Settings Molecular typing methods Detection of genes References
period S. aureus aureus ID
isolates coaagr spa PFGE SCCmec MLST WGS PVL *Virulence Antibiotic
typing resistance
2013- Nasal swabs Pigs/human NR MALDI-TOF 38 LA[26], CA - - v - v v v v v - Otalu et al.,
2015 [12] 20189
NR Diverse samples Human, 61 MALDI-TOF 56 LA - - v - v v v v v v Ogundipe et al.,
from humans, animals, and (subsampled 20209
animals, and chicken in a 30 MRSA
animal products poultry farm isolates)
NR Intestine Flies 275 nuc gene PCR, 4 CA - - v - - v v v v v Onwugamba
MALDI-TOF et al., 2020
2015~ Fomites Inanimate 14 nuc gene PCR, 3 CA - - v - - v v v - - Shittu et al.,
2016 materials MALDI-TOF 2020b
Rwanda 2013~ Clinical samples Human 138 NR 39 HA - - - - v - - - - - Masaisa et al.,
2014 2018
South Africa 2010- Clinical samples Human 2709 nuc gene PCR 1160 HA - - v - v v - - - - Perovic et al.,
2012 2015
2015  Nasal, blood, Human NR VITEK and 27 HA - - - v - - - Vv - v Amoako et al.,
pus, central MALDI-TOF 2016
venous catheter,
sputum, wound
2013- Diverse clinical  Human 1914 VITEK 2 482 HA[449], - - v - v v - - - - Perovic et al.,
2016  samples CA[33] 2017
2013- Sputum Human 33 MALDI-TOF 17 HA - - v v v v - v v - Mahomed et al.,
2014 2018
NR Nasal and hands Farm workers, 145 API Staph kit 12 LA - - v - v v v - - v Amoako et al.,
swabs, litter, animals, and 20199
transport truck, slaughterhouse
carcass, cecal  environment
samples, retail
point meats
2013- Blood samples Human 2164 API 484 HA/CA - - - - v - - v - - Singh-Moodley
2016 Staph/MALDI-TOF etal, 2019
2015- Blood Human 199 VITEK 2 54 HA - v v - v v - - - - Abdulgader et al.,
2017 2020
2010- Blood culture Human 5820 VITEK/MALDI-TOF 2019 HA/CA - - v - v v - - - - Singh-Moodley
2017 and nuc gene PCR  (subsampled et al., 2020
48 MRSA
isolates)
Tanzania 2013- Clinical samples Human 30 NR 10 HA - - - - - v v v v v Kumburu et al.,
2015 2018
2015 Raw milk Raw milk 48 gitB gene PCR 3 CA - - v - - - - - - - Mohammed
etal.,, 2018
(Continued)
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TABLE 1 | (Continued)

