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The presence of emerging contaminants in the environment, such as pharmaceuticals,
is a growing global concern. The excessive use of medication globally, together
with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems,
has caused these compounds to present a severe environmental problem. In
recent years, the increase in their availability, access and use of drugs has
caused concentrations in water bodies to rise substantially. Considered as emerging
contaminants, pharmaceuticals represent a challenge in the field of environmental
remediation; therefore, alternative add-on systems for traditional wastewater treatment
plants are continuously being developed to mitigate their impact and reduce their effects
on the environment and human health. In this review, we describe the current status
and impact of pharmaceutical compounds as emerging contaminants, focusing on their
presence in water bodies, and analyzing the development of bioremediation systems,
especially mycoremediation, for the removal of these pharmaceutical compounds with
a special focus on fungal technologies.

Keywords: pharmaceutical active compounds, bioremediation, wastewater, mycoremediation, emerging
contaminants, pharmaceutical pollution

INTRODUCTION

In recent decades, the production and consumption of pharmaceutical products have rapidly
increased with the development of medicine. Approximately 3,000 compounds are used as
pharmaceuticals, and the annual production quantity exceeds hundreds of tons (Carvalho and
Santos, 2016; Grenni et al., 2018). Anti-inflammatory drugs, antibiotics, and analgesics are the
most common drugs used around the world. Consequently, the emergence of water-soluble and
pharmacologically active organic micropollutants or pharmaceutical active compounds (PhACs)
has gained much attention worldwide. Humans use a variety of these pharmaceuticals for their
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health in everyday life, but large quantities of these drugs are
also used as veterinary medicine on farms around the world,
to prevent and treat animal diseases and to increase economic
benefits in intensive livestock (Blanco et al., 2017; Ekpeghere
et al., 2017; Gros et al., 2019; Ramírez-Morales et al., 2021).

After ingestion, pharmaceuticals are excreted in urine and
feces as active substances or metabolites (Sui et al., 2015; aus
der Beek et al., 2016). These pharmaceuticals are present in both
influent and effluent wastewater but can also be found in surface
water bodies, including freshwater ecosystems and marine
environments, as well as in groundwater due to effluent leachates
generated under recharge conditions (Deo, 2014; Furlong et al.,
2017; Ojemaye and Petrik, 2018; Reis-Santos et al., 2018; Fekadu
et al., 2019; Letsinger et al., 2019; Zainab et al., 2020). The main
concern is that conventional treatment plants are ineffective in
removing some of these emerging contaminants (ECs), and new
techniques are being sought and studied to achieve their total
elimination, particularly advances in mycoremediation (Danner
et al., 2019). The importance of the study of pharmaceuticals lies
in the massive increase in their consumption worldwide, as well
as in the environmental repercussions that this entails, including
their recalcitrance in aquatic and terrestrial ecosystems. In
the contexts of wastewater and bioremediation, pharmaceutical
compounds are considered as ECs due to the lack of regulation for
their environmental disposal, as well as the lack of information
regarding their long-term effects on the environment (Dhangar
and Kumar, 2020; Valdez-Carrillo et al., 2020; Chaturvedi et al.,
2021b; Rathi et al., 2021), which remains unknown (Barber et al.,
2015; Ahmed et al., 2017). The fact that some drugs are marketed
without medical prescription or pre-registration and, therefore,
are widely consumed worldwide, meaning that they are widely
distributed in the environment (Gil et al., 2017), has contributed
to this growing problem.

Considering pharmaceuticals as ECs and the continual
production of new PhACs, this review aims to comprehensively
present the pharmaceuticals commonly detected in water, surface
and groundwater and their adverse environmental effects.
Advances in bioremediation technologies, which can be used as
add-on treatments in wastewater treatment plants (WWTPs) to
reduce unprocessed pharmaceuticals released via effluent into
the environment, are presented and critically discussed with an
emphasis on mycoremediation.

COMMON PHARMACEUTICALS
DETECTED IN WATER (SURFACE AND
GROUNDWATER)

Pharmaceutical compounds that reach water bodies, both surface
water and groundwater, came from a number of different sources
(Figure 1). The first of these is urban wastewater, which contains
a high load of pharmaceuticals from human excrement, and also
the inadequate disposal of expired or unused drugs due to the
scarce control in their management. Another major source of
pharmaceuticals is agricultural and livestock waste, especially
the latter, since in large farms for intensive livestock, animals
are often fed with feed supplemented containing drugs and

excreta are often used in agriculture as soil amendments, reaching
groundwater by leaching (Kim et al., 2008; Barrios-Estrada et al.,
2018). Effluents from the pharmaceutical industry are another
important source, with high concentrations of pharmaceuticals
being found due to discharges from factories in Asia, Europe and
America, despite strict regulation of pharmaceutical production
in Europe and the United States (Lin et al., 2008; Lin and Tsai,
2009; Phillips et al., 2010; Prasse et al., 2010; Sim et al., 2011;
Cardoso et al., 2014). These industries are obliged to carry out
treatment before discharge into the general urban sewer network
(Lindberg et al., 2004; Brown et al., 2006).

Pharmaceuticals found in high concentrations in wastewater
include non-steroidal anti-inflammatory drugs (NSAIDs),
β-blockers ad psychoactive compounds, analgesics, antibiotics,
endocrine disruptors, antiretroviral drugs, and drugs to treat
cancer (Roberts and Thomas, 2006; Gros et al., 2010; Lian et al.,
2017). These are the PhACs most commonly detected due to the
analytical methods available and their resolution, although new
methods for identifying these compounds are increasingly being
developed (Pivetta et al., 2020; Zhang et al., 2020). Table 1 shows
the worldwide distribution of the drugs most commonly found
in water (Supplementary Figure 1).

Non-steroidal anti-inflammatory drugs and analgesics
are some of the most important groups of pharmaceutical
products worldwide, with diverse chemical structures and similar
therapeutic effects, having an estimated annual production of
several hundred tons (Comber et al., 2018). Large amounts of
anti-inflammatory drugs are prescribed in human care, but they
are often sold in much higher amounts without a prescription
(Ternes, 2001). NSAIDs and analgesics are often combined with
antibiotics in veterinary medicine for problems such as pain,
inflammation, fever, osteoarthritis and arthritis, and to reduce
stress (Courtheyn et al., 2002; Bártíková et al., 2016). However,
these two types of pharmaceuticals have numerous adverse effects
in humans, including gastrointestinal disturbances, ulceration,
renal failure with increased risk of post-operative bleeding,
asthma, and rare allergic reactions (Ben Maamar et al., 2017;
Morelli et al., 2017; Borgeat et al., 2018; Hurtado-Gonzalez et al.,
2021). Approximately 35 million people use NSAIDs every day
worldwide (Yu et al., 2013), and China increased its domestic
production from 41,537 t in 2013 to 46,673 t in 2017 (Yan et al.,
2021). They are currently monitored in effluents worldwide
to check these drug concentrations and several studies show
that both NSAIDs and analgesics are commonly detected in
water bodies (Balakrishna et al., 2017; Świacka et al., 2021). In
Cuernavaca (Mexico), high concentrations of naproxen (732–
4,889 ng/L), acetaminophen (354–4,460 ng/L), and diclofenac
(258–1,398 ng/L) have been detected in samples collected in
different years, in the influent and effluent of a WWTP and in
the surface waters of the Apatalco River (Rivera-Jaimes et al.,
2018). Furthermore, the drugs diclofenac (10,221 ng/L highest
concentration detected) and acetaminophen (1234-2346 ng/L),
among others, have been detected in effluents from the Red Sea
(Saudi Arabia) (Ali et al., 2017). On the other hand, in Brazil,
acetaminophen (17.4–34.6 ng/L), diclofenac (19.4 ng/L), and
ibuprofen (326.1–2,094.4 ng/L) have been detected in the surface
and bottom water samples from Santos Bay (Pereira et al., 2016).
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FIGURE 1 | Pharmaceuticals route to a body of water and bioremediation technologies. (→): Direct contamination. (99K): Contamination through different steps. The
monitoring suggests that contamination accumulates in surface water and groundwater.

These same drugs have also been detected in surface water on the
northern Antarctic Peninsula region due to increased tourism in
this area, with concentrations of 48.74, 15.09, and 10.05 ng/L of
acetaminophen, diclofenac, and ibuprofen, reported respectively
(González-Alonso et al., 2017).

Among the pharmaceutical compounds found in wastewater,
antibiotics are of the greatest concern due to their persistent
nature, partial metabolism, and easy movement through
ecosystems (Mukhtar et al., 2020). Antibiotic production in
China was approximately 92,700 tons, 48% destined for humans
and the remaining for livestock; a total of 46% active metabolites
were produced (Zafar et al., 2021). The antibiotics most
commonly found in wastewater are sulfonamides, quinolones,
tetracyclines, fluoroquinolones, and nitroimidazoles. The total
concentrations of antibiotics vary depending on the body of
water, in the case of wastewater, they can range between 0.0013
and 0.0125 µg/mL, in drinking water 0.0005 and 0.0214 µg/mL
and river water 0.0003 and 0.0039 µg/mL (Zhang et al., 2015;
Pan and Chu, 2017; Hanna et al., 2018). Antibiotic resistance
of microorganisms to antimicrobials is becoming even stronger
and more widespread over time and is expected to greatly
increase human morbility and mortality in the near future
(Bondarczuk and Piotrowska-Seget, 2019). Antibiotics have been
found in rivers all over the world, including several in Spain
(Ebro, Guadarrama and Manzanares Rivers), Italy (Arno River),
South Korea (Han River), Taiwan (Xindian, Gaoping, Dahan and
Po River), France (Seine River), United States (Ozark River),

Sweden (Hoje River), and China (Pearl, Hai, Liao and Yellow
Rivers) (Peng et al., 2008, 2011; Valcárcel et al., 2011; López-Serna
et al., 2013; Bilal et al., 2020).

