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Mitochondrial genomes—in particular those of fungi—often encode genes with a large 
number of Group I and Group II introns that are conserved at both the sequence and the 
RNA structure level. They provide a rich resource for the investigation of intron and gene 
structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the 
degree of sequence conservation of introns is limited, and the primary sequence differs 
considerably among the distinct intron sub-groups. It makes intron identification, 
classification, structural modeling, and the inference of gene models a most challenging 
and error-prone task—frequently passed on to an “expert” for manual intervention. To 
reduce the need for manual curation of intron structures and mitochondrial gene models, 
computational methods using ERPIN sequence profiles were initially developed in 2007. 
Here we present a refinement of search models and alignments using the now abundant 
publicly available fungal mtDNA sequences. In addition, we have tested in how far members 
of the originally proposed sub-groups are clearly distinguished and validated by our 
computational approach. We confirm clearly distinct mitochondrial Group I sub-groups 
IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping 
substantially in predictions, and are therefore combined and reported as IB. We have 
further explored the conversion of our ERPIN profiles into covariance models (CM). Current 
limitations and prospects of the CM approach will be discussed.

Keywords: mitochondrial introns, group I, ERPIN, covariance models, infernal, RNA structure

INTRODUCTION

Sequencing of mitochondrial (mt) genomes (separately or as part of whole-genome projects) 
has become easy and affordable, but identifying and annotating genes in mt contigs often 
remains challenging. This is because mt genes, particularly in fungi, may contain a substantial 
number of (sometimes large) Group I  and Group II introns, as well as difficult-to-recognize 
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mini-exons that can be  as small as three (Cummings et  al., 
1990b) or, at an extreme, a single nucleotide (Osigus et al., 2017).

In nuclear genome projects, the inference of gene models 
can leverage transcript alignments, in conjunction with 
alignments of conserved protein or structured RNA sequences 
from related species onto the genome sequence. However, 
mitochondrial transcript data are not only rarely available but 
also of limited help, as splicing of mt RNA precursors tends 
to be  partial and is often difficult to interpret without expert 
manual intervention. Therefore, mitochondrial gene model 
inferences are usually only based on the set of conserved 
mitochondrial gene or derived protein sequences (Paquin et al., 
1997; Gray et  al., 1999; Lang et  al., 1999; Burger et  al., 2003; 
Lang, 2013). Evidently, this approach has serious drawbacks. 
When relying on publicly available sequences, these must 
be  closely related to the genome to be  annotated, and a priori 
be  complete and accurate, otherwise implicit errors will occur 
via “community error propagation.” It is likewise possible to 
curate the gene annotations of neighboring species case by 
case, an approach that requires substantial input of a 
knowledgeable expert curator. Moreover, sequence matching 
of known coding or protein sequences (which is employed in 
both aforementioned approaches) can be  fairly precise for 
delineation of larger exons, but can often fail for those smaller 
than ~30 nt, particularly when two or more small exons are 
“hiding” in long stretches of intron-rich sequence. It is here 
that high confidence and complete intron identification plays 
a crucial complementary role in revealing approximate locations 
of potential exons (i.e., in stretches of sequence between predicted 
introns). In addition, structural RNA inference of introns can 
provide clues on precise exon–intron boundaries flanked by 
conserved sequence features.

In the following we  will first explain the distribution and 
general structural features of these introns, with emphasis on 
mt Group I  and its sub-groups. Group II introns will not 
be further discussed as they are readily identified computationally, 
with a single search (Lang et  al., 2007), based on two small 
adjacent helical regions (domains V plus VI). In stark contrast, 
Group I  intron identification works very poorly with a general 
intron model and instead requires searching with models that 
represent the distinct sub-groups as well as structurally derived 
intron variants (Lang et  al., 2007). We  will then go on to 
explain two powerful search algorithms [ERPIN (Gautheret 
and Lambert, 2001) and Infernal (Nawrocki et  al., 2009)] that 
are best suited for identifying these structured RNAs and their 
sub-groups, weighing advantages and potential drawbacks.

Distribution and Structural Features of 
Group I and II Introns
Group I and II introns occur in a wide range of mitochondrial, 
chloroplast, eubacterial, bacteriophage, virus, and nuclear 
genomes [e.g., (Michel et  al., 1982; Cech et  al., 1983; Michel 
and Dujon, 1983; Shub et  al., 1988; Ferat and Michel, 1993; 
Ohta et  al., 1993; Turmel et  al., 1993; Michel and Ferat, 1995; 
Qiu et al., 1998; Cho and Palmer, 1999). They are (or originated 
from) mobile elements that spread via intron-encoded proteins 

most notably “homing” endonucleases in Group I (Dujon, 1989; 
Henke et  al., 1995; Belfort and Bonocora, 2014), and reverse 
transcriptases in Group II (Michel and Lang, 1985; Schäfer 
et  al., 2003; Lambowitz and Zimmerly, 2004)]. In contrast to 
the eukaryotic spliceosomal introns in nuclear genes, Group 
I  and II introns are characterized by elaborate, conserved (but 
unrelated) RNA structures that were first recognized in the 
early 1980s in fungal mtDNAs [e.g., (Dujon, 1980; Michel 
et al., 1982; Waring et al., 1982)]. Group I  introns were shortly 
thereafter identified in ciliate nuclear rRNA genes and were 
demonstrated to self-splice in vitro without requiring protein 
factors (Kruger et  al., 1982; Cech et  al., 1983). This finding 
motivated a large number of research groups to investigate 
the “self-splicing” properties of Group I  and II introns that 
were identified in their sequencing projects, to rather mixed 
results. Successful in vitro splicing in the absence of protein 
co-factors was reported for only a limited number of introns. 
More often, splicing depends on intron-encoded proteins [termed 
“maturases,” e.g., (Carignani et  al., 1983)], or on proteins 
encoded in separate nuclear genes [e.g., (Kreike et  al., 1987; 
Augustin et  al., 1990; Bassi et  al., 2002; Huang et  al., 2005)]. 
In particular, mitochondrial introns turned out to be frequently 
unable to splice in vitro in the absence of protein co-factors 
[e.g., (Schäfer et  al., 1991)], even under most un-physiological 
test conditions, like high salt, temperature, etc. (and, such 
negative results are evidently under-reported in the literature). 
Accordingly, the general notion that Group I  and II introns 
are autocatalytic or self-splicing is quite misleading. Qualifying 
them as ribozymes, which in some instances undergo autocatalytic 
splicing in vitro, appears to be  more in line with the 
published literature.

