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Microbial populations can adapt to adverse environmental conditions either by appropriately 
sensing and responding to the changes in their surroundings or by stochastically switching 
to an alternative phenotypic state. Recent data point out that these two strategies can 
be exhibited by the same cellular system, depending on the amplitude/frequency of the 
environmental perturbations and on the architecture of the genetic circuits involved in the 
adaptation process. Accordingly, several mitigation strategies have been designed for the 
effective control of microbial populations in different contexts, ranging from biomedicine 
to bioprocess engineering. Technically, such control strategies have been made possible 
by the advances made at the level of computational and synthetic biology combined with 
control theory. However, these control strategies have been applied mostly to synthetic 
gene circuits, impairing the applicability of the approach to natural circuits. In this review, 
we argue that it is possible to expand these control strategies to any cellular system and 
gene circuits based on a metric derived from this information theory, i.e., mutual information 
(MI). Indeed, based on this metric, it should be possible to characterize the natural 
frequency of any gene circuits and use it for controlling gene circuits within a population 
of cells.

Keywords: phenotypic heterogeneity, biological noise, population control, synchronization, cell collective 
behavior, cell decision-making process

INTRODUCTION

The parallel advances made at the level of cell culturing procedures [i.e., microfluidics (Grunberger 
et al., 2014) and cell–machine interfaces (Lugagne and Dunlop, 2019)], as well as the manipulation 
of gene circuits (Wong and Liao, 2006; Levine et  al., 2013; Din et  al., 2020), have paved the 
way for the design of efficient cell population control procedures. It is now possible to act 
either on cell population (Milias-Argeitis et  al., 2016; Sassi et  al., 2019; Nguyen et  al., 2021) 
or on individual cells within population (Lugagne et  al., 2017; Rullan et  al., 2018) for directing 
gene expression and cellular functions. In this review article, we  will focus more precisely on 
a generic approach that could be  used to control gene expression in individual cells among 
population. A critical aspect that must be  taken into account before being able to manipulate 
gene expression in cell population is related to the inherent noise of cellular systems (Pilpel, 2011). 
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This noise induces cell-to-cell variability in gene expression, 
and a potential control procedure must be  designed by taking 
into account the inherent functionality exhibited by noise on 
the cellular system (Levine et  al., 2013; Ackermann, 2015). 
Indeed, it is known that biological noise is a mechanism exploited 
by cell population in order to increase its fitness in front of 
fluctuating environmental conditions (Thattai and van 
Oudenaarden, 2004; Kussell and Leibler, 2005). As an example, 
in natural ecosystems, microbial populations are often exposed 
to unpredictable environmental changes such as nutrient 
starvation, exposure to antibiotics, temperature variations, and 
many other sources of stress (Ackermann, 2015) that can fluctuate 
periodically or randomly. Cellular systems have then evolved 
accordingly by adapting different cellular components in order 
to accommodate such fluctuations involving different timescales. 
If environmental conditions change slowly and regularly, a 
responsive switching strategy leads to increased fitness for the 
cell population (Kussell and Leibler, 2005). On the other hand, 
if environmental conditions are fast and erratic, a random 
switching mechanism, leading to preadapted cells, is more suited 
for optimizing population fitness. The study of phenotypic 
diversification mechanisms involved in antibiotic persistence in 
bacteria has pointed out that cellular systems can take benefit 
from both stochastic and responsive switching (Kussell et  al., 
2005). It is clear that, for designing an efficient population 
control procedure, stochastic switching must be minimized and 
responsive switching must be  favored. Such responsive 
mechanisms typically involve gene circuits, able to record 
environmental changes and to respond accordingly. A spectacular 
realization of the inference of periodic environmental changes 
by gene circuits is the implementation of circadian (oscillation 
with a period of ~24 h; Voigt et al., 2016) or ultradian (oscillation 
with a period < 24 h; Isomura and Kageyama, 2014) rhythms 
by cellular systems. Many other gene circuit architectures or 
motifs are known to be  able to infer extracellular signals and 
trigger appropriate biological responses (Perkins and Swain, 
2009; Balazsi et  al., 2011). Even if we  have now access to a 
classification of the motifs and their possible dynamics (Shoval 
and Alon, 2010), it is still a challenge to infer the dynamics 
when several motifs are combined to each other or when the 
response interferes with many other cellular components. Indeed, 
in some case, gene circuit architectures can involve overlaps 
between different stress response pathways, allowing cells to 
anticipate environmental changes (Tagkopoulos et  al., 2008; 
Freddolino and Tavazoie, 2012). This anticipatory switching 
arises in ecosystems where different environmental changes 
exhibit a strongly correlated time profile. As an example, 
Escherichia coli has evolved in order to be  able to grow inside 
and outside a host (i.e., a mammals; Mitchell et  al., 2009). 
When invading the host, E. coli is exposed to heat shock where 
temperature increases from 20 to 37°C. This heat shock is 
then followed by oxygen limitation as bacteria are reaching 
the gastrointestinal tract. The gene circuits involved in heat 
shock response and oxygen limitation have been found to share 
common inputs and outputs in E. coli, elevation of heat leading 
to the adaptation to oxygen limitation in order to anticipate 
correlated environmental changes.