Endocrine disruptors were defined in 2002 by the
International Programme on Chemical Safety (IPCS) of the
United Nations Environment Programme (UNEP) and by the
World Health Organization (WHO) as “an exogenous substance
or mixture that alters the function(s) of the endocrine system and
consequently causes adverse health effects in an intact organism
or population”. Among the most common endocrine disruptors
are pesticides, bisphenols and natural hormones (Gore et al.,
2014; Tijani et al., 2016). These substances are not removed
from water by conventional treatment processes and are found
in wastewater bodies in the order of nanograms to micrograms
per liter (Andrade-Eiroa et al., 2016; Gröger et al., 2020; Li et al.,
2020).

Antiretroviral drugs are frequently used to treat the human
immunodeficiency virus (HIV), an epidemic that has developed
worldwide and has its epicenter in South Africa (Tompsett, 2020).
As a result, millions of people have access to these drugs on
a daily basis, with more than 40 different antiretroviral drugs
being used for the treatment of HIV. These include abacavir,
efavirenz, lamivudine, nevirapine, tenofovir, and zidovudine;
many of which are used in combination (Russo et al., 2018;
Mlunguza et al., 2020). As a consequence of the increase in
the rate of HIV infection over the years, there has been a
significant increase in the production and consumption of
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TABLE 1 | Types of pharmaceuticals and concentrations reported in countries worldwide.

Pharmaceutical type Pharmaceutical Max conc (ng/L) Country References

NSAIDs and analgesics Naproxen 4,889 Mexico Rivera-Jaimes et al., 2018

NSAIDs and analgesics Acetaminophen 4,460 Mexico Rivera-Jaimes et al., 2018

NSAIDs and analgesics Diclofenac 1,398 Mexico Rivera-Jaimes et al., 2018

NSAIDs and analgesics Diclofenac 10,221 Saudi Arabia Ali et al., 2017

NSAIDs and analgesics Acetaminophen 2,346 Saudi Arabia Ali et al., 2017

NSAIDs and analgesics Ibuprofen 2,094.4 Brazil Pereira et al., 2016

NSAIDs and analgesics Acetaminophen 34.6 Brazil Pereira et al., 2016

NSAIDs and analgesics Diclofenac 19.4 Brazil Pereira et al., 2016

NSAIDs and analgesics Acetaminophen 48.74 Antartic Peninsula González-Alonso et al., 2017

NSAIDs and analgesics Diclofenac 15.09 Antartic Peninsula González-Alonso et al., 2017

NSAIDs and analgesics Ibuprofen 10.05 Antartic Peninsula González-Alonso et al., 2017

NSAIDs and analgesics Ibuprofen 414 South Korea Kim et al., 2009

NSAIDs and analgesics Ibuprofen 1,850 Vietnam Tran et al., 2014

NSAIDs and analgesics Diclofenac 1,630 Vietnam Tran et al., 2014

NSAIDs and analgesics Ketoprofen 1,620 Vietnam Tran et al., 2014

NSAIDs and analgesics Naproxen 1,110 Vietnam Tran et al., 2014

NSAIDs and analgesics Acetaminophen 12,430 Nigeria Ebele et al., 2020

NSAIDs and analgesics Ibuprofen 2,740 Nigeria Ebele et al., 2020

NSAIDs and analgesics Naproxen 2,120 Nigeria Ebele et al., 2020

NSAIDs and analgesics Diclofenac 200 Nigeria Ebele et al., 2020

NSAIDs and analgesics Ibuprofen 121 Singapore Wu et al., 2010

NSAIDs and analgesics Diclofenac 38 Singapore Wu et al., 2010

NSAIDs and analgesics Naproxen 30 Singapore Wu et al., 2010

NSAIDs and analgesics Ibuprofen 34.9 Baltic Sea/Polish Borecka et al., 2015

NSAIDs and analgesics Naproxen 13,100 United States/California Vidal-Dorsch et al., 2012

NSAIDs and analgesics Ibuprofen 12,000 United States/California Vidal-Dorsch et al., 2012

NSAIDs and analgesics Acetaminophen 11,000 United States/California Vidal-Dorsch et al., 2012

NSAIDs and analgesics Diclofenac 180 United States/California Vidal-Dorsch et al., 2012

NSAIDs and analgesics Diclofenac 843 China Yang et al., 2011

NSAIDs and analgesics Ibuprofen 2,200 Taiwan Fang et al., 2012

NSAIDs and analgesics Diclofenac 185 Taiwan Fang et al., 2012

NSAIDs and analgesics Ketoprofen 184 Taiwan Fang et al., 2012

NSAIDs and analgesics Ibuprofen 143,000 Spain Santos et al., 2007

NSAIDs and analgesics Ketoprofen 2,100 Spain Santos et al., 2007

NSAIDs and analgesics Diclofenac 280 Spain Santos et al., 2007

NSAIDs and analgesics Ibuprofen 1,130 Japan Nakada et al., 2006

NSAIDs and analgesics Ketoprofen 369 Japan Nakada et al., 2006

NSAIDs and analgesics Ibuprofen 16,500 Canada Lishman et al., 2006

NSAIDs and analgesics Diclofenac 1,010 Canada Lishman et al., 2006

NSAIDs and analgesics Ketoprofen 289 Canada Lishman et al., 2006

NSAIDs and analgesics Ibuprofen 1,900 United States/Maryland Yu et al., 2006

NSAIDs and analgesics Ketoprofen 1,200 United States/Maryland Yu et al., 2006

NSAIDs and analgesics Diclofenac 110 United States/Maryland Yu et al., 2006

NSAIDs and analgesics Diclofenac 4,114 Austria Clara et al., 2005

NSAIDs and analgesics Ibuprofen 2,679 Austria Clara et al., 2005

NSAIDs and analgesics Ibuprofen 1,400 Switzerland Tixier et al., 2003

NSAIDs and analgesics Diclofenac 990 Switzerland Tixier et al., 2003

NSAIDs and analgesics Ketoprofen 180 Switzerland Tixier et al., 2003

NSAIDs and analgesics Ibuprofen 3,400 Germany Ternes, 1998

NSAIDs and analgesics Diclofenac 2,100 Germany Ternes, 1998

NSAIDs and analgesics Ketoprofen 380 Germany Ternes, 1998

NSAIDs and analgesics Ibuprofen 4,201 United Kingdom Ashton et al., 2004

NSAIDs and analgesics Diclofenac 599 United Kingdom Ashton et al., 2004

(Continued)
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TABLE 1 | Continued

Pharmaceutical type Pharmaceutical Max conc (ng/L) Country References

Antibiotic Azithromycin 597.5 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 584.9 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 313,2 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 231.2 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 190.6 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 184.9 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 86.6 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 48.8 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 38.4 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 30.2 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 20.1 Portugal Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 299.5 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 200.3 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 142.3 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 123.4 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 112 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 102.8 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 101.4 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 76.1 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Enrofloxacin 69.4 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 65.2 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 63.9 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 30.1 Spain Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 316.8 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 305.1 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 74.2 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 68.5 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 66.3 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 48.7 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 48 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 36.9 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 27.8 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 19.6 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 15.2 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 11.9 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Orbifloxacin 6.7 Cyprus Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 266.7 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 259.8 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 204.4 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 194.2 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 141.3 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Ampicillin 99.4 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 95.5 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 88.6 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 87.6 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 65.4 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 59.1 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 53 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Nalidixic acid 50.3 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 18.2 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Oxolinic Acid 5.3 Ireland Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 290.4 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 230.6 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 123.4 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 112 Germany Rodriguez-Mozaz et al., 2020

(Continued)
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TABLE 1 | Continued

Pharmaceutical type Pharmaceutical Max conc (ng/L) Country References

Antibiotic Clindamycin 110.7 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 105 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 66.5 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 34.9 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 20.3 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 15.4 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 11.8 Germany Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 308 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 186.7 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 130.7 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 98.8 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 94.2 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 70.6 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 43.2 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 41.9 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 22.8 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 4.8 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 4.8 Finland Rodriguez-Mozaz et al., 2020

Antibiotic Sulfapyridine 184 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Tetracycline 179.2 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Ciprofloxacin 159.2 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Azithromycin 149.7 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Trimethoprim 119.7 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Clindamycin 97.1 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Metronidazole 93.2 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Cefalexin 60.7 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Sulfamethoxazole 48.6 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Ofloxacin 27.1 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Clarithromycin 20.8 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Pipemidic acid 7,5 Norway Rodriguez-Mozaz et al., 2020

Antibiotic Oxytetracycline 2,796.6 China Wang et al., 2017

Antibiotic Tetracycline 1,454.8 China Wang et al., 2017

Antibiotic Chlorotetracycline 876.2 China Wang et al., 2017

Antibiotic Sulfamethoxazole 715.3 China Wang et al., 2017

Antibiotic Sulfadiazine 499.5 China Wang et al., 2017

Antibiotic Sulfamerazine 329.1 China Wang et al., 2017

Antibiotic Fleroxacin 309.4 China Wang et al., 2017

Antibiotic Difloxacin 250.2 China Wang et al., 2017

Antibiotic Sulfanomethioxine 225.5 China Wang et al., 2017

Antibiotic Ofloxazin 203.7 China Wang et al., 2017

Antibiotic Sulfadiamidine 109.9 China Wang et al., 2017

Antibiotic Ciprofloxacin 106.2 China Wang et al., 2017

Antibiotic Sulfameter 6 China Wang et al., 2017

Antibiotic Sulfamethoxazole 2,010 Mexico Rivera-Jaimes et al., 2018

Antibiotic Trimethoprim 790 Mexico Rivera-Jaimes et al., 2018

Antibiotic Erythromycin 160 South Africa Matongo et al., 2015

Antibiotic Ciprofloxacin 14,300 South Africa Agunbiade and Moodley, 2016

Antibiotic Sulfaguanidine 46,000 South Africa Madikizela et al., 2020

Antibiotic Spiramycin 38,200 South Africa Madikizela et al., 2020

Antibiotic Fluoroquinolones 900 South Africa Hendricks and Pool, 2012

Antibiotic Ciprofloxacin 1,360 South Africa Agunbiade and Moodley, 2016

Antibiotic Erythromycin 10,600 Ghana Azanu et al., 2018

Antibiotic Sulfamethoxazole 3,600 Ghana Azanu et al., 2018

Antibiotic Metronidazole 363 Ghana Azanu et al., 2018

(Continued)
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TABLE 1 | Continued