Mt. Group I  introns were initially classified into Group IA, 
IB, IC, and ID [with an additional bacterial IE group added 
a few years later; for a review see (Hausner et  al., 2014)], and 
further subdivided (e.g., IC1 and IC2). The initial mt group 
II intron subdivisions are Group IIA and IIB, later extended 
with the identification of a bacterial IIC (Zimmerly and Semper, 
2015). Although reaching back as much as 32 years, this 
classification continues to be  widely used and accepted. Group 
I  classification is still based on the 87 available sequences at 
the time [see appendix in (Michel and Westhof, 1990)], collected 
from organelle and bacteriophage genomes, plus introns in 
ciliate nuclear rRNA genes. Notably, the vast majority of 
sequences came from fungal mt genomes, with more than 
one-third (38%) from a single species, Podospora anserina 
(Cummings et al., 1990a; Michel and Westhof, 1990). Evidently, 
this sampling is highly biased toward mt introns, and any of 
these groupings rely essentially on human expertise, rather 
than on computational methods. In the absence of a sufficient 
number of intron sequences per sub-group, which would have 
allowed a phylogeny- or sequence profile-based grouping, the 
initial ordering of group I  introns into sub-groups gave most 
(but not all) weight to the P7 pairing, which is an essential 
part of the catalytic core of the ribozyme serving as a binding 
site for a guanosine cofactor (Michel et  al., 1989). Other 
relatively well-conserved regions that were considered in addition 
are the P1 stem that defines the 5′ splice site and the P4-P5-P6 
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and P3-P7-P9 helices (Michel and Westhof, 1990). Note that 
substantial variation of the P7 motif was accepted within given 
sub-groups as long as overall structural or sequence relatedness 
was recognized, which speaks against the popular characterization 
of intron groups via P7 sequence motifs (“logos”). In fact, 
logos emphasize the most predominant primary sequence, 
therefore lack detail on sequence and structural variation (i.e., 
the characteristic helix-bulge-helix of P7) that is essential for 
ribozyme catalysis.

Computational Methods for Intron 
Identification
Basic similarity search algorithms, as implemented in BLAST 
and FASTA are woefully inadequate in identifying introns for 
two reasons. The first being relatively high levels of sequence 
variation in introns, which can degrade the quality of high-
scoring sequence pairs, and thus lead to imprecise and fragmented 
hits. The second reason is that similarity comparisons are blind 
to secondary structure, which limits their capacity to bridge 
distant conserved motifs. Instead, probabilistic approaches using 
sequence profiles (based on structured alignments of multiple 
sequences, including information of secondary structure pairings) 
are required to spot the regions of similarity that are small 
and spread out over intron sequences that can reach up to 
7 kb [e.g., (Liu et  al., 2020)] and beyond. Currently available 
and popular search algorithms are ERPIN (Gautheret and 
Lambert, 2001) and Infernal (Nawrocki et  al., 2009). ERPIN 
is based on column-wise computation of probabilities at the 
nucleotide and structure level, focusing on the detection of 
distinct conserved sequence motifs and helices in given structured 
sequence alignments (to be  supplied by the user). In contrast, 
Infernal leverages the HMM approach, computing emission 
(at a given column) and transition probabilities (from one 
column to the next), but applies covariance modeling (CM) 
as a second layer search mechanism to initial HMM hits. The 
CM architecture is a stochastic context-free grammar (SCFG) 
profile which, in the same spirit of HMMs, consists of states 
(with emission and transition probabilities) associated with the 
single nucleotides and pairs that make up the RNA structure. 
CMs are therefore expected to be  more sensitive than ERPIN, 
and because of the underlying HMM approach that in contrast 
to ERPIN allows for insertions and deletions that are not 
identified as such in the search model, useful in improving 
structured sequence alignments.

In 2006, 16 years after the initial Group I intron classification 
by Michel and Westhof, the increased number of available 
organelle genomes (then the most substantial and diverse source 
of intron sequences) allowed the development of intron search 
models for automatic identification and classification of virtually 
all known organelle group I and II introns with high confidence 
(Lang et al., 2007). The underlying algorithm for this approach 
has been ERPIN (Gautheret and Lambert, 2001). Yet even in 
2006, the low number of sequences in some intron sub-groups 
had limited automated approaches with ERPIN because a 
computationally objective confirmation of intron group 
consistency was out of reach. As a consequence, structured 

sequence alignments may have in rare instances included a 
sequence from an unrelated sub-group, potentially leading to 
intron predictions in both the target and contaminant sub-groups. 
Notwithstanding, the use of these ERPIN search models has 
been reasonably precise and complete (Lang et al., 2007), which 
was a requirement for developing our MFannot mitogenome 
annotator.1

