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Flagellar motors are intricate rotating nanomachines that are powered by
transmembrane ion gradients. The stator complexes are the powerhouses of the
flagellar motor: They convert a transmembrane ion gradient, mainly of H+ or Na+,
into rotation of the helical flagellar filament. They are thus essential for motor function.
The number of stators synchronously engaged in the motor is surprisingly dynamic and
depends on the load and the environmental concentration of the corresponding coupling
ion. Thus, the rotor–stator interactions determine an important part of the properties of
the motor. Numerous bacteria have been identified as possessing more than one set
of stators, and some species have been demonstrated to use these different stators in
various configurations to modify motor functions by dynamic in-flight swapping. Here,
we review knowledge of the properties, the functions, and the evolution of these hybrid
motors and discuss questions that remain unsolved.
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INTRODUCTION: FLAGELLA-MEDIATED MOTILITY

During the billions of years of their existence, bacteria have evolved a range of different systems
that allow them to move actively toward environments that are more favorable and to conquer
new habitats (Jarrell and McBride, 2008; Wadhwa and Berg, 2021). Among the different means of
locomotion, flagella are highly common. Flagella are long, rotating helical protein fibers (Berg and
Anderson, 1973; Silverman and Simon, 1974) that extend from the cell surface and act as propellers
to drive the cell efficiently through aqueous habitats and through more-structured environments or
across surfaces (Kearns, 2010; Kühn et al., 2017).

Rotation of the flagellar filament is conferred by a rotating nanomachine, the flagellar motor, to
which the filament is connected by a structure that serves as a universal joint structure, the flagellar
hook (Figure 1A). Along with the flagellar protein export system, the motor is embedded into
the cell envelope to form the flagellar basal body. Motor rotation is powered by transmembrane
gradients, most commonly of protons (H+) or sodium ions (Na+) (Manson et al., 1977; Matsura
et al., 1977; Hirota et al., 1981; Li et al., 2011). The majority of flagellar motors are bi-directional
and can rotate in both the clockwise and counterclockwise directions, which allows the cells to
navigate within environmental signal gradients via chemotaxis systems coupled to the flagella.
Decades of work by many research groups in concert with constantly advancing techniques, e.g., in
fluorescence microscopy and cryo-tomography, have provided deep insights into the structure of
the flagellum, the composition of its motor, and the mechanism of rotation (Berg, 2003; Sowa and
Berry, 2008; Johnson et al., 2021; Tan et al., 2021; Wadhwa and Berg, 2021).
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Active motility provides a huge advantage for many organisms
in nature (Fenchel, 2002; Reichenbach et al., 2007; Gude et al.,
2020). This benefit, however, always comes with the cost of a
substantial investment of energy and resources. For bacteria,
not only the assembly but also the operation up to many
flagella is a significant metabolic burden, as the cells have to
constantly maintain the appropriate ion gradient to power the
rotation. In addition, most bacteria thrive in rapidly changing
environments and thus have to adjust the performance of their
flagella accordingly. To this end, a range of mechanisms has
evolved, which include direct binding of effector proteins that
act as brakes, accelerators, clutches, or mediators of directional
switching, sometimes even including the shedding the flagellar
filament and part of the basal body (Minamino et al., 2019;
Subramanian and Kearns, 2019; Zhu and Gao, 2020). These
mechanisms will not be considered in detail here. Instead, we will
review and discuss the inherent properties of the structure of the
flagellar motor and its components that allow specific control and
adaptation of the performance of the motor.