Given all these elements, it is then difficult to infer the 
mode of switching, i.e., stochastic, responsive, or anticipatory 
(or a combination of them) based on the gene circuit architecture. 
Accordingly, we propose in this work, a generalizable approach 
aiming at stimulating the responsive component of switching 
for directing gene expression in cell population. Such approach 
could be  made possible through the use of a universal metrics 
aiming at quantifying the information transfer efficiency in 
cells and leading to the design of robust cell–machine interfaces.

USING INFORMATION THEORY FOR 
DETERMINING THE OPTIMAL 
STIMULATION FREQUENCY LEADING 
TO COORDINATED GENE EXPRESSION 
IN CELL POPULATION

Cells are intrinsically programmed in order to react to external 
stimuli and to adapt appropriately by switching to different 
phenotypic states (Acar et al., 2008; Schreiber and Ackermann, 
2020). It is then unrealistic to try to keep these cells into a 
specific phenotypic state, even if this would be a nice outcome 
for several applications, such as the optimization of cell factories 
for bioprocessing (Binder et al., 2017). Indeed, these phenotypic 
states are linked to specific environmental states through selection 
pressure and the resulting fitness advantage, environmental 
condition being under constant evolution (Thattai and van 
Oudenaarden, 2004). A more realistic alternative is to control 
cell switching itself, which is now technically feasible through 
the use of cell–machine interfaces (Delvigne et  al., 2017; Sassi 
et al., 2019; Nguyen et al., 2021). In order to make this control 
strategy successful, two specific aspects must be  taken into 
account, i.e., the efficiency in information transmission through 
the targeted gene circuits and the timing at which cells commit 
to phenotypic switching. These two aspects will be  illustrated 
through a case study recently addressed, i.e., the synchronization 
for the activation of the gene circuit responsible for the induction 
of the arabinose operon in E. coli (Nguyen et  al., 2021). The 
relevance of this case study is also justified by the fact that 
the arabinose operon has been long used as a biological case 
study for the characterization of the functionality of biological 
noise in cell population (Megerle et  al., 2008) and also by the 
fact that the genes belonging to the arabinose operon are widely 
used for synthetic biology applications and notably for the 
synchronization of cell response (Stricker et al., 2008; Mondragón-
Palomino et  al., 2011). Finally, the arabinose operon is known 
to exhibit strong cell-to-cell variability both in the timing for 
activation (Megerle et  al., 2008; Nikolic et  al., 2017) and also 
the level of expression of the corresponding genes (Sagmeister 
et  al., 2014), suggesting that the underlying cell switching 
mechanisms involves a mix of responsive and stochastic 
components. This make this system very interesting to 
be considered for possible coordination at the population level.