Since 2006, no systematic update of our intron sequence 
alignments has been conducted to verify the ERPIN approach 
and the findings. At the algorithmic level however, the 
development of covariance models (CM; Nawrocki et al., 2009) 
have become an attractive alternative to ERPIN, due to a recent 
substantial performance increase (Nawrocki et al., 2009; Nawrocki 
and Eddy, 2013), resulting in search times comparable to, if 
not better than, ERPIN. In fact, CM analysis has enabled 
detection of the widespread presence of group IA3 and IB4 
introns in Archaea (Nawrocki et  al., 2018). The CM approach 
has not yet been compared against ERPIN, or more broadly 
verified for both its sensitivity and its precision in sub-group 
classification. Incidentally, a recent study had leveraged CMs 
uniquely in the context of mitochondrial group ID introns, 
limited in scope to both the core motifs as well as to the 
relatively narrow lineage of pezizomycete fungi (Cinget and 
Bélanger, 2020). Furthermore, the aligned ID intron sequences 
were taken from the now defunct GISSD intron database (Zhou 
et  al., 2008), which implies the quality of the underlying data 
must be  taken for granted. Thus, the specificity and sensitivity 
of the resulting CM to the ID group remain to be  clarified.

Challenges in Assembling a Consistent Set 
of Group I Intron Predictors
The currently available approaches for modeling RNA sequences 
with 2D structure layered on, ERPIN and Infernal/CM, have 
both specific advantages and drawbacks. The strength of ERPIN 
is in examining clearly defined structural or sequence motifs, 
by providing the user with the option of identifying distinct 
motifs and searching them in any given combination and order. 
The ERPIN search strategy can be optimized to be both sensitive 
and rapid in execution (despite lack of parallelization), by 
searching highly conserved motifs at an initial level (preferentially 
single-stranded region that are much more rapidly identified 
than helical interactions), and followed by inclusion of other 
peripheral motifs. It is important to realize that this motif-
driven approach allows for modeling of pseudoknots, which 
in Group I  introns include the universal P7 structural motif—a 
crucial element of the ribozyme catalytic domain (Michel and 
Westhof, 1990). ERPIN requires that conserved motifs, such 
as P7, be supplied together with a structural multiple sequence 
alignment, which can often be  a challenging task. Another 
clear drawback of ERPIN vs. Infernal/CM is its unforgiving 
rigidity in defining a search model with distinct sequence or 
secondary structure motifs. For instance, nucleotide deletions 
in helical regions of search models are not allowed, contrary 
to the CM approach, which also accepts and then properly 

1 https://megasun.bch.umontreal.ca/RNAweasel/
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aligns nucleotide insertions and deletions (indels) of the resulting 
hits. In addition, partial hits will not be  reported by ERPIN, 
which is an issue with derived intron structures that carry 
shortened or completely lacking motifs. Finally, too much 
sequence variation of a target ncRNA may result in ERPIN 
models that produce few or even no results. A solution proposed 
by the authors is a subdivision of sequences and respective 
ERPIN models, a “divide and conquer” strategy that we already 
successfully employed with our initial set of ERPIN intron 
predictors (Lang et  al., 2007).

Infernal (cmsearch) on the other hand does report partial 
hits, and has substantially better sensitivity in sequence motif 
identification, as it uses an HMM-SCFG approach of assigning 
emission and transition probabilities (rather than the column-
wise probabilities of ERPIN). This may be  relevant as the 
current implementation of CMs proscribe strict processing from 
5′ to 3′ of the given model, thus treats pseudoknots only at 
the primary sequence level. Yet, as long as the pseudoknot 
motif has significant nucleotide sequence conservation (which 
is not necessarily the case for Group I  introns), the increased 
sensitivity of the HMM approach may (or not) compensate 
for the lack of pseudoknot helix modeling. Additionally, and 
in contrast to EPRIN, cmsearch excels at finding matches with 
CMs containing only few aligned sequences. The execution 
times of cmsearch may be faster than equivalent ERPIN searches, 
depending largely on given search models and the available 
CPU, as cmsearch natively supports parallelized computations. 
Taken together, CM alignments are attractive for the expert 
development of alignments because of its flexibility in finding 
matches and because of the formatting of results as a structured 
alignment. To be  clear however, this functionality does not 
liberate the user from providing an initial multiple sequence 
alignment together with a 2D structure line. For this, a 
pre-alignment at the sequence level with one of the many 
multiple sequence alignment tools [e.g., Muscle (Edgar, 2004)], 
followed by prediction of secondary structure pairings [e.g., 
RNAalifold (Bernhart et  al., 2008) or R-scape (Rivas et  al., 
2020)] will provide a structured alignment that still needs to 
be  refined by an expert.

Short Term and Long-Term Objectives
The unprecedented number of mt genomes that have been added 
more recently to the GenBank repository has progressed from 
a severe lack of sequence data to “land of milk and honey” 
with regard to intron analysis. In this paper, we  will focus on 
the 662 fungal mitochondrial (mt) DNAs, identified in various 
sections of GenBank by November 2021 (see below), because 
of their most elevated intron density [e.g., 81 in Endoconidiophora 
resinifera, (Zubaer et  al., 2018)], broadly covering all but the 
more recently identified nuclear and bacteria-specific sub-groups. 
Our objective for intron model building is automated alignment 
of well-conserved and universally present motifs in currently 
defined intron sub-groups, starting as a test case with mt Group 
I  introns [i.e., as originally defined in the seminal Michel and 
Westhof publication (Michel and Westhof, 1990)]. The resulting 
structural models will be  tested for overlapping predictions, 
either for dismissal of traditional sub-groups or the inference 

of additional ones. The questions that we  will address in the 
context of intron identification and classification are as follows:

 • is the currently accepted intron sub-grouping for IA, IB, IC, 
and ID valid and consistent from an evolutionary/
computationally point of view;

 • does automated, probabilistic intron classification with 
ERPIN identify known fungal mt introns within the given 
sub-groups and without ambiguity.