Country Study Sample type Host No of Staphylococcus No of Settings Molecular typing methods Detection of genes References
period S. aureus aureus ID MRSA
isolates coa agr spa PFGE SCCmec MLST WGS PVL *Virulence Antibiotic
typing resistance
2014~ Nasal swab, Human 168 VITEK 10 HA,CA - - v - - v - v - - Moremi et al.,
2015  wound swab 2019
Tunisia Raw meat Chicken 43 nuc gene PCR 2 LA - - v v v v - v v v Chairat et al.,
2015
2013- Milk from Cows 15 nuc gene PCR 3 LA - - v - v v - - v v Klibi et al., 2018
2014 mastitic cow
2008- Device-related  Human 87 NR 32 HA - v - v v - - Vv v - Mesrati et al.,
2009 infection, pus, 2018
blood, biological
fluid
Uganda 2013  Animals Milk samples 41 NR 23 LA - - v v v - - v v - Asimwe et al.,
2017b
2013  Nasal swabs Human 73 NR 48 CA - - v v v - - Vv - - Asiimwe et al.,
2017a
2011 Nasopharyngeal Children 144 NR 45 CA - - v - v - - Vv - - Kateete et al.,
samples <5 years 2019a,b
Zambia 2009- Pus, blood Human NR NR 32 HA - - v - v - - v - - Samutela et al.,
2012 2017
Multicentre studies
Angola, Sao  2010- Diverse clinical  Human 454 nuc gene PCR 162 HA - - v v v v - v v - Conceicéo et al.,
Tome and 2014  samples and 2015b
Principe and nasal swabs
Cape Verde from health care
workers and
healthy individual
Angola-Sao  2010- Nasal swabs Human 164 NR 29 HA - - v v v v - Vv v - Conceigéo et al.,
Tome 2014 2015a
Principe
2017 Hospital Environmental 23 NR 16 HA - - v v v v - v - - Aires-de-Sousa
surfaces samples etal.,, 2018
2017  Nasal swabs Human 110 nuc gene PCR 33 HA/CA - - v v v v - v - Rodrigues et al.,
2018
Cameroon- 2016  Nasal and rectal Pigs/human NR VITEK 2 5 LA - - v - v v v v v v Founou et al.,
South Africa swabs and hand 20199
swabs from
human
DR 2010- Nares swabs Human and 495 nuc gene PCR 19 HA/LA - - v - - v - v v - Schaumburg
Congo-Cote 2013 animals etal., 2015

d’lvoire

NR, not reported; HA, hospital-associated; CA, community-associated; LA, livestock-associated; —, not determined; *, other toxin/virulence associated genes; 1, studies that provided sufficient genotyping data based
on whole genome sequencing (WGS).
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FIGURE 2 | Clonal diversity of methicillin-resistant Staphylococcus aureus in Africa. The minimum spanning tree was constructed with Phyloviz software version 2.0
hosted on http://www.phyloviz.net. The allelic profiles were obtained from the MLST database hosted on (https://pubmist.org/organisms/staphylococcus-aureus)
that included the sequence types of the MRSA described in this review, and 236 randomly selected STs based on the differences in their allelic profiles and
representative of the MRSA diversity worldwide. Each node depicts an ST, and nodes centrally located and bearing different colors correspond to a group founder or
sub-founder. Clonal complexes (CCs) reported in this study are colored in gray.

(Egypt, Morocco, Nigeria, Sdo Tomé and Principe, South Africa,
and Uganda). ST22-IV [2B] (CC22), previously documented
only in South Africa (Abdulgader et al., 2015), was described
in Angola, Algeria, Egypt, Kenya, Morocco, and South Africa.
Also, CC152-MRSA identified only in Nigeria (Abdulgader et al.,
2015) was reported in the DRC, Kenya, Nigeria, and South Africa.
In contrast, the HA Brazilian/Hungarian clone (ST239/241-I11
[3A]), which was previously described as a major clone on
the continent, was noted only in four countries (Egypt, Ghana,
Kenya, and South Africa). Some MRSA clones were still limited
to specific countries and regions. ST80-IV [2B] (CC80) and
ST612-1V [2B] (CC8) were identified only in North African
countries and South Africa, respectively. Overall, CC5-MRSA,
CC8-MRSA, and CCB88-MRSA remained widely distributed
across the continent (Figure 3).

Panton-Valentine Leukocidin-Positive
Methicillin-Resistant Staphylococcus

aureus and Clonal Population in Africa
Methicillin-resistant Staphylococcus aureus carriage of the PVL
gene was investigated in 50 of the 65 eligible studies. PVL-positive

isolates were reported in 26 studies in 11 countries (Table 1
and Supplementary Table 3). The lineages and countries were:
CCI1 (Egypt, Sdo Tomé and Principe, and Nigeria), CC5 (Algeria,
Angola, and DRC), CC8 (Cape Verde, DRC, Ghana, Sdo Tomé
and Principe, and South Africa), CC22 (Angola), and CC30
(Angola and South Africa). Others are CC80 (Algeria and Egypt),
CC121 (Nigeria, Egypt, and Uganda), CC152 (DRC and Nigeria),
and CC398 (Cameroon). The prevalence of PVL-positive MRSA
ranged from 0% (Otalu et al., 2018) to 77% (23/30) (Ogundipe
et al., 2020), with a median of 33% (Table 2).