Pharmaceutical type Pharmaceutical Max conc (ng/L) Country References

Antibiotic Ciprofloxacin 15,730 Ghana Azanu et al., 2018

Antibiotic Erythromycin 16,400 Tunisia Tahrani et al., 2017

Antibiotic Ofloxacin 175 Tunisia Harrabi et al., 2018

Antibiotic Enrofloxacin 400 Tunisia Harrabi et al., 2018

Antibiotic Trimethoprim 7,800 Tunisia Tahrani et al., 2017

Antibiotic Sulfamethoxazole 53,800 Mozambique Branchet et al., 2019

Antibiotic Trimethoprim 11,400 Mozambique Segura et al., 2015

Antibiotic Sulfamethoxazole 23,300 Kenya K’oreje et al., 2012

Antibiotic Sulfadoxin 1,040 Kenya K’oreje et al., 2018

Antibiotic Doxycycline 32,200 Kenya Kairigo et al., 2020

Antibiotic Norfloxacin 26,600 Kenya Kairigo et al., 2020

Antibiotic Trimethoprim 94,800 Kenya K’oreje et al., 2012

Antibiotic Sulfamethoxazole 5,600 Uganda Nantaba et al., 2020

Antibiotic Trimethoprim 89 Uganda Nantaba et al., 2020

Antibiotic Enrofloxacin 440 Nigeria Olaitan et al., 2017

Antibiotic Oxytetracycline 26 Nigeria Olaitan et al., 2017

Antibiotic Cefuroxime 868 Nigeria Olaitan et al., 2017

Antibiotic Amoxicillin 272,200 Nigeria Ebele et al., 2020

Endocrine disruptors Di-(2-ethylhexyl) phthalate 589 Australia Tan et al., 2007

Endocrine disruptors nonylphenol 335 Australia Tan et al., 2007

Endocrine disruptors Dibutyl phthalate 101 Australia Tan et al., 2007

Endocrine disruptors Bisphenol A 86.7 Australia Tan et al., 2007

Endocrine disruptors Benzyl butyl phthalate 75.7 Australia Tan et al., 2007

Endocrine disruptors Diethyl phthalate 36.9 Australia Tan et al., 2007

Endocrine disruptors 4-tert-octylphenol 23.5 Australia Tan et al., 2007

Endocrine disruptors 4-cumylphenol 1.9 Australia Tan et al., 2007

Antiretroviral Efavirenz 37.3 South Africa Mlunguza et al., 2020

Antiretroviral Emtricitabine 1.47 South Africa Mlunguza et al., 2020

Antiretroviral Tenofovir disproxil 0.25 South Africa Mlunguza et al., 2020

Antiretroviral Lamvudine 118,970 Zambia Ngumba et al., 2020

Antiretroviral Zidovudine 66,590 Zambia Ngumba et al., 2020

Antiretroviral Nevirapine 1,720 Zambia Ngumba et al., 2020

Antiretroviral Nevirapine 33,440 Kenya K’oreje et al., 2012

Antiretroviral Zidovudine 18,300 Kenya K’oreje et al., 2012

Antiretroviral Lamvudine 3,150 Kenya K’oreje et al., 2012

Antiretroviral Valacyclovir 21 Japan Azuma et al., 2019

Antiretroviral Zidovudine 564 Germany Prasse et al., 2010

Antiretroviral Nevirapine 32.1 Germany Boulard et al., 2018

Antiretroviral Abacavir 10 Germany Boulard et al., 2018

Antiretroviral Darunavir 169 Poland Giebułtowicz et al., 2018

Antiretroviral Zidovudine 191 France Aminot et al., 2015

Antiretroviral Ritonavir 155 France Aminot et al., 2015

Antiretroviral Lamivudine 44 France Aminot et al., 2015

Antiretroviral Nevirapine 7.7 France Aminot et al., 2015

Antiretroviral Indinavir 1.5 France Aminot et al., 2015

Antiretroviral Saquinavir 0.2 France Aminot et al., 2015

Antiretroviral Lamivudine 507 Belgium Vergeynst et al., 2015

Antiretroviral Ritonavir 108 Switzerland Kovalova et al., 2012

Antiretroviral Lamivudine 355 United States Masoner et al., 2014

Antiretroviral Abacavir 185 United States Masoner et al., 2014

Antiretroviral Nevirapine 25.2 United States Fisher et al., 2016

Anticancer Capecitabine 46 Portugal Cristóvão et al., 2021

Anticancer Ifosamide 44 Portugal Cristóvão et al., 2021

Anticancer Cyclophosphamide 17 Portugal Cristóvão et al., 2021

Anticancer Tamoxifen 181 Spain Negreira et al., 2014

Anticancer Cytarabine 924 Canada Vaudreuil et al., 2020

Anticancer Difluorodeoxyuridine 300 Canada Vaudreuil et al., 2020

Anticancer Cyclophosphamide 118 Canada Vaudreuil et al., 2020

Anticancer Methotrexate 27.3 Canada Vaudreuil et al., 2020
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antiretroviral drugs worldwide (Nannou et al., 2020; Reddy
et al., 2021). In addition, as consequence of the new pandemic
coronavirus (COVID-19), antiretroviral drugs have also been
used for the treatment of SARS-CoV-2. In some countries, such
as China and Japan, clinical trials have been conducted to test
the efficiency of using HIV drugs to treat COVID-19 (Reddy
et al., 2021). At the moment, a scarcity of studies has dealt
with this new issue. However, some studies have started to show
a relevant problem that we will have in the very near future
(Mupatsi, 2020).

In the coming decades, annual cancer cases are expected
to increase to more than 20 million, which means an
exponential increase in anticancer drugs and their subsequent
release into wastewater (Ferlay et al., 2013). Most of these
compounds are incompletely assimilated and metabolized
by the human body, thus excreted in feces and urine.
The most commonly administered anticancer drugs include
cyclophosphamide, tamoxifen, ifosfamide and methotrexate,
among others. These drugs have been detected in surface
water, WWTP effluents and influents, and hospital effluents.
Detected concentrations of cyclophosphamide range from 0.05
to 22,100 ng/L, ifosfamide 0.14–86,200 ng/L, methotrexate 1.6–
4,756 ng/L, and tamoxifen 0.01–740 ng/L (Nassour et al., 2020).
Several studies have detected these drugs in water masses,
confirming that current water treatment systems fail to degrade
them (Verlicchi et al., 2010; Cristóvão et al., 2019). Different
international agencies have developed protocols for the handling
and storing of pharmaceuticals to reduce their harmful effect on
the environment (Bernabeu-Martínez et al., 2018). One of the
main concerns is that these drugs may suffer biomagnification
(Yadav et al., 2021).

IMPACT OF PHARMACEUTICALS ON
THE ENVIRONMENT AND LIVING
ORGANISMS

Since almost all drugs are not completely metabolized by
organisms (usually a small fraction of the active site of drug
metabolic enzymes are occupied, the half-life of drugs are limited,
and drugs are administrated in higher amounts than necessary
to increase efficiency) (Coleman, 2020), the compounds that
can cause the most damage once they are excreted and reached
wastewater are PhACs. They are also called active pharmaceutical
ingredients or APIs and metabolites, referring to the molecules
resulting from these original compounds due to structural
changes that take place in organisms. In addition, the resulting
molecules are also subject to changes in the environment (such
as oxidation, photolysis, or biotransformation). These changes
can occur through both biotic and abiotic processes. Thus, many
pharmaceutical products are biotransformed by microorganisms
(Kümmerer, 2009; Wu et al., 2012). Ecotoxicologists are
increasingly concerned about the worldwide detection of
pharmaceutical residues in aquatic environments since their
long-term toxic effects are being increasingly studied. However,
it is challenging to know these effects because of the short time
period these substances have been present in the environment

(Nantaba et al., 2020; Ramírez-Morales et al., 2020; Gani et al.,
2021).

Different studies analyzed the microbiome of wastewater
where, in the case of hospitals, an abundance of anaerobes related
to pathogenic threats such as Bifidobacteriales, Bacteroidales, and
Clostridiales was found (Buelow et al., 2018; Ogwugwa et al.,
2021; Palanisamy et al., 2021). They also noted that compared
to other locations, hospital wastewater contains microorganisms
with higher relative levels of antimicrobial and antibiotic
resistance genes (Buelow et al., 2018). The mycobiome of hospital
wastewater has also been analyzed, indicating the presence of
different opportunistic phyla such as Mycosphaerella, Drechslera,
Candida, or Cyphellophora (Olicón-Hernández et al., 2021),
whose risk that they may acquire resistance to antibiotics is of
great concern and may have great repercussions for global health.

Beta-Blocker and Psychoactives
β-blockers are a group of pharmaceuticals that are commonly
detected in the environment. This is because many wastewater
plants are not adapted to remove these micropollutants. Detected
concentrations vary from 3 to 6,167 ng/L, which are already
sufficient to cause neurotoxic and reproductive disorders in
living organisms (Godlewska et al., 2021). Bisoprolol causes
immobilization in Daphnia similis (Godoy et al., 2019) and
mortality in fish and green algae (Fonseca et al., 2021).
Propranolol causes growth and development problems in algae
such as Synechococcus leopolensis and Cyclotella meneghiniana
(Ferrari et al., 2004), mortality in crustacea (Ceriodaphnia dubia)
(Huggett et al., 2002), and embryonic development problems in
Danio rerio (Bittner et al., 2018).

Psychoactive substances affect thought, emotion, will and
behavior (Jin et al., 2022). According to their pharmacological
properties, psychoactive substances (including legal and illegal
drugs) are opioids, cannabis, central nervous system depressants,
central nervous system stimulants, hallucinogens, and tobacco
(Schlüsener et al., 2015; Tanoue et al., 2019). These substances
have different effects on humans, such as analgesia, anesthesia,
inability to concentrate, excitement, anxiety, and mania. Jin
et al. (2022) indicated that ecological risk assessment is a crucial
part of research on psychoactive substances, as the current
relevant literature is scarce. Due to the biological activity of
such substances, there is a need for rapid improvement of risk
assessment, including acute, cone and developmental toxicity,
neurotoxicity, and endocrine-disrupting effects, among others, as
well as the development of remediation technologies.