We will conclude with a brief preview on covariance searches 
with Infernal/CM, to test whether CMs are as performant in 
intron identification, and as suitable for intron sub-grouping 
as ERPIN.

MATERIALS AND METHODS

Building of ERPIN Intron Models
As a starting point, aligned intron sequences for each sub-group 
that are listed in the Michel and Westhof publication (Michel 
and Westhof, 1990) were shortened to the virtually ubiquitous 
helical regions P2,4,6,7,8 and adjacent conserved single-stranded 
sequences, and a respective 2D structure line in ERPIN format 
was added to the sequence alignments. The resulting models 
were searched against the set of 662 fungal mtDNAs using the 
ERPIN (version 5.5.4) wrapper script RNAweasel that allows 
to eliminate identical as well as closely related sequences in 
the aligned training set. The aligned matches were added to 
the current ERPIN model to create an extended ERPIN model, 
visually inspected for potential misalignments, manually corrected 
or adapted (i.e., by extending the size of variable insert regions 
that separate the conserved sequence motifs), or otherwise 
discarded if inconsistent with the overall alignment. After repeating 
this process several times, the consistency of the resulting model 
was tested by searching against the Michel collection of sequences, 
expecting to match only members within the same intron group, 
or at most identifying conflicting matches with low scores. The 
same type of test was conducted with sequences from the GISSD 
database, and finally, the results of all our searches with different 
ERPIN models were checked for conflicting matches.

Identification of Conflicting Matches With 
Different ERPIN Models
Conflicting matches were identified with a Python script that 
analyses the coordinates of hits across multiple RNAweasel 
log files, to flag intron intervals that are predicted by more 
than one ERPIN model. First, conflicting hits (i.e., sharing at 
least 1 nt between their corresponding genomic intervals) were 
assigned to a group. For each group, the proportion of shared 
conserved nucleotides (in capital letters in the log file) between 
the hits was computed to aid in the separation of the hits 
into the two categories “conflicting prediction” or “overlapping 
introns.” The final parsing of the result was done manually; 
hits that shared the same (or almost the same) start and end 
position were labeled “conflicting” (>95% identical conserved 
positions found by both models) while the rest of the hits 
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were identified as “overlapping introns.” For the IB sub-group 
analysis, the parsing was done automatically without distinction 
between “conflicting” and “overlapping introns.”

Development of ERPIN Search Strategies
Finding an optimal search strategy for every given ERPRIN 
model is essential for execution speed, sensitivity of searches 
as well as appropriate cutoff values. According to previous 
experience search strategies with three (rarely four) search levels 
are most effective (using-add statements as described in the 
ERPIN manual). The initial search level will pinpoint potentially 
intron-containing genomic regions, with subsequent search levels 
selecting those that meet the full set of constraints (for more 
details on the principals of element regrouping and order of 
search levels, see the main text). Initially, Skylign (Wheeler 
et  al., 2014) is used to generate a logo of a multiple sequence 
alignment (MSA). Skylign converts the MSA to a Hidden Markov 
Model (HMM) in order to estimate position-specific (including 
gaps) probability distributions, or logo stack heights. The letter 
proportions per stack (or, position) are computed from the 
respective estimated nucleotide probabilities. Once the logos 
are obtained, an in-house script computes the average stack 
height across each distinct motif (e.g., segment of single-strand, 
or segment half of a paired sequence). Motifs with higher average 
probabilities are identified and labeled according to position 
on the secondary structure line. Motifs with lower average 
probabilities are subsequently defined. Finally, the script combines 
the motif definitions, along with cutoff scores derived from the 
(ERPIN) tstat summaries of the respective motifs, to automatically 
create optimized parameters for an intron model search.

Conversion of ERPIN Model Alignments 
Into CM-Compatible Stockholm Format
ERPIN models have a custom-encoding of the structure line 
information (based on consecutive numbering of elements; if 
a number occurs only once, it is a single-stranded region; if 
the number occurs twice, it defines a helical interaction). In 
order to permit the use of the ERPIN model information for 
building and calibration of respective CMs, the ERPIN format 
needs to be converted into Stockholm format, which uses bracket 
expressions for identification of helices, but requires additional 
encoding with pairs of upper/lower case characters (known as 
WUSS shorthand) to identify the pseudoknot that is present 
in most ERPIN intron models. Structure lines containing a 
pseudoknot, and modified by converting the helical components 
to WUSS shorthand (AA..aa), will be  recognized by Infernal 
tools and interpreted only at the nucleotide conservation level.

RESULTS AND DISCUSSION

Collecting and Formatting All Publicly 
Available Fungal mtDNAs—A Non-trivial 
Task
The success of our project to update Group I  and II intron 
search models critically relies on the availability of a taxonomically 