DISCUSSION

This systematic review provided an update on the diversity of
MRSA clones in Africa for the past 6 years (2014-2020). We
observed a slight increase in the number of studies and countries
that provided sufficient genotyping data. Diverse MRSA clones
were distributed across human, environmental, and animal
settings. CC5, CC8, and CC88 were the major clones identified
in Africa. Various spa types and SCCmec elements characterized
CC5-MRSA. It was postulated that the African ST5-MRSA
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evolved from ST5-MSSA through acquiring the SCCmec element
(Schaumburg et al., 2014). Its capacity and higher propensity
to acquire various SCCmec elements could play a significant
role in its increased dissemination and adaptation to different
environments in Africa. However, the phylogeny, origin, and
features for the spread of CC5-MRSA remain unclear in Africa.

Five SCCmec types and 11 spa types were associated with
CC8-MRSA suggesting its high diversity in Africa. The CC8 is
comprised of the hospital (Archaic [ST250], Iberian [ST247],
and Brazilian/Hungarian/EMRSA-1 [ST239]) and CA (USA300
[t008-ST8], USA500 [t064-ST8]) clones (Bowers et al., 2018).
ST239 was described as a major clone on the continent
(Abdulgader et al., 2015) but has declined in the current period
under review. It was identified only in four countries. ST239-
MRSA evolved from recombination events between ST8 and
ST30, in addition to the acquisition of antibiotic resistance
and virulence determinants that contribute to its pathogenic
capabilities (Robinson and Enright, 2004; Gill et al, 2021).
However, this clone’s low competitive potential relative to ST8
and ST30 could contribute to its gradual decline in different
continents (Dai et al., 2019; Gill et al., 2021).

USA300 isolates harbor the SCCmec type IVa element, PVL-
positive, with the arginine catabolic mobile element (ACME).
These factors are lacking in USA500 isolates. A phylogenomic
study provided some insights on the origin and the features
for the spread of ST8-MRSA in Africa (Straufl et al., 2017).
First, the heterogeneity of SCCmec types suggests the different
introduction of these genetic elements to the ST8 genetic

background. Secondly, African USA300 isolates formed a
monophyletic group within the North American Epidemic
(NAE) USA300 clade. This observation suggests a single
introduction episode of this clone to the African continent
followed by an extensive spread in the population (Strauf}
et al., 2017). However, it should be noted that the African
USA300 isolates analyzed in the investigation were PVL-positive,
unlike most of the MRSA (PVL-negative) identified in our
study (Supplementary Table 3). Also, a phylogenetic analysis of
t1476-ST8-IV-MRSA isolates (PVL, ACME-negative) from HIV-
infected patients in Tanzania (Manyahi et al., 2021) revealed that
they were unrelated to NAE USA300 and the African USA300
previously described in Gabon and East Africa. We hypothesize
that t1476-ST8-MRSA from Tanzania, Angola, DRC, and Kenya
(Supplementary Table 3) may have acquired different SCCmec
elements despite sharing common genetic characteristics. Further
studies are needed to unravel the origin and nature of CC8-
MRSA in Africa.

CC88-MRSA is regarded as an “African” clone due to its wide
distribution in West, Central, and East Africa (Schaumburg et al.,
2014). It is noteworthy that CC88-MRSA was widely distributed
in Portuguese-speaking African countries (Angola, Cape Verde,
and Sdo Tomé and Principe). The reasons for this observation are
unclear. However, we postulate that demographic and cultural
relationships could play a significant role in establishing this
clone in these African countries. We observed an expansion of
CCI1-MRSA, CC22-MRSA, and CC152-MRSA in Africa. Unlike
the European CC1-MRSA, which is mainly t127-ST1-IV [2A],
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TABLE 2 | Prevalence of Panton-Valentine leukocidin (PVL) gene reported in
eligible studies with >30 methicillin-resistant Staphylococcus aureus
(MRSA) isolates.