Non-steroidal Anti-inflammatory Drugs
and Analgesics
Pharmaceuticals are known to have biological effects on living
organisms, but there is not enough information currently
available to assess the possible ecotoxicological impacts. Below
are some of the toxic and ecological risks of NSAIDs and
analgesics, according to various studies and summarized in
Table 2: (I) population declines of Gyps vultures in Asia due
to high diclofenac concentration (Cuthbert et al., 2007); (II)
diclofenac impairs prostate gland synthesis and damage to
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the gills, liver, and kidneys of Salmo trutta f. fario (Hoeger
et al., 2005); (III) histological alterations of the kidneys and
gills, cytological alterations of the liver, kidneys, and gills,
and deterioration of ionic regulation in Oncorhynchus mykiss
(Schwaiger et al., 2004; Triebskorn et al., 2004; Gravel et al.,
2009); (IV) ibuprofen, diclofenac, naproxen and ketoprofen
inhibits CYP2M in Cyprinus carpio (Thibaut et al., 2006); (V)
ibuprofen change breeding pattern of Oryzias latipes (Flippin
et al., 2007); (VI) ibuprofen, diclofenac, and acetaminophen
cause cardiovascular abnormalities, hatch and motor behavior
and interruption of oocyte maturation/ovulation in D. rerio
(David and Pancharatna, 2009; Lister and Van Der Kraak, 2009;
Xia et al., 2017); (VII) diclofenac alters estrogenic activity,
response of specific tissue biomarkers, decreased superoxide
dismutase, and glutathione reductase activities in gills, and
high catalase activity and levels of lipid peroxidation in the
digestive gland in Mytilus galloprovincialis (Gonzalez-Rey and
Bebianno, 2014). As can be inferred, high concentrations of
NSAIDs and analgesics in the environment, such as acetylsalicylic
acid, acetaminophen, diclofenac, ibuprofen, and naproxen, cause
serious environmental problems (Parolini, 2020). In addition to
fish, the main organisms affected are invertebrates, including
arthropods, mollusks, cnidarians and rotifers (Parolini, 2020).
NSAIDs also affect the plant growth of species such as Pisum
sativum and Vigna unguiculata (Svobodníková et al., 2020; Wijaya
et al., 2020; Table 2).

Antibiotics
Due to the continuous introduction of antibiotics into the
environment, aquatic and soil organisms are chronically exposed
to these drugs (Gothwal and Shashidhar, 2015; Bengtsson-Palme
and Larsson, 2016). Moreover, because they are active at very low
concentrations, they have a toxic effect on organisms, and there
is a synergistic effect when they are present together with other
drugs and/or xenobiotic compounds (González-Pleiter et al.,
2013). Algae and aquatic plants are severely affected by antibiotics
(Brain et al., 2008; Brausch et al., 2012). Many of them have
been found to be photosynthesis inhibitors, as they can block the
electron chain of photosystems II and increase oxidative stress
(Nie et al., 2013). However, microorganisms, including bacteria
and fungi, are developing resistance to antibacterial substances
due to exposure to low concentrations over several generations
(Kollef et al., 2017; Willyard, 2017; García et al., 2020; Wang et al.,
2020). Invertebrates such as Hydra attenuata and crustaceans
such as Artemia salina, Daphnia magna, and Ceriodaphnia dubia
show relatively low acute toxicity in the presence of antibiotics
(Wollenberger et al., 2000; Kołodziejska et al., 2013; Minguez
et al., 2016). On the other hand, in fish, acute toxicity was
only found at high concentrations, but there were cases in
which no toxicity was observed (Santos et al., 2010; Brausch
et al., 2012; Minguez et al., 2016; Table 2). The other major
problem is antibiotic resistance genes (ARGs), which are genes
that confer antibiotic resistance to bacteria, and can proliferate
through the reproduction of antibiotic-resistant bacteria from
the host or through horizontal gene transfer, are present in the
environment, and thus considered as emerging environmental
contaminants (Nadimpalli et al., 2020; Hu et al., 2021). Although

treated wastewater contains significantly lower amounts of ARGs
than untreated wastewater, several studies show that aquatic
environments downstream of treatment plants can increase
the amounts of ARGs because they are carried by mobile
genetic elements, such as conjugative plasmids, integrative and
conjugative elements, and transposons and integrons (Amos
et al., 2018; Freeman et al., 2018; Jäger et al., 2018; Karkman
et al., 2018; Liu et al., 2018). These effective carriers of ARGs
could confer multi-resistance. One of the most detected genetic
components in both effluents and aquatic environments is Class
1 integron-integrase gene (intI1) associated more frequently with
ARGs and involved in horizontal gene transfer (Gillings et al.,
2015; Cacace et al., 2019).

Endocrine Disruptors
Endocrine disruptors seriously affect both human and animal
health, as they act directly on the endocrine system and block
or mimic the natural hormones responsible for the functioning
of some organs (Vieira et al., 2020). These substances have been
studied extensively in humans, nevertheless, much less in the
environment. It is known that they can alter the reproductive
system, cause Alzheimer’s disease, thyroid problems, obesity
and/or cancer (prostate, breast or endometrium cancer), among
others (Heindel et al., 2015; Forte et al., 2016, 2019; Braun, 2017;
Nadal et al., 2017; Marotta et al., 2019). In natural ecosystems,
the reproductive system is also affected, as well as the levels
of vitellogenin and hatchability and thus feminization with the
consequent threat to the preservation of biodiversity (Vieira et al.,
2020; Akhbarizadeh et al., 2021; Table 2).

Antiretrovirals
In contrast to other pharmaceuticals, antiretrovirals, despite
being abundant in wastewater, are poorly monitored, although
some studies report on them (Ngumba et al., 2016; Abafe et al.,
2018; Rimayi et al., 2018; Mosekiemang et al., 2019; Mtolo
et al., 2019). These drugs could pass through treated wastewater
in WWTPs, reach drinking water sources, and cause serious
ecotoxicological problems for human health (Hawkins, 2010;
Ncube et al., 2018; Mlunguza et al., 2020). Currently, the greatest
concern is that resistant strains of HIV can be created in the
body through exposure to water contaminated with these drugs
(Daouk et al., 2015; Ncube et al., 2018; Table 2).

Anticancer Drugs
Although anticancer drugs are designed to eliminate fast-
growing cells, such as tumor cells, many of these drugs are
not selective (Chari, 2008). This means that in addition to
attacking healthy cells, they can cause cytotoxic, genotoxic,
mutagenic, and teratogenic effects, i.e., cause adverse effects
in any eukaryotic organism (Kümmerer et al., 2000; Johnson
et al., 2008). For this reason, anticancer drugs are considered
to be of great environmental concern, and especially the groups
at greatest risk are children, pregnant women, and the elderly
(Rowney et al., 2009). It has been shown that chronic exposure
of two generations of D. rerio to anticancer drugs caused
histopathological changes in the liver and kidney and impaired
the integrity of their DNA, introducing massive changes in the
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TABLE 2 | Impact of pharmaceuticals on the environment and humans.

Pharmaceutical type Impact References

β-blockers (bisoprolol) Inmobilization in Daphnia similis Godoy et al., 2019

β-blockers (bisoprolol) Mortality in green algae Fonseca et al., 2021

β-blockers (bisoprolol) Mortality in fish Fonseca et al., 2021

β-blockers (propanolol) Growth and development problems in algae such as
Synechococcus leopolensis and Cyclotella meneghiniana

Ferrari et al., 2004

β-blockers (propanolol) Mortality in crustacea (Ceriodaphnia dubia) Huggett et al., 2002

β-blockers (propanolol) Embryonic development problems in Danio rerio Bittner et al., 2018

NSAIDs and analgesics
(Acetaminophen)

Cardiovascular abnormalities, hatch and motor behavior and
interruption of oocyte maturation/ovulation in Danio rerio

David and Pancharatna, 2009; Lister and Van Der
Kraak, 2009; Xia et al., 2017

NSAIDs and analgesics (Diclofenac) Population declines of Gyps vultures Cuthbert et al., 2007

NSAIDs and analgesics (Diclofenac) Prostate gland synthesis and damage to the gills, liver, and
kidneys of Salmo trutta f. fario

Hoeger et al., 2005

NSAIDs and analgesics (Diclofenac) Histological alterations of the kidneys and gills, cytological
alterations of the liver, kidneys, and gills, and deterioration of
ionic regulation in Oncorhynchus mykiss

Schwaiger et al., 2004; Triebskorn et al., 2004; Gravel
et al., 2009

NSAIDs and analgesics (Diclofenac) Inhibits CYP2M in Cyprinus carpio Thibaut et al., 2006

NSAIDs and analgesics (Diclofenac) Cardiovascular abnormalities, hatch and motor behavior and
interruption of oocyte maturation/ovulation in Danio rerio

David and Pancharatna, 2009; Lister and Van Der
Kraak, 2009; Xia et al., 2017

NSAIDs and analgesics (Diclofenac) Alteration of estrogenic activity, response of specific tissue
biomarkers, decreased superoxide dismutase and glutathione
reductase activities in gills, and high catalase activity and levels
of lipid peroxidation in the digestive gland in Mytilus
galloprovincialis

Gonzalez-Rey and Bebianno, 2014

NSAIDs and analgesics (Ibuprofen) Inhibits CYP2M in Cyprinus carpio Thibaut et al., 2006

NSAIDs and analgesics (Ibuprofen) Change breeding pattern of Oryzias latipes Flippin et al., 2007

NSAIDs and analgesics (Ibuprofen) Cardiovascular abnormalities, hatch and motor behavior and
interruption of oocyte maturation/ovulation in Danio rerio