broad and complete collection of fungal mtDNA sequences. 
The National Center for Biotechnology Information (NCBI) 
sequence databases have continued to grow exponentially, 
including the Organelle Genome Database (OGD) that housed 
as many as 12,582 mitochondrial genome assemblies as of 
October 19th, 2021. While the OGD appears to be  the NCBI’s 
front-end to searching mitochondrial genome records, assemblies 
can also be  found in the NCBI Genome Reports (GR) section 
and in the continually updated RefSeq release of mitochondrial 
records. Searches against the Nucleotide (NT) database reveal 
again additional mitochondrial assemblies of varying quality 
and completeness. There are several issues with the vast databases 
of NCBI that hamstring studies aimed broadly at fungi. The 
first issue is that the fungal lineage represents only a minority 
of records across all databases, as shown in 
Supplementary Table S1. The number of fungal records typically 
make up less than 5% of the total, with the exception of the 
NCBI Genome Reports, after taking into account redundant 
accessions. The second issue is related to inconsistencies in 
accessions listed across the above-mentioned databases. As 
shown in Supplementary Figure S1, accessions listed under 
the GR appear to be  completely contained within the OGD, 
but there is a handful of records uniquely found in RefSeq, 
and more than 1700 unique to NT, which can introduce a 
large sample size bias. The last issue is related to gaps in the 
GenBank records themselves. Full taxonomic, annotation, and 
sequence information is typically bundled in GenBank records, 
but some records, mostly from the OGD and GR, are missing 
the underlying genomic sequence. Furthermore, almost all of 
the incomplete records are the same in both the OGD and 
the GR, whereas a minority are incomplete in the curated 
RefSeq collection (Supplementary Figure S2). Ironically, the 
largest database of GenBank records, NT, has the least number 
of incomplete records.

In order to assemble a taxonomically broad collection of 
fungal mt genomes, we  extracted records from the OGD2 
and GR (see Footnote 2) front-ends and then combined 
into a preliminary list. The NT collection (in compressed 
fasta format) was then downloaded3 and filtered for keywords 
related to partial or complete mitochondrial genome assemblies. 
The resulting accessions are parsed and added to the OGD 
and GR collection. A python script, leveraging the BioPython 
modules (Cock et  al., 2009), was written to parse GenBank 
files and output a clean fasta nucleotide sequence record 
for each mitochondrial contig (i.e., disregarding information 
on gene, exon, and intron positions), with a header formatted 
to include a short unique ID (derived from genus, species, 
and accession) in the first field, followed by full genus and 
species name, then full taxonomic information, and capped 
with the original accession. Such a format is more conducive 
to careful selection of species diversity, and visual inspection 
of phylogenetic trees given how current phylogeny 
tools function.

2 https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/fungi
3 https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
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FIGURE 1 | Examples of derived Group I intron structures. With only 144 and 142 nt, the Spizellomyces punctatus cob intron 2 and Rhizophydium brooksianum rnl 
intron 5 do contain the universal intron core structure, but lack overall sequence conservation, are rich in A + U, and occasionally lack peripheral domains and typical 
interactions. Like other unusual mt introns in these two fast-evolving species, introns do not splice in vitro and only a small fraction (e.g., 3 out of 15 in S. punctatus) 
is identified with the ERPIN models IA1, IA3, IC1, IC2, IB, IB3, and ID as described below.

Automation of ERPIN Search Strategies, 
and Phylogenetic Filtering of Structured 
Alignments
Since searches involving multiple motifs may quickly become 
demanding if not unfeasible in terms of CPU time and memory 
usage, ERPIN provides the option of a multi-leveled search 
strategy (Gautheret and Lambert, 2001; Lambert et  al., 2004). 
It allows grouping of (sequence or structural) motifs that are 
searched in iterative steps. The initial search level will pinpoint 
potentially intron-containing genomic regions, with subsequent 
search levels selecting those that meet the full set of constraints. 
In other words, the execution speed depends essentially on the 
choice of the first-level motifs—preferentially well-conserved 
single-stranded regions that are most rapidly identified. Yet, 
finding the best search strategy requires a rather lengthy trial 
and error optimization by the model developer—motivating the 
development of a more objective computational procedure (Auto-
strategy; in-house script available on request). It takes an ERPIN 
model (i.e., a set of aligned sequences with secondary structure 
predictions) and a collection of targeted genome sequences as 
an input and constructs a search strategy with corresponding 
cutoff values for the given ERPIN model and sequence collection. 
More specifically, the algorithm (for details see Methods) allows 
the computation of a three- or four-level search following several 
principles: (1) selection of closely spaced and strongly conserved 
sequence motifs for level one, to enable speedy initial searches; 
(2) at all levels, combination of several conserved motifs, sufficient 
to avoid false positives; and (3) a final addition of the remaining 
elements. Auto-strategy often results in more effective and specific 
searches compared to manual strategies and may serve as a 
quickly computed starting point for further optimization by 

the model developer. The tests carried out during the development 
of Auto-strategy were performed on sub-groups A1, A3, B, C1, 
C2, and D of mitochondrial group I  introns. The number of 
hits obtained by the automatic strategies was frequently higher 
compared to the manual ones. Yet, subsequent manual finetuning 
of the Auto-strategy often led to further improvements.

A Computational Approach to Validating 
Group I Intron Subdivisions
Since 1990, no computational study has been conducted to 
verify the validity of the initial assignment of Group I  introns 
into sub-groups (Michel and Westhof, 1990). Indeed, the set 
of ERPIN models that we  built in 2007 essentially relied on 
the validity of these groupings (Lang et  al., 2007), although 
omitting a distinction between sub-groups IB1, IB2, IB3, and 
IB4 due to substantial overlaps in predictions. In addition, 
we  then created a “Group I, derived” sub-group for those 
introns that were not identified with the regular ERPIN models. 
In other words, derived introns do not well fit with typical 
consensus sequences and occasionally lack the peripheral 
structural domains and interactions. Two examples are presented 
in Figure  1. ERPIN models that identify the derived introns 
contain only subsets of the Group I  core elements.