A ROTARY MACHINE DRIVEN BY
ROTARY MACHINES—ROTOR–STATOR
INTERACTION IN THE FLAGELLAR
MOTOR

In general, rotational motors require two parts to generate torque
between them: a part that rotates, the rotor, and a part that
remains static, the stator. In all bacterial flagellar motors, the
rotor comprises the cytoplasmic C-ring, which consists of dozens
of copies of the proteins FliG, FliM, and FliN (or FliY in some
bacterial motors) (Johnson et al., 2021; Tan et al., 2021; Wadhwa
and Berg, 2021). The C-ring is shaped like a shallow, inverted cup
with a diameter of about 45 nm (in Salmonella or Vibrio), where
FliG is located close to the membrane and FliN is at the distal
position within the cytoplasm (Francis et al., 1994; Figures 1A,B).
FliG associates with FliF, the protein that forms the MS ring in the
stator, which transduces rotation to the flagellar rod.

The stator is formed by distinct, ion-specific stator units. Each
stator unit is an independent ion-conducting complex (Braun
and Blair, 2001) built from seven copies of two transmembrane
proteins, commonly referred to as MotA and MotB (as in the
H+-dependent motors of E. coli or S. enterica) (Silverman et al.,
1976; Dean et al., 1984; Stader et al., 1986) or PomA and PomB
(as in their Na+-dependent counterparts in species of Vibrio or
Shewanella) (Asai et al., 1997). MotA (or PomA) is embedded
in the cytoplasmic membrane by four transmembrane regions
and has a large cytoplasmic loop connecting transmembrane
helices two and three and another cytoplasmic extension at
the C-terminal end (Zhou et al., 1995). MotB possesses a
short N-terminal cytoplasmic segment followed by a single
transmembrane helix and a large periplasmic region (Chun
and Parkinson, 1988), which harbors a peptidoglycan-binding
domain (PBD) at its C-terminal end (De Mot and Vanderleyden,
1994). Each stator unit consists of five MotA/PomA subunits
that are arranged in a ring around two MotB/PomB proteins

(Deme et al., 2020; Santiveri et al., 2020; Hu et al., 2021).
In a fully assembled motor of E. coli or Vibrio sp., about
a dozen stators surround the MS-ring in the membrane,
where they are positioned above FliG in the cytoplasmic
C-ring and are bound to the cell wall by the MotB/PomB
PBD domain (Khan et al., 1988; Reid et al., 2006; Thomas
et al., 2006; Beeby et al., 2016; Figures 1B,C). The most
recent model predicts that, driven by ion flow through each
stator unit, the MotA proteins rotate around the two center
MotB proteins and thus are themselves rotary nanomachines.
The MotA cytoplasmic sections interact electrostatically with
the C-terminal domains of the FliG proteins in the C-ring
below the stators (Zhou and Blair, 1997; Zhou et al., 1998;
Terashima et al., 2021; Figure 1B). Conformational changes
in the C-ring, e.g., by binding of the phosphorylated form of
the chemotaxis response regulator CheY, alter the interaction
of MotA/PomA with FliG and switch the C-ring‘s rotational
direction (Paul et al., 2011; Stock et al., 2012; Santiveri et al., 2020;
Hu et al., 2021).

DYNAMICS OF ROTOR–STATOR
INTERACTION AND MOTOR
REMODELING

As described above, the stator units are the powerhouses of
the flagellar motor and determine the nature of the coupling
ion and the torque that can be produced. Despite this
designation and their role in torque production, the rotor–stator
configuration has been demonstrated to be surprisingly dynamic
(Armitage and Berry, 2020).

The coupling of stator units to, and uncoupling from, the
motors was observed by an incremental increase (or decrease) in
torque (Block and Berg, 1984; Blair and Berg, 1988; Muramoto
et al., 1994; Sowa et al., 2005) and, later, more directly by
microscopic observation of fluorescently labeled stator units
(Leake et al., 2006). When they are first assembled, the stator
units diffuse as a pool of inactive precomplexes [about 300 in
E. coli (Leake et al., 2006)] within the cytoplasmic membrane
(Figure 1D). At that stage, the periplasmic section of the
B-subunit is not bound to the cell wall; it assumes a conformation
that prevents premature ion flow through the membrane. Only
when they engage with the flagellar motor are the stators
activated through conformational changes that allow binding
to the peptidoglycan and release of ion flow (Van Way et al.,
2000; Hosking et al., 2006; Kojima et al., 2009, 2018; Morimoto
et al., 2010; Zhu et al., 2014). Each stator unit can also disengage
from the flagellar motor and join the pool of membrane-diffusing
inactive precomplexes. Thus, the stators in the flagellar motor are
constantly turned over. Notably, stator exchange occurs while the
motor continues to function.