David and Pancharatna, 2009; Lister and Van Der
Kraak, 2009; Xia et al., 2017

NSAIDs and analgesics (Ibuprofen) Reduce the shoot and root lengths, fresh and dry weights, leaf
area, and chlorophyll a and b, carotenoid, total chlorophyll,
mineral (K and Mg), glutathione reductase, and soluble protein
contents of Vigna unguiculata

Wijaya et al., 2020

NSAIDs and analgesics (Ketoprofen) Inhibits CYP2M in Cyprinus carpio Thibaut et al., 2006

NSAIDs and analgesics (Naproxen) Inhibits CYP2M in Cyprinus carpio Thibaut et al., 2006

NSAIDs and analgesics (Naproxen) Pisum sativum Svobodníková et al., 2020

Antibiotics Algae and aquatic plants are severely affected Brain et al., 2008; Brausch et al., 2012

Antibiotics Block the electron chain of photosystems II and increase
oxidative stress (photosynthesis inhibitors)

Nie et al., 2013

Antibiotics Bacteria seem to be developing resistance to antibacterial
substances due to exposure to low concentrations over several
generations

Kollef et al., 2017; Willyard, 2017; García et al., 2020;
Wang et al., 2020;

Antibiotics Hydra attenuata show relatively low toxicity Wollenberger et al., 2000; Kołodziejska et al., 2013;
Minguez et al., 2016

Antibiotics Crustaceans such as Artemia salina, Daphnia magna, and
Ceriodaphnia dubia show relatively low acute toxicity

Wollenberger et al., 2000; Kołodziejska et al., 2013;
Minguez et al., 2016

Antibiotics Invertebrates such as Hydra attenuata and crustaceans such
as Artemia salina, Daphnia magna, and Ceriodaphnia dubia
show relatively low acute toxicity in the presence of antibiotics

Wollenberger et al., 2000; Kołodziejska et al., 2013;
Minguez et al., 2016

Endocrine disruptors Block or imitate the natural hormones responsible for the
functioning of some organs, in both humans and animals

Vieira et al., 2020

Endocrine disruptors Alter the reproductive system Heindel et al., 2015; Braun, 2017; Nadal et al., 2017

Endocrine disruptors Cause Alzheimer’s disease Heindel et al., 2015; Braun, 2017; Nadal et al., 2017

Endocrine disruptors Thyroid problems Heindel et al., 2015; Braun, 2017; Nadal et al., 2017

Endocrine disruptors Obesity and/or cancer Heindel et al., 2015; Braun, 2017; Nadal et al., 2017

Endocrine disruptors Affected the reproductive system Vieira et al., 2020

Endocrine disruptors Levels of vitellogenin and hatchability Vieira et al., 2020

Anticancer drugs Cytotoxic, genotoxic, mutagenic, and teratogenic effects in any
eukaryotic organism

Kümmerer et al., 2000; Johnson et al., 2008

(Continued)
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TABLE 2 | Continued

Pharmaceutical type Impact References

Anticancer drugs Groups at greatest risk are children, pregnant women, and the
elderly

Rowney et al., 2009

Anticancer drugs Caused histopathological changes in the liver and kidney and
impaired the integrity of their DNA, introducing massive changes in
the entire transcriptome in Danio rerio

Kovács et al., 2015; Gajski et al., 2016

Antiretroviral drugs Resistant strains of HIV can be created in the body through
exposure to water contaminated with these drugs

Daouk et al., 2015; Ncube et al., 2018

Antiretroviral drugs Anemia Ncube et al., 2018

Antiretroviral drugs Nausea Ncube et al., 2018

Antiretroviral drugs Hypersensitivity Ncube et al., 2018

Antiretroviral drugs Nephrotoxicity and renal failure Ncube et al., 2018

Antiretroviral drugs Rash Ncube et al., 2018

entire transcriptome (Kovács et al., 2015; Gajski et al., 2016;
Table 2).

Residues of pharmaceuticals in the environment typically
occur as complex mixtures and even if the concentrations of
an individual compound are low, the “cocktail effect” could be
of significant ecotoxicological importance (Heath et al., 2016).
To date, many works have focused on the study of individual
organisms and analyzed a single drug or several drugs as a
whole, but there are no works studying the impact of drugs
on several populations simultaneously. This would provide
essential information on ecotoxicity and the “domino effect”
that affects individuals in a trophic chain since, in addition to
bioaccumulation, the chain could be broken because a drug
lethally affects a group of individuals.

DEVELOPMENT OF BIOREMEDIATION
TECHNOLOGIES

Improving technologies for drug elimination from wastewater
is an important task since pharmaceuticals have been detected
in effluent from WWTPs and consequently surface water,
groundwater, and drinking water globally (Bartolo et al., 2021).
Although the pharmaceuticals are found in concentrations
ranging from the nanogram to microgram per liter, which
is too low to cause acute toxicity, they are biologically active
compounds that have the potential for chronic toxicity,
bioaccumulation, and biomagnification (Ruan et al., 2020).
Additionally, microplastics have been shown to serve as vectors
for pharmaceuticals (Santos et al., 2021), thus increasing
the exposure potential. Because of incomplete elimination
during conventional wastewater treatment (Reyes et al.,
2021) and the potential risk posed to the environment, as
discussed above, there has been pronounced interest in
developing alternative treatments in recent years, specifically
the biological transformation of these pollutants as a green
technology (Domaradzka et al., 2015). The future inclusion of
bioremediation technologies in traditional WWTP treatments
is progressive as it will result in the detoxification of hazardous
substances, it is less disruptive to the environment than
harsh oxidative chemicals, and more cost-efficient. With
perseverance, research into optimization could result in the

complete eradication of target pollutants, rooting out release into
the environment.

The wastewaters containing PhACs and their metabolites
reaching WWTPs are commonly treated via purification systems.
The potential of drug remediation via biological treatment
utilizing microbes has been demonstrated (Kebede et al.,
2018). Biological systems are often used in conjunction with
advanced treatments and combined with conventional activated
sludge (CAS) systems due to limitations associated with the
process (Crini and Lichtfouse, 2019). Advanced biological
treatments include modified CAS, aerobic granular systems,
moving bed bioreactors (MBBRs), anammox systems, and
membrane bioreactors (MBRs) (Grassi et al., 2012). However,
some of these processes, such as MBRs, could result in the
generation of biosolids or sewage sludge as byproducts of
required maintenance. Sewage sludge, after different stabilization
processes such as thermophilic anaerobic digestion, continues
onto different processes, such as composting, which could
facilitate the transfer of PhACs and their metabolites into various
trophic levels of the food web when used as a soil amendment
(Marcoux et al., 2013).

Bioremediation, utilizing native microbial monocultures or
consortia or bioaugmentation, has been used for decades
as a sustainable technology to manage anthropogenic
pollution (Ahumada-Rudolph et al., 2021). The advantages
of bioremediation include less input of hazardous chemicals,
energy, and time, and it is cheap relative to other technologies
(Azubuike et al., 2016). The major benefit of bioremediation
is that the pollutant is chemically transformed and not only
shifted from one environment to another (Mashi, 2013).
However, a significant criticism of bioremediation has been
that the remediation speed does not meet the requirements for
the treatment capacity. Nonetheless, considering the benefits
of the approach, attempts on optimizing the efficiency and
decreasing retention times are being made and are reviewed
below for mycoremediation. Developments in phyto- and
phycoremediation of pharmaceuticals have been reported and
recently reviewed (Vilvert et al., 2017; Rao et al., 2019; Kaloudas
et al., 2021; Kurade et al., 2021) and thus, not included here.

Bacterial remediation has been reviewed to some extent
(Shah and Shah, 2020), and, therefore, a brief overview of
previously undiscussed advances are included here alongside
mycoremediation. Bacterial communities have the ability to
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degrade and mineralize many xenobiotic compounds and have
thus been used for centuries in wastewater-activated sludge
(Xu et al., 2018). Bioremediation technologies have been
advanced by studies elucidating the importance of facilitating
biofilm growth in achieving maximum efficiency and community
stability and survival (Edwards and Kjellerup, 2013). The
majority of the available literature on bacterial remediation
has focused on the aerobic degradation of pharmaceuticals
by individual bacteria or consortia in which oxygenases are
reported to be involved (Ferreira et al., 2018). Activated sludge,
in which an uncharacterized bacterial consortium in suspension
is responsible for the remediation, is one of the most widely
used biological methods to treat pharmaceutical wastewater at a
large scale (Bis et al., 2019). However, due to operational issues
associated with the development of large amounts of sludge,
research has been invested in developing bespoke bacterial
consortia for remediation, including microalgae and bacterial-
microalgae consortia (Mamta et al., 2020).

In the environment, fungi are excellent decomposers through
the nonspecific nature of enzymes, both intracellular and
extracellularly secreted, which exhibit significant capabilities
to degrade organic material (Rouches et al., 2016). More
specifically, the ligninolytic (including peroxidases and laccases)
and cytochrome P450 systems have been proven to be involved
in the exceptional capacity of white-rot fungi to degrade
recalcitrant pollutants (Park and Choi, 2020). The nonspecific
nature of these enzymes also makes them an ideal approach
to deal with the diverse chemical structures of the many
classes of pharmaceuticals. Many fungal species are also
hyperaccumulators, capable of absorbing and bioaccumulating
xenobiotics from their environment, as demonstrated by the
ability of mushrooms (Braeuer et al., 2020). Furthermore, fungi
are known for their capacities to adapt to severe environmental
constraints (Jiao and Lu, 2020), making them more tolerant to
environmental changes than other bioremediation organisms.
Thus, mycoremediation, which results in the reduced toxicity of
wastewater (Jelic et al., 2012; Akhtar and Mannan, 2020), offers a
comparatively cost-effective, eco-friendly, and effective approach
to pollution remediation.