Whereas this computational intron group identification 
procedure has been unmatched and widely used for mt gene 
model inference (see Footnote 1), it is not without potential 
pitfalls. Its ERPIN models could not be  rigorously tested for 
confident resolution of conflicting hits due to a lack of intron 
sequences at the time. Thus, using the best E-value as an ad 
hoc criterion may occasionally lead to misidentification when 
model predictions overlap. Secondly, contamination of ERPIN 
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models with sequences between closely related groups (e.g., IC1 
and IC2) was difficult to identify and avoid, given the small 
number of available sequences. Thirdly, a large fraction of group 
I  introns contains long intron ORF insertions of more than 
1,000 nt, whereas others are short and compact. The underlying 
intron alignments of the ERPIN models are therefore long, yet 
have to predict a fraction of relatively small introns. This introduces 
the opportunity for matches across exon boundaries. For instance, 
a single hit might start at the 5′ portion of a small intron and 
incorrectly match the 3′ of a separate, downstream intron which 
would effectively “bury” the bridging exon. The proportion of 
such potential misidentifications is estimated to be  low (a few 

percent), but has not been rigorously quantified. It also remains 
to be seen in the context of proposed nested introns, or “twintrons” 
(Hafez and Hausner, 2015; Mukhopadhyay and Hausner, 2021), 
that may be  more frequent than currently assumed. In fact, 
conflicting ERPIN predictions may be  a way of pinpointing 
candidate twintrons.

An Updated Set of Group I Intron ERPIN 
Models
To address the above questions, we  built a new set of ERPIN 
models (Figure  2) starting from the 87 sequences used in the 
originally defined Group I  intron subdivision [named “Michel 

FIGURE 2 | Iterative ERPIN model construction. The procedure was applied to all separate intron sub-groups.
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FIGURE 3 | Conserved features of ERPIN models. The three images correspond to the secondary structure drawings produced by R-scape (Rivas et al., 2020), 
when providing structured alignments of ERPIN models ID, IC2, and IB (the most productive in terms of numbers of hits) as input. The graphs are colored according 
to R-scape’s conventions. As R-scape removes columns with less than 50% nucleotide presence from the graph, the number of removed columns are identified in 
the consensus structure as a circle with the number of removed columns inside. The P7 pseudoknot is annotated in the graph as two single-stranded regions, 
marked by a black line. The corresponding helical pairing is presented in a separate drawing. The number and structure of conserved elements in the remainder of 
ERPIN models IA1, IA3, IB3, and IC2 is essentially the same as depicted in this figure (not shown).

TABLE 1 | Number of intron predictions for distinct Group I sub-groups (in 662 mtDNAs).

IA1 IA3 IB IB3 IC1 IC2 ID

Total 960 78 3,582 202 337 948 1,105
E-values (e-) (9–35) (16–42) (4–39) (14–44) (22–94) (27–95) (12–44)
Conflicting (true) 3(IB) - 88(IC1) - 2(IC2) - -

collection” in the following; (Michel and Westhof, 1990)]. After 
building structural alignments (ERPIN models) comprising P3 
throughout P7 pairings (Figure  3), including conserved flanking 
sequences (if present), the set of 662 fungal mtDNA sequences 
(see above) was searched. Best hits were selected and added to 
the initial model alignment to improve model sensitivity (for 
details see Methods). The total numbers of predicted introns are 
listed in Table  1, together with conflicting predictions. In all 
instances, there was a large E-value difference between conflicting 
predictions, which allowed unambiguous intron group assignment.

Note that the process of building increasingly broader and 
detailed structural alignments depended on a program named 
RNAweasel,4 which extends the functionality of 
ERPIN. RNAweasel aligns the resulting matches against the 

4 https://github.com/BFL-lab/RNAweasel

search model in the format of a new ERPIN model that can 
be directly used for subsequent searches or merged with previous 
alignments. In addition, it has functionalities, such as ordering 
of hits by E-value, removal of sequences from the alignment 
that are either identical, or closely related, using a phylogenetic 
distance measure. Finally, the RNAweasel output helps with 
the evaluation in providing a structured view of the search 
results (for an example, see Figure  4).

An inspection of the updated ERPIN models shows few 
conflicting predictions (i.e., covering the same genome loci 
with nearly identical coordinates), without any conflict observed 
for Group IA3, IC2, and ID. A small number of overlaps were 
observed between models IC1 and IC2 (0.6% of IC1 hits are 
IC2 introns), IA1 and IB (0.3% of IA1 hits are IB introns), 
and IB and IC1 (2.5% of IB hits are IC1 introns). Yet, in 
every case, a large difference in E-values allows a clear 
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identification of the best-fitting intron sub-group. A special 
case of conflicting predictions is “overlapping introns” where 
two introns are identified in the same region but have different 
predicted upstream and/or downstream splicing sites (reported 
in Table  2). Again, the number of conflicts is small, occurring 
in only 0.7% of all total predictions. 97% of these cases are 
between the IB or IB3 models and other sub-groups (Table 2). 
An inspection reveals that in the majority of instances, the 
shorter of the conflicting alternatives is the one that is consistent 
with MFannot gene models.5 In any case, we  suggest that 
ERPIN intron predictions or MFannot gene models should 
be  inspected by an expert before use in publications.

In the following sections, we will describe and discuss Group 
I  models in the order ID, then IA1, IA3, IC1, and IC2, and 
finally IB with its four sub-groups. Starting out with the ID 
models will establish a basis for an unambiguous discussion 
on variations in the P7 motifs conservation, without ambiguity, 
as the result of ID searches do not conflict with any other 
Group I  search, except for three instances of partial intron 
predictions (Table  2).