The stability of rotor–stator interactions depends on at least
two major factors: the ion motive force and the load acting
on the filament (Figure 1D). Collapsing the ion motive force
results in physical uncoupling and diffusion of the stator units
from the motor, e.g., in E. coli (Figure 1E), whereas restoring
the proton motive force leads to re-incorporation of stators
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FIGURE 1 | The bacterial flagellar motor. (A) Cartoon of the bacterial flagellum of a Gram-negative bacterial cell. The flagellum consists of the long helical filament
and the universal joint, the hook, which connects the filament and the flagellar motor. The motor is part of the basal body, which firmly anchors the flagellar apparatus
in the cell envelope and, in addition, houses a type III–like protein export system. The main flagellar components involved in torque generation, the rotary C-ring and
the stators, are shown in the same colors (here and throughout all figures). (B) Magnification of the flagellar motor. In the rotating motor, the ion-conducting stators
(here blue) are anchored to the cell wall by a peptidoglycan-binding domain at the C-terminus of the B subunit of the stator. The ion flow leads to rotation of the
A-subunits of the stator around the centered B-subunits. The rotation is transferred to the flagellar rotor, the C-ring (depicted in yellow), which consists of multiple
copies of the proteins FliG, FliM, and FliN. Rotation of the C-ring is induced by electrostatic interaction of the A-subunits of the stator with FliG. (C) Top view on the
transmembrane MS-ring (dark gray) to which the C-ring (yellow) is mounted. The stator units are positioned around the MS-ring above the C-ring. In a fully
assembled motor of E. coli, about 11 stators are engaged with the rotor. (D) Stator units are produced as inactive precomplexes, which diffuse in the membrane.
Upon engaging with the motor, the stators bind to the peptidoglycan and the ion channel opens. Stator units can also leave the motor to re-join the pool of inactive
stator units in the cytoplasmic membrane. The equilibrium is affected by environmental signals, e.g., the concentration of the coupling ion and/or the load acting on
the flagellar filament. Stator coupling and uncoupling occurs while the flagellum continues to rotate. Notably, more than one stator type can be present (indicated by
the blue and red colors). (E) Under conditions of low load or at a low concentration of the coupling ion, only a few stators are engaged with the motor. A single stator
is generally sufficient to drive flagellar rotation under conditions of low load. Under conditions of increasing load and/or increasing concentration of the coupling ion
(indicated by the gray triangle), the maximal number of stators can be engaged. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane; M, FliM;
N, FliN; MS, MS-ring.

into the motor (Fung and Berg, 1995; Tipping et al., 2013b).
A similar behavior occurs in the Na+-dependent motor of Vibrio
alginolyticus: The stators disengage from the motor when Na+ in
the environment is depleted or when Na+ transport through the
stator unit is blocked (Fukuoka et al., 2009; Kojima, 2015). The
stability of rotor interactions with the stator may be regulated by

conformational changes induced by binding of the coupling ion
to the stator complex, (Kojima, 2015; Terahara et al., 2017a).