Macromycetes, aka mushrooms or polypores, were previously
proven efficient in remediating various pharmaceuticals
(Migliore et al., 2012; Cruz-Morató et al., 2014), including
β-blockers and psychoactive drugs, anti-inflammatory drugs,
antibiotics and hormones (Table 3). Mostly, investigations
into the efficiency of fungi to remediate pharmaceuticals have
been performed in flask batch experiments with white-rot
fungi, especially Trametes versicolor, which exhibited impressive
capacities for eliminating a vast range of pharmaceuticals. In
bioreactors-based studies, T. versicolor was equally efficient,
able to degrade various pharmaceuticals, including codeine,
diazepam, carbamazepine, and metoprolol (Asif et al., 2017).
The role of redox-mediators has also been extensively studied
in improving the performance of laccase-based treatments
(Ashe et al., 2016; Shao et al., 2019), including the treatment of
pharmaceuticals (Nguyen et al., 2013; Vasiliadou et al., 2019).
Studies employing filamentous micromycetes have shown
potential for pharmaceutical remediation from wastewaters as

reviewed by Olicón-Hernández et al. (2017) but are limited
compared to the literature on macromycetes (Table 3). The
efficiency of bacteria and fungi to remediate different classes of
pharmaceuticals is discussed in more detail below.

Beta-Blockers and Psychoactive Drugs
Carbamazepine, which is not adequately eliminated via standard
wastewater treatments and is thus frequently detected in the
environment (Ekpeghere et al., 2018), has been reported to
be degraded by the macromycete T. versicolor. By employing
T. versicolor, Jelic et al. (2012) achieved 94% degradation of
carbamazepine (9 mg/L) after six days in flask experiments.
With a reduced concentration (50 µg/L), Jelic et al. (2012)
reported a lower remediation percentage of 61% achieved in
seven days. The same group evaluated the fungus’s remediation
efficiency of carbamazepine in an air pulsed fluidized bed
bioreactor operated in batch and continuous mode. In batch
mode, 96% of the drug was eliminated after 2 days, with higher
efficiency achieved in the bioreactor than in flasks explained
by glucose addition, pH management and air supplementation.
In continuous mode, carbamazepine was reduced by 54% in
the outflow compared to the inflow concentration of 200 µg/L
(Jelic et al., 2012). With Pleurotus ostreatus, another white-
rot fungus, 68% carbamazepine was degraded in liquid culture
after seven days with no further degradation after this time
(Buchicchio et al., 2016).

The filamentous fungus Trichoderma harzianum was able
to degrade 72% of environmentally detected concentrations of
carbamazepine (4 µg/L) (Buchicchio et al., 2016), which was
superior compared to the polypore P. ostreatus. In a non-sterile
bioreactor, Phanerochaete chrysosporium was able to degrade
up to 80% of 5 mg/L carbamazepine when supplied with a
diluted synthetic feed (Zhang and Geißen, 2012). In a fed-
batch stirred bioreactor, P. chrysosporium removed yo to 60%
carbamazepine (0.5 mg/L); however, it was unable to degrade
diazepam (0.25–0.5 mg/L) (Rodarte-Morales et al., 2012a). In
a fixed bed reactor, where the pellets of P. chrysoporium
were immobilized in polyurethane, the remediation efficiency
of carbamazepine and diazepam was significantly improved
(Rodarte-Morales et al., 2012b).

Even though nearly complete remediation of some beta-
blockers and psychoactive drugs could be achieved in flask
and lab bioreactor scale experiments, large or even pilot scale
studies are needed to comprehensively evaluate the effect
of upscaling on the remediation efficiency and the cost-
effectiveness of using fungi for these drugs as an add-on treatment
in WWTPs.

Non-steroidal Anti-inflammatory Drugs
and Analgesics
Bioremediation using bacterial monocultures for the treatment
of NSAIDs has not to date been successful (Wojcieszyńska et al.,
2014). Some studies have shown the elimination of NSAIDs
by bacterial consortia in WWTPs. One study showed that
eliminating acetaminophen in an MBR was mainly associated
with heterotrophic bacteria. They concluded that using a
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TABLE 3 | Summary of fungal remediation studies on the removal efficiency of single PhAC.

Pharmaceutical Species Experimental type Contact time
(days)

Start conc
(mg/L)

Efficiency (%) References

Macromycetes

Carbamazepine Trametes versicolor Lab, flask 6 9 94 Jelic et al., 2012

7 0.05 61

T. versicolor Air pulsed fluidized bed
reactor-batch

2 0.2 96 Jelic et al., 2012

T. versicolor Air pulsed fluidized bed
reactor–cont.

25 0.2 54

Pleurotus ostreatus Lab, flask 7 0.04 68 Buchicchio et al., 2016

Diclofenac T. versicolor Cont. membrane reactor 1 0.3-1.5 55 Yang et al., 2013

Ofloxacin T. versicolor Lab, flask 7 10 80 Gros et al., 2014

Fluidized air pulse bioreactor
sterile

8 0.03 98.5

Fluidized air pulse bioreactor
nonsterile

5 0.003 99

Irpex lacteus Lab, flask 10 10 100 Čvanv̌arová et al., 2015

Cefuroxime axetil Imleria badia Lab, flask 7 400, 1000,
1600

100 Dąbrowska et al., 2018

Lentinula edodes Lab, flask 7 400, 1000,
1600

100

Oxacillin Leptosphaerulina sp. Lab, flask 6 16 100 Copete-Pertuz et al., 2018

Cloxacillin Leptosphaerulina sp. Lab, flask 7 17.5 100

Dicloxacillin Leptosphaerulina sp. Lab, flask 8 19 100

Clarithromycin P. ostreatus Lab, flask 7 0.00003 55 Buchicchio et al., 2016

Oxytetracycline P. ostreatus Lab, flask 14 50, 100 100 Migliore et al., 2012

Flumequine I. lacteus Lab, flask 10 10 100 Čvanv̌arová et al., 2015

Ciprofloxacin I. lacteus Lab, flask 10 10 100

Testosterone L. edodes Lab, flask 21 100000,
200000

100 Muszyńska et al., 2018

17α-Ethinylestradiol L. edodes Lab, flask 21 400, 800 100

L edodes (stalk) Bioabsorption 0.02 2 100 de Jesus Menk et al., 2019

L. edodes (substrate) Bioabsorption 0.02 2 80

Agaricus bisporus (stalk) Bioabsorption 0.02 2 100

Micromycetes

Carbamazepine Trichoderma harzianum Lab, flask 7 0.004 72 Buchicchio et al., 2016

Phanerochaete chrysosporium Bioreactor, nonsterile 100 5 80 Zhang and Geißen, 2012

Continuously stirred
bioreactor

50 0.5 63 Rodarte-Morales et al., 2012b

Diclofenac Penicillium oxalicum Lab, flask 1 29 100 Olicón-Hernández et al., 2019

Mucor hiemalis Lab, flask 6 0.05 97 Esterhuizen-Londt et al., 2017

P. chrysosporium Fed-batch stirred bioreactor 1 0.8 99 Rodarte-Morales et al., 2012a

Continuously stirred
bioractor

1 1 93 Rodarte-Morales et al., 2012b

Acetaminophen M. hiemalis Lab, flask 1 0.02 < 50 Esterhuizen-Londt et al., 2016b,a

P. chrysosporium Lab, flask 7 0.25 99 Esterhuizen et al., 2021

Ibuprofen P. chrysosporium Fed-batch stirred bioreactor 0.63 0.8 99 Rodarte-Morales et al., 2012a

Continuously stirred
bioractor

1 1 93 Rodarte-Morales et al., 2012b

Naproxen P. chrysosporium Fed-batch stirred bioreactor 1 0.8 99 Rodarte-Morales et al., 2012a

Continuously stirred
bioractor

3 1 90 Rodarte-Morales et al., 2012b

Clarithromycin T. harzianum Lab, flask 7 0.00003 57 Buchicchio et al., 2016

Oxytetracycline Penicillium commune Lab, flask 15 250 68 Ahumada-Rudolph et al., 2021

Epicoccum nigrum, Lab, flask 15 250 76

Trichoderma harzianum Lab, flask 15 250 77

Aspergillus terreus Lab, flask 15 250 74

Beauveria bassiana Lab, flask 15 250 78

Erythromycin Penicillium oxalicum RJJ-2 Lab, flask 4 100 84 Ren et al., 2021

17 β-estradiol (E2) Trichoderma citrinoviride AJAC3 Lab, flask 4 200 100 Chatterjee and Abraham, 2019
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microbial consortium in an MBR could be complimentary
for post-treating effluents from treatment plants containing
pharmaceutical products (De Gusseme et al., 2011). However, as
seen with the consortia in CAS treatments, which are unidentified
and often change in conjunction with the wastewater being
treated, consortia in bioreactors may also change, resulting in
decreased efficiency. To further explore the use of bacterial
consortia in bioreactors, long-term studies need to be conducted
on-site in WWTPs to evaluate the composition and stability of the
bacterial assemblage, and it should be modeled how shifts could
influence remediation.

In terms of mycoremediation, T. versicolor has shown very
promising results in the remediation of NSAIDs (Asif et al., 2017;
Tińma et al., 2021). In a continuous MBR (with a hydraulic
retention time of one day), T. versicolor eliminated 55% of
diclofenac added at concentrations ranging from 0.3 to 1.5 mg/L
(Yang et al., 2013). Another fungus that demonstrated the
potential to degrade anti-inflammatory drugs is the edible fungus
Lentinula edodes (shiitake mushroom). The degradation products
of piroxicam produced by L. edodes degradation has already been
described (Muszyńska et al., 2019); however, the remediation
percentage was not reported.

Penicillium oxalicum was capable of totally degrading
diclofenac in 24 h, starting from an initial concentration of
29.6 mg/L (100 µM) (Olicón-Hernández et al., 2019). For Mucor
hiemalis f. irnsingii (DSM 14200; Zygomycota), a strain isolated
from a groundwater source in Germany, the diclofenac (10–
50 µg/L) removal percentages ranged between 90 and 97% after
6 days (Esterhuizen-Londt et al., 2017). The same micromycete
was also employed for the remediation of acetaminophen. After
24 h of exposure to environmentally relevant concentrations
of acetaminophen (up to 20 µg/L), M. hiemalis was able to
degrade up to 50% (Esterhuizen-Londt et al., 2016b,a). However,
after 24 h, diclofenac remediation halted; nevertheless, pH
maintenance could overcome this (Esterhuizen et al., 2021).
The acetaminophen remediation efficiency of Phanerochaete
chrysosporium (97 and 99% of 250 µg/L APAP after 3 and
7 days, respectively) was far superior to that of M. hiemalis,
and co-cultivation of the two species resulted in a decreased
remediation efficiency compared to P. chrysosporium in single
(Esterhuizen et al., 2021).