The first step in the cell-to-cell coordination for the 
activation of the arabinose operon is to know the possible 
effector for the underlying gene circuit. The activation of 
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the arabinose operon is under the control of a feedforward 
loop (Mangan et al., 2003; Figure 1A) combining the glucose 
depletion signal (through the accumulation of cAMP inside 
cells) and the presence of arabinose (through the activation 
of the transcription factor AraC). Under glucose-limiting 
conditions, it is then possible to activate or deactivate this 
gene circuit based on arabinose pulsing (Nguyen et  al., 2021; 
Figure  1A). At this stage, the first drawback exhibited by 
biological noise can be  observed. Indeed, upon arabinose 
pulsing, cells will commit to the activation of the feedforward 
circuit leading to the synthesis of the different proteins 
involved in arabinose assimilation. However, due to biological 
noise, timing in commitment will exhibit cell-to-cell 
heterogeneity (Yurkovsky and Nachman, 2013; Ghusinga et al., 
2017). Timing in cellular commitment to alternative phenotypes 
depends on the accumulation of regulatory proteins at the 
single cell level. Transcription and translation processes in 
individual cells are prone to biological noise (Thattai and 
van Oudenaarden, 2001; Swain et  al., 2002). These processes 
can be  simulated based on the resolution of the chemical 
master equation or, more practically, based on the Gillespie 
algorithm (Thattai and van Oudenaarden, 2001). These 
simulations have been shown to lead to very realistic pictures 
for mRNA and protein synthesis in individual cells (Balazsi 
et  al., 2011) and pointed out that these processes follow 
Poisson statistics. Accordingly, the transition of cells between 
two adjacent phenotypic states (for example, the two states, 
GFP negative and GFP positive, drawn in Figure  1A) can 
also be  represented by a Poisson process. One key property 
of the Poisson process is that the timing between two 
consecutive events (e.g., the time between the synthesis of 
two mRNAs from the same DNA sequence in a single cell) 
follows an exponential distribution. Based on this statement, 
the residence time distribution of cells in a given phenotypic 
state can be represented by an exponential distribution (Norman 
et  al., 2015). It is thus very critical to take into account 
this residence time distribution for coordinating cell switching 
at the population level. One way to overcome this use is to 
rely on the use of a cell–machine interface allowing the 
on-line monitoring of the switching process at the level of 
individual cells in the population and to react accordingly. 
This principle has been notably adopted for developing the 
segregostat (Sassi et  al., 2019; Nguyen et  al., 2021). This 
system is based on the use of on-line flow cytometry for 
recoding the cell switching rate and to trigger environmental 
switching accordingly. The fact that the frequency of 
environmental perturbation must be set based on the phenotypic 
switching frequency has been previously deduced from 
numerical simulation (Thattai and van Oudenaarden, 2004). 
In a similar way, another study has pointed out that the 
control of gene circuits is dramatically reduced above a critical 
stimulation frequency (Tan et al., 2007). Under these conditions, 
the frequency of the extracellular signal is effectively 
transmitted, leading to a cell population with synchronized 
gene expression (Figure  1B). Effective entrainment of cell 
population can be  assessed based on the oscillatory gene 
expression profile exhibiting a frequency close to the one of 

the input stimulations. Such oscillations were experimentally 
observed during segregostat experiments carried out for 
controlling the activation of the arabinose operon (Nguyen 
et  al., 2021). It is also important to point out that in this 
case, square waves are used as stimulatory input. This strategy 
is also called pulse width modulation (PWM; Davidson et al., 
2013; Purvis and Lahav, 2013). We will see in the next section 
that this strategy has been used several times for controlling 
different cellular systems (listed in Table  1). In the present 
case, population oscillates according to a frequency 
corresponding to the one of the input square waves. This 
is represented in Figure 1B based on the period Tenv (Tenv = 1/
frequency) of the input square wave stimulation, which is 
transmitted to the population and lead to oscillation in gene 
expression with the same period Tswitch = Tenv.