In addition to the concentration of the coupling ion, the load
on the flagellum affects the stability of rotor–stator interactions
and, by this, the number of stators engaged in the motor.
Several studies provide evidence that the number of stators
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synchronously engaged in the motor increases with progressively
rising load on the flagellum and, vice versa, decreases when the
torque 141 is lowered (Lele et al., 2013; Tipping et al., 2013a;
Nord et al., 2017a,b; Wadhwa et al., 2019). The observations
support a catch-bond model, where the interaction between
the stator and the cell wall is strengthened with increasing
force and is lowered with decreasing force (Nord et al., 2017a;
Nirody et al., 2019). Thus, at very low load, only one or a few
stators drive motor rotation, and engagement of the maximum
number of stators occurs only at maximal load or when the
rotation is stalled.

The dynamic assembly of the stator ring may save energy by
restricting the ion flow through the flagellar motor when the load
on the filament is low so that little advantage in propulsion would
be gained by using more stators (Armitage and Berry, 2020).
The mechanosensing property of the flagellar motor could also
allow the cell to determine the viscosity of the environments or
attachment to a solid substratum and to elicit an appropriate
response (Chawla et al., 2020; Laventie and Jenal, 2020). However,
as stator dynamics have been properly determined for only few
species, it should be noted that not all bacteria may exhibit stator
exchange, e.g., the stator ring of Spirochetes appears to be rather
stable (Chang et al., 2019). On the other hand, a number of species
have taken this mode of motor regulation one step further, as they
can remodel the configuration and performance of the motor
using different types of stators.

THE DYNAMIC HYBRID-FUELED
MOTORS OF Shewanella oneidensis
AND Bacillus subtilis

The majority of the bacteria that swim by flagellar motility
encode a single specific stator unit to drive the corresponding
flagellar motor. In contrast, there are a number of species that
harbor genes encoding more than one distinct stator unit, among
them species of the genus Pseudomonas, Bacillus, and Shewanella
(Doyle et al., 2004; Ito et al., 2004, 2005; Toutain et al., 2005;
Paulick et al., 2009; Thormann and Paulick, 2010). Some bacteria
may use only one of the stators at a time by producing each of
the stator units only under certain conditions. Alternatively, the
bacteria could be able to use both stators synchronously. In two
species, Shewanella oneidensis and Bacillus subtilis, it has been
shown that the flagellar motor allows mixed stator configurations.

Shewanella oneidensis has two types of stators to power
rotation of its single polar flagellum. One of them, PomAB, is
powered by Na+. The function of the second stator, MotAB,
depends on H+ gradients. PomAB is the dominant stator under
all conditions tested, but full swimming speed, as a measure
of motor performance, at low Na+ concentrations requires the
presence of MotAB (Paulick et al., 2009). In the absence of
MotAB, about eight stator units are present in the flagellar motor,
each of which is exchanged after some 30 s on average (Figure 2,
upper panel). In contrast to the Vibrio alginolyticus motor, the
PomAB stators do not uncouple from the motor, nor does the
exchange half-time increase even at very low Na+ concentrations.
This suggests that the load on the motor affects PomAB binding

FIGURE 2 | Stator dynamics and dual stator systems. Cartoons of top views
of the MS-ring and C-ring (gray and yellow, respectively) with the surrounding
stator units. Upper panel: S. oneidensis possesses two types of stator units:
Na+-dependent PomAB (blue) and H+-dependent MotAB (red). A low
environmental concentration of Na+ favors disengagement of PomAB from
the motor and engagement of MotAB. At low Na+ concentrations, the motor
runs as a hybrid, synchronously using Na+ and H+ to drive rotation. The gray
triangle indicates an increasing or decreasing concentration of the coupling
ion Na+. Middle panel: a similar motor–stator arrangement is present in
B. subtilis, which also has H+-dependent MotAB (blue) and Na+-dependent
MotPS (red) stators. The MotAB stator is dominant under most conditions,
but increasing concentrations of Na+ and higher loads favor the incorporation
of MotPS into the active stator ring. The upper triangle represents differences
in the environmental Na+ concentration, the lower triangle increase or
decrease in environmental viscosity. Lower panel: P. aeruginosa has two
H+-dependent individual stator units, MotAB (blue) and MotCD (red). MotAB
powers rotation during planktonic free swimming, whereas MotCD is used
under conditions of high load, e.g., during swarming across surfaces
(indicated by the upper gray triangle). It should be noted that it is not clear if all
MotAB stators are replaced. Notably, the regulator of the flagellar motor, FlgZ,
when it is binds the secondary messenger c-di-GMP, uncouples MotCD (but
not MotAB) from the motor (indicated by the lower gray triangle). MotCD then
interacts with the membrane-localized diguanylate cyclase SadC to stimulate
production of more c-di-GMP. Thus, at high c-di-GMP concentrations, cells of
P. aeruginosa are unlikely to induce swarming but rather remain associated
tightly with the surface (see the main text for explanations).