Structural Conservation of Group ID 
Introns
Group ID comprises a sizeable collection of mt introns (1,105, 
when searching against our set of 622 mtDNAs) with a predominant 
P7 structure 5-C_A_GACUG --- CAGUCG-3′ (Figure  5, upper 
left; for a comparison of P7 motifs among various groups, see 
Figure  5). Yet, searches also identify sequences with various 

5 https://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl

different P7 motifs (Figure 5) that come with E-values well within 
the range of canonical ID introns. Among these variants, 32 have 
a most unusual P7 motif containing a bulged C residue (Figure 5; 
middle, left), which happens to be  the predominant P7 structure 
of mt IC1 introns (Michel and Westhof, 1990). These 32 variant 
ID introns are not found with the mt IC1 ERPIN model, suggesting 
that the P7 structure alone is a potentially misleading feature 
when used for intron group identification. To exclude the possibility 
that our ID ERPIN model may contain sequences from other 
sub-groups, thus leading to potential misidentification, only those 
sequences with the predominant P7 structure were used to build 
a new ERPIN model. However, when searched against our mtDNA 
collection results were essentially the same, finding all variant 
P7 sequences listed in Figure 5, and within the range of E-values 
as introns with the canonical P7 structure (Figure 6). A phylogenetic 
analysis with all ID intron sequences is overall not well resolved 
(not shown), but regroups some of the ID intron members with 
variant P7 structures, suggesting an evolutionary process that 
transitions from one to another evolutionary stable P7 conformation.

Note that the total number of introns listed by P7 variant in 
Figure  5 does not add up to a total of 1,105 hits. The missing 
92 sequence have either variant P7 motifs not listed in the figure, 
or after manual inspection, the predicted sequences fail to form 
a proper P7 pairing. This is due to a rare ERPIN misidentification 
where the absence of a well-fitting match reports a spurious 
alternative. Despite issues with the prediction of a P7 motif in 
these few instances, these hits suggest the presence of true introns 
and are thus of some value for the inference of gene models. 
There are several potential reasons for this type of error, nonetheless. 
For instance, sequence or genome assembly error may 
be  responsible, or presence of intron structures that exceed the 

FIGURE 4 | RNAweasel output of ERPIN search results. Example of a formatted output from a “derived ERPIN model,” demonstrating sorting of results by 
E-value, marking of conserved motifs in a structure definition line, marking of conserved, searched sequence blocks in upper case, and indication of the length of 
variable regions.

TABLE 2 | Conflicting partial intron predictions.

IA1 IA3 IB IB3 IC1 IC2 ID

IA1 0
IA3 1 0
IB 28 14 4
IB3 0 19 6 0
IC1 1 0 14 0 0
IC2 0 0 13 0 0 0
ID 1 0 2 0 0 0 0
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FIGURE 5 | Frequency of P7 structure variants in fungal mt Group ID introns. 
The numbers are compiled from the search result with the updated ID ERPIN 
model (see main text), identifying a total of 1,107 hits (span of E-values from 
7.17e-44 to 4.94e-11); none of the respective intron sequences was identified 
with other group-specific searches, and all are therefore considered bona fide 
ID introns. Variant motifs with at least five identical P7 matches (numbers 
indicated below the structures) are listed, and nucleotides that differ from the 
most prevalent motif are marked in red. The most prevalent P7 motif (879 
hits) is 5’-C_A_GACUG…CAGUCG-3′. The blue asterisk beside motifs 
indicates listing of the same motif in the Michel and Westhof compilation 
(Michel and Westhof, 1990).

FIGURE 6 | Comparison of predominant P7 motifs in mt Group I intron sub-
groups. Most frequent P7 motifs in mt Group I intron sub-groups. Note that IB 
and IB3 have the same P7 motif, but that they are clearly distinct otherwise 
and identified with separate ERPIN models. IA3 introns have a frequent 
alternative motif A_C_GACUG … UAGUC_U (i.e., with a single nucleotide 
difference to the one depicted above).

length of the respective ERPIN models, or genetic rearrangements 
due to intron mobility that may introduce sequence duplication 
and recombination with other intron sub-groups. At about 0.7% 
of the total count, this constitutes a tolerable degree of uncertainty. 
Yet, it reminds us that intron identification is but another tool 
to provide evidence for the detection and resolution of 
inconsistencies, as part of a more complete gene modeling procedure.

Distribution of Group IA1, IA3, IC1, and IC2 
Introns
In contrast to sub-group IA1, IC1, and IC2 introns that are 
frequently identified in mtDNAs (Table  1), sub-group IA3 
introns are remarkably rare. In fact, the Michel collection 
only contains four plastid IA3 introns and no mt representative. 

It was therefore surprising to find as many as 78 strong mt 
hits (in the E-value range between 4.71e-16 and 1.81e-42) 
distributed across Fungi, but with a strong preference for 
basidiomycetes. Notably, 18 of the 78 sequences do not have 
the predominant bulged C in the P7 motif but instead an 
A, and these sequences closely regroup in the less specific 
e-16 range of E-values. When separating sequences in the 
IA3 ERPIN model by these two P7 motifs to form two 
distinct sub-models, these identify different but somewhat 
overlapping sets of introns. If this result may be  taken to 
suggest a separate, new (IA4?) sub-group remains to 
be  clarified, once more mtDNAs become available.