All these observations point out that cells are able to deduce 
changes in their surroundings based on diverse sensory 
mechanisms. We do not want here to discuss about the biological 
diversity of these mechanisms, but rather to quantify the 
efficiency at which a cell is able to infer extracellular perturbation. 
A universal way to quantify information transmission through 
biochemical network can be  derived from Shannon theory or 
information theory (Cheong et  al., 2011). In order to be  able 
to understand the importance of information theory in 
biochemical signal processing, it is important to introduce the 
concept of input–output (i/o) or dose–response relationship. 
For many gene circuits, this i/o relationship can be represented 
by a sigmoidal curve (Figure  1C), also called Hill equation 
(Levchenko and Nemenman, 2014). For example, Hill equation 
can be  used to infer the response of the feedforward loop 
involved in the regulation of the arabinose operon (Mangan 
and Alon, 2003). This i/o correlation tells us what will be  the 
output of the gene circuit according to a given input. However, 
we have seen that cell switching mechanism involves a random 
component in addition to the responsive one. This random 
component can be  represented by the error bars on the i/o 
correlation (Figure  1D). Accordingly, one input can drive 
different output trajectories, leading to cell-to-cell heterogeneity. 
It can be  seen that some input leads to a very heterogeneous 
response, making cell unable to properly infer the state of 
the environment. This is exactly where information theory 
can be  useful, i.e., by providing a metric for quantifying the 
amount of information transmitted by the gene network for 
some specific input environmental conditions. This metric, 
mutual information (MI), corresponds to the logarithm of the 
number of distinct, input-dependent, states that can be reached 
by cells (Levchenko and Nemenman, 2014) and is quantified 
in bits. For example, a gene network exhibiting a MI of one 
bit means that only two physiologically distinct states can 
be  resolved by cells based on the input conditions. Generally 
speaking, most of the gene circuits are corrupted by noise 
and can carry only a limited amount of information, and 
most of the studies carried out so far in this area have pointed 
out that MI equals to only 1–2 bits for different gene networks 
and model organisms (Mehta et  al., 2009; Perkins and Swain, 
2009; Cheong et  al., 2011; Hansen and O’Shea, 2015; Sarkar 
et  al., 2020). This leads to the conclusion that only these 
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FIGURE 1 | (A) Scheme of the feedforward loop motif involved in the regulation of the arabinose operon. On the left, arabinose is not available and the AraC 
branch cannot be induced. Accordingly, cell switching does not take place and, eventually, previously induced cells are relaxed back to the uninduced (low) state at 
a rate Kswitch low->high. On the right, arabinose is available and the AraC branch, together with the cAMP-CRP branch, is activated leading to the induction of the genes 
araBADEFGH involved in arabinose metabolism. Under these conditions, cells from the low-state switch actively to the high state at a rate Kswitch high->low. (B) Proper 
coordination/synchronization of gene expression can be achieved based on periodic stimulations (or environmental fluctuations) made at a specific frequency freqenv. 
If freqenv is too high by comparison with the frequency for cell switching freqswitch, then cells are not coordinated and exhibit strong variability in gene expression. 
However, when freqenv is set close to freqswitch, coordination in gene expression is possible leading to synchronized gene expression. (C) Typical shape of a Hill 
relationship between an input (here the concentration of arabinose in the medium) and its resulting output (here, detected based on the synthesis of GFP based on a 
ParaBAD::GFP transcriptional reporter). (D) Impact of biological noise (represented by double arrows) on the probability for delivering an output based on a given input.
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states have to be  targeted when designing a cell population 
control strategy.

The next section will be  dedicated to the description of 
some realization in the field of cell population control (also 
termed cybergenetics), pointing out that the above-mentioned 
methodology could help at this level by providing a general 
framework aiming at developing further cell population 
control procedures.