(Paulick et al., 2015). When MotAB was the only stator present,
up to 11 stators were observed to be engaged with the motor. The
rate of exchange of MotAB was similar to that of PomAB at low
Na+ concentrations, but the rate almost doubled at high levels
of Na+. When both stators were present, the motor exhibited a
mixed configuration: In the presence of Na+, the ratio of PomAB
to MotAB was about 7:2 with a slow turnover of PomAB. In the
absence of Na+, the PomAB/MotAB ratio switched to 6:5, and
there was a high rate of PomAB turnover (Paulick et al., 2015).

In agreement with cryo–electron tomography studies, the data
indicate that, in the S. oneidensis motor, eleven stators can be
synchronously engaged (Kaplan et al., 2019; Blagotinsek et al.,
2020). In the presence of Na+, eight of the 11 positions are
occupied by the Na+-dependent PomAB stator. The remaining
vacant slots are taken up by MotAB stators, although these have
only a meager effect on flagellar rotation. However, when the
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concentration of Na+ is low, the rate of MotAB incorporation
increases and contributes significantly to motor performance
(Paulick et al., 2009, 2015).

A similar motor–stator arrangement is present in B. subtilis,
which possesses H+-dependent stators (MotAB) and Na+-
conducting stators (MotPS) to power one type of flagellar
motor (Ito et al., 2004, 2005). MotAB is the dominant stator
for normal swimming, whereas MotPS-mediated swimming
required appropriate conditions with respect to increased pH,
adequate Na+ levels, and high viscosity as well as elevated
levels of stator proteins (Ito et al., 2004, 2005; Terahara et al.,
2006; Chan et al., 2014). The B. subtilis motor is also highly
dynamic (Figure 2, middle panel): At low environmental Na+

concentrations, only MotAB is associated with the flagellar motor,
but a mixed MotAB/MotPS motor–stator configuration occurs at
elevated Na+ levels (Terahara et al., 2017a). In addition, increased
viscosity results in a decrease in MotAB stators interacting with
the flagellar motor and favors engagement of the Na+-dependent
MotPS stators (Terahara et al., 2020). A high concentration of
polysaccharides may also increase incorporation of MotPS into
the motor (Terahara et al., 2017b, 2020). It should, however,
be noted that, in the wild-type B. subtilis strain, a significant
contributing role of MotPS to swimming or swarming motility
under natural conditions has yet to be demonstrated.

Both studies cited above nicely demonstrate that both
S. oneidensis and B. subtilis can adjust flagellar motor function
by using more than one stator type. Notably, in both cases,
hybrid motors can run synchronously on two fuels, H+ and Na+,
and thus function over a wide range of Na+ concentrations.
The motor–stator configuration can be adjusted by “in-flight”
stator swapping while the motor continues to operate. The
general mechanism appears to be rather simple: two distinct
populations of stator precomplexes compete with each other
for incorporation into the stator ring. The actual configuration
is dynamically determined by the stability of the interaction
of the corresponding stator with the motor, which depends on
the local environmental conditions as elaborated above. In S.
oneidensis, the motor composition is certainly governed by the
Na+ concentration. In B. subtilis, the choice of stator type also
depends upon the polysaccharide concentration and viscosity.