Country No of MRSA No of % Prevalence References
PVL-positive
MRSA
Angola 127 2 2 Conceigéo et al.,
2015b
DR Congo 55 5 9 Lebughe et al., 2017
27 2 7 Vandendriessche et al.,
2017
30 22 73 Abd El-Hamid and
Bendary, 2015
34 5 15 Khairalla et al., 2017
65 30 46 Abd El-Hamid et al.,
2019
120 40 33 Shehata et al., 2019
Libya 95 32 34 Ahmed et al., 2017
Nigeria 66 6 9 Alli et al., 2015
38 0 0 Otalu et al., 2018
30 23 7 Ogundipe et al., 2020
South Africa 484 27 25 Singh-Moodley et al.,
(subsampled 2019
108 MRSA
isolates)
Uganda 48 25 52 Asimwe et al., 2017a
45 19 42 Kateete et al., 2019a
Zambia 32 3 9 Samutela et al., 2017

the African CC1-MRSA (identified in six countries) comprised
spa types t127, t465, and t590, and most of them harbored
the SCCmec V element. ST22-IV [2B] (CC22), which is tagged
epidemic MRSA-15 (EMRSA-15), was previously documented
only in South Africa (Abdulgader et al., 2015), but now in
six African countries. The CC152 lineage is a successful MSSA
clone in Africa that is mainly PVL-positive. CC152-MRSA was
previously noted in Nigeria (Abdulgader et al., 2015), but it is
now described in four countries. The increasing trend of CC152-
MRSA with diverse spa types and SCCmec elements in Africa
is also noteworthy. This observation supports the evidence of
multiple introductions among MSSA isolates in sub-Saharan
Africa as the basis for the evolution of this clone (Baig et al.,
2020). Recent studies have also reported CC152-MRSA from
humans (Egyir et al, 2020, 2021) and animals (Shittu et al,,
2021), including fomites (Shittu et al., 2020b) in Africa. The
emergence of PVL-positive CC152-MRSA is of public health
concern. Hence, there is a need to understand the dynamics
for introducing and acquiring the mecA gene by CC152-MSSA
isolates in Africa.

ST80-IV [2B] (CC80) was limited to North African
countries and ST612-IV [2B] (CC8) in South Africa, as
described previously (Abdulgader et al., 2015). However,
MRSA in various STs (ST80, ST728, ST1931, ST2030, ST3247,
and ST5440) assigned to CC80 was recently described in
environmental samples associated with livestock in South Africa
(Ramaite et al., 2021). ST612-IV [2B] has been detected in
wound patients in Tanzania (Moremi et al., 2019). Also, it has

been described in a poultry farm and workers in South Africa,
raising concerns about its spread across the poultry food chain
(Amoako et al., 2019). There is still a paucity of data on the
molecular epidemiology of MRSA in animals in Africa. Hence,
their role in the dissemination of MRSA remains unclear.
Nonetheless, we observed diverse clones (ST1, ST5, ST8, ST36,
and ST88) with various SCCmec types associated with the
hospital and community settings recovered from livestock and
their surroundings. Our findings suggest human to animal
transmission and adaptation in poultry and food animals, which
warrants further investigations. These observations somewhat
indicate the changing epidemiological landscape and highlight
the need for a “One-Health” approach to understanding MRSA
epidemiology in Africa.