THE CONTRIBUTION OF CONTROL 
THEORY AND THE NASCENT FIELD OF 
CYBERGENETICS

The fact that cell population can be  controlled based on 
pulsatile inputs has been reported a long time ago. Indeed, 
long before the advent of single-cell technologies, Goodwin 
(1969) observed that it was possible to synchronize cell 

TABLE 1 | Range of environmental stimuli used for controlling gene expression in cell population and range of periodic signal associated with these environmental 
perturbations.

Approximated period 
T for the input 
stimulationA

Type of perturbationB Controlled trait Organism
Culture 
system

Single-cell 
analysis tool

References

83 min* Pulse of phosphate in 
phosphate-poor medium

Cell cycle E. coli Bioreactor 
240 ml

None Goodwin, 1969

98 min* Pulses of methionine to 
induce (MET3pr-CLN2)

Cell cycle S. cerevisiae Microfluidics Microscopy Charvin et al., 2009

110 min*

150 min*

Nutrient availability, i.e., 
poor-rich

Cell cycle S. cerevisiae Microfluidics Microscopy Tian et al., 2012

16 min

45 min

Red-far red pulses of light gal1-responsive genes 
through optogenetic

S. cerevisiae Microplates with 
96 wells

Flow cytometry Milias-Argeitis et al., 
2011, 2016

28 min

88 min

Pulses of sorbitol-enriched 
medium in normal medium

Osmostress (value of 
1,500 a.u.)

S. cerevisiae Microfluidics Microscopy Uhlendorf et al., 
2012

142 min Glucose–galactose pgal1-GFP S. cerevisiae Microfluidics Microscopy Fiore et al., 2016
~990 min Tetracycline Tetracycline-inducible 

system p(CMV-TET)-
d2EYFP

Mammalian (CHO) Microfluidics Microscopy Fracassi et al., 2016

120 min Green light intensity (in 
relation with red light 
intensity)

CcaS/CcaR gene 
expression system at a 
varying level of expression

E. coli Bioreactor 20 ml Automated flow 
cytometry

Milias-Argeitis et al., 
2016

6 min Computed open-loop 
green–red light

ccaSR-based system E. coli Microfluidics Microscopy Chait et al., 2017

150 min

210 min (depending on 
the amplitude/
concentration)

IPTG—aTc Maintain a toggle switch at 
an unstable intermediary 
level

E. coli Microfluidics Microscopy Lugagne et al., 2017

10 min High and low red intensity 
blue light

Transcription S. cerevisiae Microfluidics Microscopy Rullan et al., 2018

For GFP:

−5 s off/80s on

−8 s off/80 s on

−11 s off/80 s on

For isobutanol and 
butanol: −65 s off and 
15 s on

Blue light -GFP expression

-production of isobutanol 
and 2-methyl-1-butanol

S. cerevisiae For GFP: 
Microplates 24 
wells

For isobutanol 
and butanol: 
Bioreactor 0.5 L

None Zhao et al., 2018 

5–60 min Pulses of galactose to 
stabilize synecluine 
concentration at different 
values

a-synuclein formation S. cerevisiae Microfluidics Microscopy Perrino et al., 2019

90 min

105 min

180 min

Methionine concentration in 
cultivation medium

Yeast cell cycle 
coordination

S. cerevisiae Microfluidics Microscopy Perrino et al., 2021

600 min Arabinose pulses Arabinose operon induction E. coli Bioreactor 1 L 
(continuous 
mode)