THE TWO-STATOR SYSTEM OF
Pseudomonas aeruginosa

In the last paragraph, it was shown how bacteria may use a
dynamic hybrid motor to run on two different fuels at the same
time. However, there are also different examples of how different
sets of stators can be used to upgrade the flagellar machinery. As
the before-mentioned S. oneidensis and B. subtilis, Pseudomonas
aeruginosa also possesses two different stator types to power
rotation of the single polar flagellum (Doyle et al., 2004; Toutain
et al., 2005). However, the P. aeruginosa system is different in
that both stator units, MotAB and MotCD, are powered by H+

gradients. MotAB is used primarily for planktonic swimming
at normal viscosity, whereas MotCD powers flagella rotation
during swarming across surfaces when the load on the flagellum

is high (Doyle et al., 2004; Toutain et al., 2005; Kuchma et al.,
2015). Similar to B. subtilis, stator selection may be regulated by
environmental viscosity because MotCD-motor interactions are
more stable at high load (Figure 2, lower panel). Thus, the dual
stator setup of P. aeruginosa allows a configuration better suited
to motility at high load. It will be highly interesting to further
study the stator exchange dynamics of this system in dependence
of increasing and decreasing load. In addition, as both depend on
the same coupling ion, the dual stators of P. aeruginosa provide
an excellent model to investigate, which structural properties of
the stator units allow the generation of higher torque.

Intriguingly, the P. aeruginosa dual stator system was
additionally demonstrated to regulate and be regulated at another
level: MotCD (but not MotAB) can additionally be bound by the
c-di-GMP–responsive regulator FlgZ, which prevents functional
rotor–stator interaction (Baker et al., 2016). Thus, a high c-di-
GMP level inhibits MotCD engagement and swarming motility,
and the cell rather commits to surface adhesion and biofilm
formation. Notably, disengaged MotCD in the cytoplasmic
membrane can make direct contact with the membrane-localized
diguanylate cyclase SadC (Baker et al., 2019). This interaction
stimulates c-di-GMP synthesis by SadC, which further promotes
a surface-associated lifestyle. Thus, MotCD of P. aeruginosa not
only functions as a high-duty stator for motility at elevated load
but also as structural component of a feed-forward regulator
that influences the decision to adopt a planktonic or surface-
associated lifestyle.

IMPLICATIONS AND FURTHER
QUESTIONS

The studies so far have demonstrated that the dynamics
underlying the interactions between the stator and the flagellar
motor are used by bacteria to optimize performance of the motor
according to the environmental conditions. There are, however,
still numerous unsolved questions and fascinating new flagellar
motor systems to be discovered.

What is the full range of motor configurations that exist?
To date, there are three systems with multiple stators that
have been characterized in detail, as elaborated above. There
are, however, many more species that are likely to expand the
range of possibilities for ways to regulate motor functions by
stator swapping. Aeromonas hydrophila is among the species
with multiple stators. It possesses two Na+-dependent stators
(PomA1B1 and PomA2B2) to power its single polar flagellum
(Wilhelms et al., 2009). Each stator is able to power swimming
at normal and elevated viscosity. However, PomA1B1 appears to
function better at lower Na+ concentrations. It is conceivable
that A. hydrophila also dynamically adjusts the rotor–stator
configuration in response to changes in the external Na+

concentration, but this remains to be shown.
An analysis of the available genome sequences indicates that

some bacterial species, e.g., Desulfovibrio sp., not only possess
two stator isoforms but also have three or even four stator
units that may contribute to motor function (Thormann and
Paulick, 2010). Thus, it may be hypothesized that motor systems
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synchronously powered by three or four types of stator units exist
in nature to extend further the range over which the function of a
flagellar motor may be regulated by stator switching. However, as
these motor–stator systems have not yet been characterized, this
possibility remains speculative for the time being.