Furthermore, Olicón-Hernández et al. (2020) studied
the degradation of a mixture of acetaminophen, diclofenac,
ibuprofen, ketoprofen and naproxen with P. oxalicum, starting
from an initial concentration of 50 µM of each compound in
both flasks and bench fluidized bioreactors. P. oxalicum showed
higher degradation percentages in the bioreactor than at the flask
scale. The authors reported that with glucose addition in the
fluidized bed bioreactor, degradation of all drugs was complete
after eight days (Olicón-Hernández et al., 2020).

In a fed-batch stirred bioreactor, P. chrysosporium oxidatively
degraded up to 99% of diclofenac, ibuprofen, and naproxen
each at a concentration of 0.8 mg/L (Rodarte-Morales
et al., 2012a). However, in continuously stirred bioreactors,
P. chrysosporium degraded diclofenac, ibuprofen, and naproxen
(1 mg/L each) up to 95%.

With these preliminary flask and laboratory-scale reactor
experiments, the potential of using mycoremediation to treat

NSAIDs is highlighted. However, data on the performance of the
fungi in WWTPs is lacking, making a consequential evaluation
impossible. A potential issue that may arise in practice is the need
for maintenance and controlled conditions, as highlighted by the
study conducted by Esterhuizen et al. (2021), which showed the
need for maintaining pH conditions.

To overcome the limitations of monocultures for the
remediation of these pollutants, the use of microorganism-
consortia has been explored. Consortia of microorganisms that
complement each other could improve biological wastewater
treatment technologies significantly. For example, Nguyen et al.
(2013) found that a mixed bacterial culture in conjunction with
T. versicolor in an augmented MBR better degraded PhACs than
a system containing the fungus or bacteria alone (Nguyen et al.,
2013). In addition, bioaugmentation technologies using adapted
fungi, such as P. oxalicum, have proven an interesting technology
to overcome the problem of competition with autochthonous
microbiota, as demonstrated by Olicón-Hernández et al. (2021).
However, more data are needed to define complementary species
since the study by Esterhuizen et al. (2021) revealed that co-
culture of certain species could reduce the remediation efficiency.

Antibiotics
In general, low remediation efficiencies for most antibiotics
from wastewaters have been reported using CAS treatment
(Chaturvedi et al., 2021a; Zou et al., 2022). Thus, CAS could be
applied to treat some antibiotics; however, not all. More recently,
increased antibiotic removal percentages have been reported with
anoxic/anaerobic/oxic granular and suspended activated sludge
processes, specifically with sulfamethoxazole (Kang et al., 2018).
The shortcoming could be improved by supplementing the sludge
with bacteria capable of better remediation or even mixing
treatments and complementing CAS with mycoremediation with
macromycetes has been proven to be very effective for antibiotics.

T. versicolor, in flask experiments, degraded the antibiotic
ofloxacin (10 mg/L) with 80% efficiency. When upscaled to 10 L
fluidized air-pulse bioreactors, ofloxacin spiked into hospital
waste was removed by 98.5% under sterile conditions and 99%
under nonsterile conditions (Gros et al., 2014).

Buchicchio et al. (2016) reported the elimination of 55%
clarithromycin (0.03 µg/L) by edible mushroom P. ostreatus and
57% by the micromycete T. harzianum. In flask experiments,
P. ostreatus could also eliminate oxytetracycline (50 and
100 mg/L) after 14 days (Migliore et al., 2012). The antifungal
drugs bifonazole and clotrimazole were also bioaccumulated
and eliminated by the mycelia of the edible fungus Lentinus
edodes (Kryczyk-Poprawa et al., 2019). In flask experiments, the
cephalosporin antibiotic cefuroxime axetil was entirely eradicated
by both the edible mushrooms Imleria badia and L. edodes within
seven days at all concentrations tested (400, 1,000, 1,600 mg/L)
(Dąbrowska et al., 2018).

Leptosphaerulina sp. removed oxacillin (16 mg/L, in 6 days),
cloxacillin (17.5 mg/L, in 7 days) and dicloxacillin (19 mg/L, in 8
days) from water in flask experiments by the action of laccase and
peroxidase. With synthetic hospital waste, oxacillin was reduced
by 60% within two days and wholly eradicated after six days by
the Leptosphaerulina sp. (Copete-Pertuz et al., 2018).
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In a comparative study investigating the degradation
efficiencies of five ligninolytic fungi, the polypore Irpex
lacteus degraded the fluoroquinolone antibiotic flumequine,
ciprofloxacin and ofloxacin effectively within six days
(Èvanèarová et al., 2013; Čvanv̌arová et al., 2015). I. lacteus
also removed the residual antibacterial activity of norfloxacin
and ofloxacin via the action of manganese peroxidase
(Čvanv̌arová et al., 2015).

Ahumada-Rudolph et al. (2021) evaluated fifty fungal isolates
from sediments of salmon hatcheries for their oxytetracycline
remediation abilities. The filamentous fungi Penicillium
commune, Epicoccum nigrum, T. harzianum, Aspergillus terreus,
and Beauveria bassiana were identified as having the best
remediation rates amounting to a maximum of 78% removal of
a 250 mg/L oxytetracycline concentration in flask experiments
(Ahumada-Rudolph et al., 2021). P. oxalicum RJJ-2 has also been
studied in the degradation of erythromycin and degraded 84.88%
erythromycin after 96-h incubation used as the sole carbon
source producing different metabolites (Ren et al., 2021).

The studies on the efficiency to remove antibiotics reported
to date have focused on the efficiency under set conditions.
However, in a WWTP, environmental conditions and even the
water’s parameter would fluctuate from time to time. How this
could affect the remediation efficiency and fungal longevity
over time is unknown. Nevertheless, this information could be
essential in evaluating this technique’s applicability in the field.
It is importante to note the relevance of the use of fungi in
removing antibiotics since bacteria can adquire rapidly antibiotic
resistance genes during bioremediation and contribute to the
widespread of ARGs.

Endocrine Disruptors
The fate of estrogenic hormones treated via activated sludge
systems in full-scale WWTPs was reviewed by Hamid and
Eskicioglu (2012). Activated sludge systems with nutrient
removal achieved more than 90% degradation in most studies
(Hamid and Eskicioglu, 2012).

Degradation of testosterone and 17α-ethinylestradiol (EE2)
by the fungus L. edodes was reported by Muszyńska et al.
(2018), with no testosterone or 17α-ethynylestradiol detected
after 21 days (Muszyńska et al., 2018). Interestingly, the white-rot
fungus P. ostreatus HK 35, in the presence of the natural water
microbiota of a WWTP, degraded up to 90% of 17β-estradiol
(E2) within 12 days in various bioreactor sizes and under
different regimes (Křesinová et al., 2018). The micromycete
Trichoderma citrinoviride AJAC3 degraded 99.6% 17 β-estradiol
(E2) (at a starting concentration of 200 mg/L) after four days
attributed to the secretion of ligninolytic enzymes (Chatterjee
and Abraham, 2019). A study investigating the efficiency of
mycoremediation to remove 17 β-estradiol (E2) from poultry
litter found that the polypore Pycnoporus sp. SYBC-L3 could
remove up to 78.4% via solid-state cultivation supplemented with
citric acid and lignocellulosic biomasses to boost laccase activity
(Liu et al., 2016), an approach that could be tested for increasing
remediation from wastewaters.

Even though the hormone remediation percentage reported
with mycoremediation is, in some cases, higher than the CAS

studies reviewed by Hamid and Eskicioglu (2012), a comparison
is not possible since the studies on the fungal efficiency
were performed in the laboratory in comparison to the CAS
studies completed on-site at WWTPs. In addition to excluding
several variables that could impact the remediation efficiency,
these studies have established the remediation efficiencies for
individual compounds. In wastewater effluent, a mixture of
not only PhACs are present, and the synergistic effect of
all these compounds could affect the efficiencies reported
(Chatterjee and Abraham, 2019).

Bioabsorption is another approach to PhAC remediation
with fungi. L. edodes and Agaricus bisporus (champignon) stalks
removal 100% of 17α-ethinylestradiol (EE2) in 20 and 30 min,
respectively via absorption, whereas Shiitake substrate absorbed
80% (de Jesus Menk et al., 2019).

Despite the high hormone remediation percentages achieved
with fungi described above, few studies have been published
on this topic in the last decade, and renewed investigations
would greatly benefit the development of this technique
to elevate the environmental impacts of hormones released
untreated from WWTPs.

Mixed Effluents
Cruz-Morató et al. (2013) studied the degradation of
pharmaceuticals in hospital effluent by T. versicolor. By
employing fluidized bed bioreactor in fed-batch mode,
T. versicolor could eliminate ibuprofen (2.34 mg/L),
acetaminophen (1.56 mg/L), ketoprofen (0.08 mg/L), propranolol
(0.06 mg/L), and azithromycin (4.31 mg/L). By running the
fluidized bed reactor in continuous mode, the efficiency was
increased, and the fungus was able to completely remove
acetaminophen (109 mg/L), naproxen (1.62 mg/L), ibuprofen
(35.5 mg/L), diclofenac (0.477 mg/L), codeine (0.606 mg/L),
trimethoprim (0.853 mg/L), and sulfamethoxazole 1.41 mg/L
100%, and partially remove several other drugs. However,
salicylic acid, tetracycline, and carbamazepine were not
degraded (Cruz-Morató et al., 2013, 2014). T. versicolor was
also investigated for its performance to remediate PhACs from
veterinary hospital wastewater; however, only 66% removal
efficiency was achieved in a non-sterile batch bioreactor
(Badia-Fabregat et al., 2016).