Despite some structural similarities, sub-group IC1 and IC2 
ERPIN models are clearly distinct in terms of mt intron 
identification, with only marginal conflicts. The few conflicting 
predictions are separated by substantial E-value differences, 
thus allow for unambiguous sub-group assignment. In this 
context, it is interesting to test entries in the GISSD database, 
which lists a total of 1789 sequences, with close to half (837; 
most in nuclear eukaryotic rDNAs) labeled as IC1. Curiously, 
Group IC1 entries in the database do not list any of the mt 
IC1 introns in the Michel collection that served as our starting 
point for developing an mt IC1 ERPIN model. When searching 
the Michel collection with the IC1 model it identifies all (and 
only) mt IC1 entries. It was therefore interesting to test if the 
mt ERPIN model would also identify introns in nuclear rDNAs 
(at such a large evolutionary distance), and that despite a 
strong difference in nucleotide bias (mt sequences most A + T 
rich, vs. nuclear sequences G + C rich). The results show clear 
identification of 479 out of the 837 listed IC1 introns, with 
E-values ranging from 5.40e-25 to 6.53e-49, and without 
modification of the ERPIN search parameters. The identification 
of the remainder of nuclear IC1 introns was possible only 
after transitioning to a nuclear-sequence specific ERPIN model, 
however. Evidently, these two lineages of introns (mt vs. nuclear) 
have undergone a separate evolutionary path, under different 
genetic constraints.

Confirmation of Group IB3, yet No 
Computationally Distinct IB1, IB2, and IB4 
Sub-Groups
In an attempt to follow up on the proposal of four separate 
IB sub-groups, ERPIN models were developed according to 
our protocol and tested for potentially conflicting predictions. 
Whereas IB3 turns out to be  a small, clearly separate group, 
the other three sub-groups overlap substantially in predictions 
(Figure  7), without a possibility for separation based on 
E-values. The IB1, IB2, and IB4 models properly identified 
representatives in the Michel collection with high scores, 
confirming the validity of the model building procedure. Yet, 
searches against the GISSD intron collection resulted in matches 
with barely recognizable distinction between the sub-groups. 
We  conclude that IB1, IB2, and IB4 are too closely related 
for establishing distinct sub-groups, and have therefore joined 
them into a IB super-group as reported in Tables and 
Figures above.
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Cm Analyses Based on ERPIN Structural 
Alignments
A final point of interest is the conversion of ERPIN models 
into covariance models, for comparing the performance and 
precision of the two conceptually very different approaches. 
From a technical point of view, this conversion is easy as 
the alignment in ERPIN models is in fasta format, which 
is readily reformatted into Stockholm format (.sto) required 
for cmbuild [infernal; (Nawrocki et  al., 2009)]. Because the 
ERPIN intron models contain pseudoknots that are encoded 
by a numbering scheme, the respective structure line for 
the sto format was translated in WUSS format. The current 
Infernal version does not use pseudoknot information and 
treats pseudoknot pairings as conserved at the nucleotide 
level only. For testing purposes, we chose two ERPIN models, 
ID and IA3 that differ substantially in length and in the 
degree of relatedness among the aligned sequences. The ID 
alignment is relatively short (560 nt positions), compact, and 
moderately conserved, whereas IA3 is long (3,042 nt), with 
very large insertions (up to 2011 nt) and highly conserved. 
The outcome is disappointing in the sense that both CMs 
have a smaller number of complete matches (776 for ID; 
45 for IA3) compared to ERPIN model searches. The total 
numbers of matches (better than 1.0e-2) with CMs is 
substantially higher than the total number of respective 
ERPIN matches, indicating a better potential to identify more 
introns, although missing the ability to properly align the 
complete CM to the genome sequences. To our interpretation, 
the CM approach would profit from reorganizing the search 
algorithm, from a strictly HMM-like scanning from 5′ to 
3′ toward a modular motif-driven approach used by 

ERPIN—which may at the same time resolve the issue of 
introducing pseudoknot information in CM searches.

CONCLUDING REMARKS

Here we  present an update of our previous work (Lang 
et  al., 2007), and a more detailed description on the 
identification of mt Group introns, in light of new publicly 
data available, using ERPIN models. The update makes 
progress on some remaining issues from the previous work, 
extends the accuracy of the models, and sheds light on 
Group IB introns. Enhanced model sensitivity and specificity 
was achieved through two means. First, multiple sequence 
alignments of intron sequences were significantly extended 
by virtue of newly available data. Second, we  developed a 
more systematic approach to curation of alignments, to 
exclude sequences that do not belong with a given sub-group 
(increased risk of incorrect identification). While an overall 
increase in model sensitivity was achieved, sub-groups IB1, 
IB2, and IB4 were found to be  too closely related, which 
hampered model specificity, suggesting that IB1, IB2, and 
IB4 may be  dismissed as sub-groups. On the other hand, 
Group IB3 introns were found to be  sufficiently distinct to 
build a highly sensitive and specific ERPIN model. The 
current intron predictors are expected to improve the gene 
modeling of the MFannot tool as well as provide more precise 
structural intron information.

A remaining gray zone of Group I  intron identification 
pertains to those that appear less well-structured, or “derived.” 
Our attempts to establish clearly distinct ERPIN models that 
would include those derived introns have been so far without 
success. Likewise, our attempt to transition from ERPIN to 
expectedly more sensitive CM searches has come with mixed 
success. It has provided more hits than ERPIN, however at 
the cost of a reduced number of full intron hits and a large 
portion of partial hits with borderline scores. To our assessment, 
a modification of the CM approach that allows modular search 
of conserved motifs or regions might be  a potential solution, 
which would at the same time allow for the use of 
pseudoknot information.

Evidently, a continued search for additional distinct 
ERPIN sub-groups would be  in order, but its algorithm is of 
little help with developing new structured alignments as 
required. For this, a more modular Infernal version in 
combination with primary sequence alignment [e.g., 
Muscle (Edgar, 2004) in combination with HMM searches 
(Eddy, 2011)] with secondary structure modeling [e.g., RNAalifold 
(Bernhart et  al., 2008) or R-scape (Rivas et  al., 2017)] would 
be  preferable.
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