How is stator selection regulated? As elaborated above,
the thorough studies demonstrate that the motor–stator
configuration can be passively adjusted by the stability of
the interaction of one or more stator types with the motor.
This regulation may depend on the concentration of the
corresponding coupling ion or the load on the motor. However,
it has been demonstrated that additional mechanisms to regulate
stator selection exist, and we expect additional mechanisms to be
identified in the future.

As the abundance of a stator unit has been shown to affect
incorporation into the motor (Terahara et al., 2006), stator
selection may additionally be mediated by specific upregulation
or downregulation of the corresponding stator, as suggested for
A. hydrophila (Wilhelms et al., 2009). This may be a way of
affecting stator selection in other bacteria as well.

In addition, as demonstrated for P. aeruginosa, stators can be
specifically uncoupled from the motor by binding of regulatory
proteins, such as FlgZ in the presence of elevated levels of
the secondary messenger c-di-GMP (Baker et al., 2016). Several
such c-di-GMP–responsive regulators that may interfere with
rotor–stator interaction have been described, such as MotI in
B. subtilis or YcgR in E. coli (Boehm et al., 2010; Fang and
Gomelsky, 2010; Paul et al., 2010; Gao et al., 2013; Subramanian
et al., 2017; Subramanian and Kearns, 2019). Therefore, stator
selection by regulator binding to the stators could occur in
species with multiple stator sets. Potential regulators do not
necessarily have to be c-di-GMP–binding proteins and may also
be involved in other cellular processes. An example for such
a protein is B. subtilis EpsE, a glycosyltransferase involved in
synthesis of an extracellular polysaccharide. It moonlights as a
clutch for the flagellar motor by binding to the flagellar C-ring
(Blair et al., 2008).

How did hybrid flagellar motors evolve? Generally, flagellar
systems with two or more stator units may have evolved either
by gene duplication followed by development of functional
divergence through mutations or by the genes encoding another
stator system having been acquired by lateral gene transfer.
Previous studies in which stators were swapped between E. coli
and Vibrio sp. showed that “foreign” stators using different
coupling ions can interact with the flagellar C-ring to enable
motility, albeit at a significant cost in motor performance.
However, in many cases, gain-of-function mutants readily
emerged, indicating that even a few mutations are sufficient
to improve motor–stator interaction significantly (Gosink and
Häse, 2000; Asai et al., 2003; Sowa et al., 2005). In all species

discussed in detail above—S. oneidensis, B. subtilis, P. aeruginosa,
and A. hydrophila—the two stator systems share little identity
at the level of amino acid sequence. This fact, and a significant
similarity of one the stators to those from other species,
suggests that, in all four cases, a second “foreign” stator has
been acquired and evolved to become a helpful functional
upgrade of the flagellar machinery. Notably, secondary stator
systems are present in many species of Pseudomonas, Bacillus,
and Aeromonas (Thormann and Paulick, 2010), suggesting that
acquisition of the second stator occurred before phylogenetic
divergence. In contrast, the MotAB stator system of S. oneidensis
appears to be a rather recent acquisition that is present
only in this particular species within the genus Shewanella.
It may have been selected to facilitate adaptation from a
marine to a fresh-water environment (Paulick et al., 2009, 2015;
Brenzinger et al., 2016).

Together, the conservation of rotor–stator interactions
enables functional upgrades of the flagellar motor by a
later acquisition of additional stator types. The dynamics
involved in stator coupling to the motor allow mixed stator
configurations, even enabling the motor to use two different fuels
synchronously. Motor performance can be constantly adjusted
by in-flight stator swapping. So far, we have characterized a
mere handful of systems, and many discoveries on flagellar
systems with multiple stators remain to be discovered. The
acquisition and functional adaptation of novel stators is an
outstanding model system to study the mechanism of rotor–
stator interaction, in particular, and the functional evolution of
bacterial nanomachines, in general.
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