P. oxalicum XD.3.1 has also been used in batch bench-
scale bioreactors to test the remediation efficiency with real
hospital effluents. Within 24 h, P. oxalicum was able to reduce
the majority of the PhAC present in the effluent, including
ketoprofen, naproxen and paracetamol. Interestingly, P. oxalicum
also affected the native microbiota, including opportunistic
pathogens (Olicón-Hernández et al., 2021). In fluidized bed
bioreactor studies, including hospital wastewater spiked with
10 mg/L each diclofenac, ketoprofen, and atenolol, P. ostreatus
completely remediated diclofenac in 24 h and 50% of the
ketoprofen in 5 days. However, atenolol was not removed
(Palli et al., 2017). These studies demonstrated the complexity
of degrading PhAC in mixed matrix effluents, which could
drastically reduce the remediation efficiency. Therefore, more
studies should be conducted at a larger scale employing real
effluents to develop mycoremediation using fungi.
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Currently, mycoremediation studies on other emerging
PhACs, such as anticancer and antiretrovirals, are lacking.
Testing fungal species capable of degrading pharmaceuticals
at a laboratory scale is ongoing; however, it is difficult to
predict how biological organisms would cope in a treatment
facility exposed to chemical mixtures over long periods.
Thus, recognizing the potential of mycoremediation for the
treatment of pharmaceuticals demonstrated to date, studies
regarding functioning and long-term applicability in practical
terms to evaluate the feasibility of mycoremediation fully are
still lacking. However, limitations such as partial degradation
of pharmaceuticals and reduced efficiency at lower PhAC
concentrations have been identified but could be overcome by
using consortia or optimizing enzyme extraction and isolation
to reduce costs.

The exact mechanism of degradation for each fungal type and
PhACs is still vague due to its complexity and all the counterparts
involved (Dąbrowska et al., 2018). However, the degradation
seems to include activities of the intracellular enzymatic system
such as the cytochrome P450 system, mainly in fungi lacking
ligninolityc enzymes, and the extracellular enzymatic system,
including lignin peroxidase, manganese peroxidase, laccase,
versatile peroxidase as well as hydroxyl and free radical, in the
case of lignin degrading enzymes producers (Dąbrowska et al.,
2018; Barh et al., 2019). Nevertheless, elimination is reported
to produce no toxic byproducts (Copete-Pertuz et al., 2018),
therefore necessitating further studies into mycoremediation
optimization for an add-on in WWTPs and elucidating the
mechanism of action.

ISOLATED FUNGAL ENZYMES

The use of isolated fungal enzymes could also overcome some
limitations associated with mycoremediation. Fungal enzymes,
specifically the ligninolytic enzymes, have been recognized for
their abilities to transform a broad range of recalcitrant PhACs.
However, difficulties in growing fungi on a large scale, together
with the long incubation processes, extensive growth phase, and
spore formation, have prompted the exploration of extracted
crude and isolated enzymes (Stadlmair et al., 2018). Though, to
date, the main limiting factor has been the high cost of the enzyme
purification procedure.

Commercially available laccases from T. versicolor efficiently
degraded diclofenac, trimethoprim, carbamazepine and
sulfamethoxazole as individual drugs, but the remediation
efficiency decreased when applied to mixtures of the drugs
(Alharbi et al., 2019). Kang et al. (2021) isolated laccases
from Bjerkandera spp., which could efficiently remediate
acetaminophen under a range of pH conditions (Kang
et al., 2021). In a study employing immobilized laccases
from Trametes hirsuta, Hachi et al. (2017) reported better
remediation efficiencies for carbamazepine and acetaminophen
(40 and 70%) in single compared to in mixtures (5 and 25%)
(Hachi et al., 2017).

Using laccases (2,000 U/L) isolated from Myceliophthora
thermophile, 94.1 and 95.5% of estrone E1 and 17β-estradiol
E2 could be degraded within 8 h in the presence of a

natural mediator in a fed-batch bioreactor. In an enzymatic
membrane reactor (EMR) with a stir-tank configuration, this
percentage was increased to 95% for E1 and near total E2
degradation (Lloret et al., 2010). This indicates that the bioreactor
type significantly impacts the remediation efficiency regarding
isolated enzymes. In a study by Becker et al. (2017), immobilized
laccase from T. versicolor and M. thermophila could degrade
83 and 87%, respectively, of estrogenic compounds (E1 estrone;
E2 17β-estradiol; EE2 17α-ethinylestradiol) in mixtures with
other endocrine-disrupting compounds within 6h (Becker et al.,
2017). Golveia et al. (2018) reported 96.5% remediation of
10 mg/L 17-α-ethinylestradiol by Pycnoporus sanguineus laccase
(1,642 U/mL) after 8 h (Golveia et al., 2018). It would be noted
that 1% (v/w) was added to the fungal culture to promote optimal
laccase production concentration before extraction.

Utilizing isolated enzymes has the advantages of reducing the
remediation time by avoiding the lag phase of fungal growth,
reducing sludge production, and facilitating process control
(Jebapriya and Gnanadoss, 2013). Apart from the high cost as
a disadvantage, a study by Nguyen et al. (2014) demonstrated
another drawback of using isolated enzymes (Nguyen et al.,
2014). In a direct comparison, whole-cell culture degraded trace
organic compounds with higher efficiency, which is said to be
facilitated by biosorption and the activity of both intracellular and
mycelium associated enzymes.

CONCLUSION

The environmental impact of pharmaceuticals and their proper
elimination from wastewaters have gained interest in recent years,
mostly due to the intrinsic characteristics of these compounds,
their massive use, and the negative effects on the environment
and humans. Although they are medicinal substances developed
to aid in the well-being of organisms, their indiscriminate use
can lead to irreversible environmental problems. Therefore, it is
important to create legislation according to the current standards
of using substances and eco-friendly trends. More versatile and
efficient systems for eliminating PhACs such as mycoremediation
are being developed to lessen or avoid the problems associated
with pharmaceutical pollution in the environment. However,
these promising techniques are still at a laboratory scale and
data regarding the application in WWTPs are still lacking. Even
though new techniques for the remediation of PhAC are being
developed and optimized, relative to the development of new
drugs, implementing these techniques into practice is slow.
New promising approaches for this purpose, such as genetic
engineering, are still in their infancy. Thus, the new editing tool,
such as CRISPR-Cas9, could help to introduce metabolic genes
focused on target recalcitrant compounds. Much more studies are
still necessary to deal with the problem of PhACs.
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Čvanv̌arová, M., Moeder, M., Filipová, A., and Cajthaml, T. (2015).
Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi –
metabolites, enzymes and residual antibacterial activity. Chemosphere 136,
311–320. doi: 10.1016/j.chemosphere.2014.12.012

Frontiers in Microbiology | www.frontiersin.org 18 April 2022 | Volume 13 | Article 869332

https://doi.org/10.1016/j.envint.2015.10.015
https://doi.org/10.1371/journal.pone.0197172
https://doi.org/10.1016/j.coesh.2019.11.005
https://doi.org/10.3390/pr7050285
https://doi.org/10.1016/j.aquatox.2018.05.020
https://doi.org/10.1016/j.scitotenv.2017.02.023
https://doi.org/10.1016/j.scitotenv.2018.10.050
https://doi.org/10.1016/j.marpolbul.2015.03.008
https://doi.org/10.1016/j.marpolbul.2015.03.008
https://doi.org/10.1016/j.jclinane.2018.06.020
https://doi.org/10.1016/j.jclinane.2018.06.020
https://doi.org/10.1016/j.chroma.2017.12.023
https://doi.org/10.1016/j.scitotenv.2020.139524
https://doi.org/10.1016/j.scitotenv.2020.139524
https://doi.org/10.1007/978-0-387-71724-1_3
https://doi.org/10.1016/j.scitotenv.2018.12.256
https://doi.org/10.1016/j.scitotenv.2018.12.256
https://doi.org/10.1038/nrendo.2016.186
https://doi.org/10.1038/nrendo.2016.186
https://doi.org/10.1007/978-1-4614-3137-4_1
https://doi.org/10.1016/j.scitotenv.2005.10.007
https://doi.org/10.1016/j.scitotenv.2016.03.119
https://doi.org/10.1093/femsec/fiy087
https://doi.org/10.1016/j.watres.2019.06.039
https://doi.org/10.1016/j.chemosphere.2014.02.004
https://doi.org/10.1016/j.envint.2016.06.025
https://doi.org/10.1016/j.envint.2016.06.025
https://doi.org/10.1021/ar700108g
https://doi.org/10.1002/ep.13142
https://doi.org/10.1016/j.biortech.2020.124161
https://doi.org/10.1016/j.biortech.2020.124161
https://doi.org/10.1016/j.envres.2020.110664
https://doi.org/10.1016/j.watres.2005.09.015
https://doi.org/10.1016/j.scitotenv.2017.09.101
https://doi.org/10.1016/j.scitotenv.2018.02.244
https://doi.org/10.1016/S0003-2670(02)00753-5
https://doi.org/10.1007/s10311-018-0785-9
https://doi.org/10.1007/s10311-018-0785-9
https://doi.org/10.1016/j.scitotenv.2021.147477
https://doi.org/10.1016/j.scitotenv.2021.147477
https://doi.org/10.1016/j.seppur.2019.05.016
https://doi.org/10.1016/j.seppur.2019.05.016
https://doi.org/10.1016/j.watres.2013.06.007
https://doi.org/10.1016/j.scitotenv.2014.05.117
https://doi.org/10.1098/rsbl.2006.0554
https://doi.org/10.1016/j.chemosphere.2014.12.012
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-869332 April 19, 2022 Time: 14:11 # 19

Ortúzar et al. Environmental Impacts and Bioremediation Systems

Èvanèarová, M., Moeder, M., Filipová, A., Reemtsma, T., and Cajthaml, T. (2013).
Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and
residual antibacterial activity of the transformation mixtures. Environ. Sci.
Technol. 47, 14128–14136. doi: 10.1021/es403470s
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T. (2018). Biodegradation of endocrine disruptors in urban wastewater using
Pleurotus ostreatus bioreactor. N. Biotechnol. 43, 53–61. doi: 10.1016/j.nbt.2017.
05.004
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