Panton-Valentine leukocidin is a pore-forming protein
consisting of two sub-units (lukF-PV, 1ukS-PV) that target
human granulocytes, monocytes, and macrophages (Holzinger
et al, 2012). It is mainly associated with skin and soft
tissue infection (SSTI) (Friesen et al., 2020), and in particular,
pyomyositis in developing countries (Shittu et al, 2020a).
This study identified PVL-positive MRSA from nine CCs in
10 countries. Africa is regarded as a PVL-endemic region
(Schaumburg et al., 2015). The high prevalence (median: 33%)
of PVL-positive MRSA, particularly among nasal samples of
hospitalized patients and non-hospitalized individuals in Africa
(Supplementary Table 3), is of public health concern. Recurrent
SSTIs are associated with S. aureus carriers colonized with PVL-
positive S. aureus (Rentinck et al., 2021). So far, the burden
of PVL-positive S. aureus is not well known despite its high
prevalence in Africa. Knowledge on factors that contribute to
the high prevalence of PVL in Africa could help unravel the
pathogenic role of PVL and develop strategies against PVL-
related diseases.

Genomic epidemiology is a powerful tool to provide valuable
information on the emergence of high-risk pandemic clones,
antibiotic resistance mechanisms, and virulence determinants
(Baker et al, 2018). The characterization of MRSA using
conventional molecular typing techniques (e.g., spa typing,
MLST) describes only a fraction of the entire S. aureus
genome (Price et al., 2013). WGS offers a better opportunity to
expand our knowledge about clinical and epidemiologic aspects
of MRSA infection and colonization, including transmission
patterns, evolution, and guide on appropriate interventions
(Humphreys and Coleman, 2019). Our data showed that 12
of the 26 studies utilized WGS. However, eight provided
sufficient genotyping data. Understanding the epidemiology
of MRSA based on WGS is still in its infancy in Africa.
Nonetheless, international scientific cooperation efforts support
genomic sequencing capacity building on the continent, e.g.,
the Fleming Fund, SEQAFRICA. It is expected that these
initiatives will provide quality genotyping data that will assist
in MRSA surveillance in Africa. However, these efforts will
require complementary local investment to ensure quality and
representative genotyping data and sustainability.

In August 2017, two independent consortia converged to
form the StaphNet Africa. This consortium was co-convened
by the corresponding author and Dr. Beverly Egyir (Ghana).
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The first kick-off meeting took place at the Noguchi Memorial
Institute for Medical Research, University of Ghana. The
conference, sponsored by the Wellcome Trust-Cambridge Centre
for Global Health Research, brought together biomedical
scientists and physicians with a research focus on S. aureus
from 10 African countries (Nigeria, Ghana, Egypt, Gabon, Kenya,
Mozambique, South Africa, Uganda, Kenya, and the Gambia),
and the United Kingdom. Although the network’ activities have
been hampered by funding, one of its resolutions was to provide
regular updates on the epidemiology of S. aureus in Africa.
This systematic review is an affirmation of this resolution. Also,
an African version of the biennial International Symposium on
Staphylococci and Staphylococcal Infections (ISSSI), known as
the African Symposium on Staphylococci and Staphylococcal
Infections (ASSSI), was adopted for implementation. The
symposium is to provide a platform for researchers to network
and share current research work on S. aureus in Africa. We
anticipate that this initiative, with others, will provide periodic
data on MRSA surveillance in Africa.

CONCLUSION

We have provided an update on the clonal diversity of MRSA in
Africa in the past 6 years. Nonetheless, there is still a paucity of
data as sufficient genotyping data were available in only 16 of
54 (30%) countries. This systematic review did not investigate
antibiotic resistance and virulence gene repertoire of the various
African MRSA clones and their level of transmissibility. The
origin and features underlying the spread of MRSA clones in
Africa are not clear. Identifying human-associated lineages in
food animals and products provides evidence to adopt a “One-
Health” approach to understand the epidemiology of MRSA
in Africa. There is a need to develop robust local capacity
in genotyping, including WGS technologies, to determine the
genetic factors that contribute to the evolution and adaptation
of various African MRSA clones. Lastly, an active continent-wide
antimicrobial resistance surveillance program and data exchange
across One-Health sectors and professionals are required to
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