Online flow-
cytometry

Nguyen et al., 2021

AThis column indicates the range of periodic signal associated with these environmental perturbations. In most of the case, the input signal can be approximated by a square wave of 
period T and frequency 1/T (see Figure 1B for more details).
BThis column indicates the range of environmental stimuli used for controlling gene expression.
*These stimulation periods have been determined without monitoring and feedback control (open-loop control).
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cycle in E. coli cells by periodically pulsing phosphate in 
a phosphate-limited chemostat. This pioneering work has 
led to the establishment of a robust modeling framework 
for the understanding of the impact of external conditions 
on the synchronization of cell cycle for many types of 
organisms (Ruoff et al., 2001; Gonze and Abou-Jaoudé, 2013; 
Gonze and Ruoff, 2021). However, these studies have been 
carried out based on an open-loop control approach and 
the application of regular pulses with varying frequencies 
and amplitudes. More recently, the application of control 
theory to the manipulation of cellular systems, i.e., 
cybergenetics, has set the ground for a more rational design 
of cell population control procedures (Milias-Argeitis et  al., 
2016; Banderas et  al., 2020). Cybergenetics is an entirely 
new and exciting field of research at the interface between 
control engineering and synthetic biology, and emerged with 
the recent advances made in genetic engineering combined 
with the works initially derived from cybernetics (Wiener, 
1961). A distinction can be  made between “internal 
cybergenetics” (also called in vivo and involving genetic 
controllers directly embedded in cells) and “external 
cybergenetics” (also called in silico controllers; Lugagne et al., 
2017; Lugagne and Dunlop, 2019; Carrasco-López et  al., 
2020; Pedone et  al., 2021). In the context of this review, 
we  will be  focused more on the latter technology, since it 
involves cell–machine interface and pulsatile inputs used 
as actuators.

Remarkably, although different systems have been used (e.g., 
various model organisms, type of gene circuits to be controlled, 
and single cell techniques), all the data accumulated point out 
that it is possible to effectively control gene circuits at the 
level of individual cells by applying external periodic signals 
(Table 1). Evidences have been provided suggesting that pulses 
of inducers tend to decrease noise in biochemical network, 
leading to synchronized gene expression (Uhlendorf et  al., 
2012; Benzinger and Khammash, 2018). This effect can 
be  explained based on the dose–response relationship 
(Figure  1D) where input concentrations at the extremities of 
the dynamic range lead to a homogenous response at the 
population level. In contrast, input concentrations at the center 
of the dynamic range produce a heterogeneous population. 
This strategy, known as PWM, seems to be  generalizable for 
the effective control of diverse gene circuits in diverse cellular 
systems. Most of the experiments involving the control of gene 
expression in cellular systems have been performed in microfluidic 
devices (Table  1). This type of cultivation device allows the 
acquisition of single cell data with a high spatiotemporal 
resolution, but with a low experimental throughput due to 
the time and computational power required for image analysis 
(Dusny and Schmid, 2014) and with possible technical biases 
by comparison with conventional cultivation devices (Dusny 
et  al., 2015; Westerwalbesloh et  al., 2017). Nonetheless, there 
is a growing interest in using standard cultivation devices (e.g., 
flasks, bioreactors, etc.) for studying and controlling cell 
populations (Zhao et al., 2021). In this case, single-cell analyses 
can be  performed based on automated flow cytometry, leading 
to the rapid accumulation of data at the population level. In 

this context, the use of cell–machine interface relying on flow 
cytometry can lead to the automated determination systematic 
determination of the optimal stimulation frequency for the 
effective synchronization of gene expression at the population 
level (Nguyen et  al., 2021).

PERSPECTIVE: EXPLOITING INTRINSIC 
FREQUENCY OF GENE CIRCUITS

Taken altogether, the elements assembled in the previous sections 
point out that a lot of different gene circuits architectures can 
exhibit periodic behavior [and not only the motifs reported 
to behave as natural oscillators, such as the repressilator (Elowitz 
and Leibler, 2000) or the oscillator motif (Stricker et  al., 2008; 
Mondragón-Palomino et  al., 2011)] if stimulated at the 
appropriate frequencies (Tan et  al., 2007). Development made 
in information theory and in cybergenetics provides the 
computational framework and the experimental tools in order 
to generalize this concept to many biological systems. Impressive 
achievements can be  expected from these field of research 
such as the control of complex cell regulatory program (e.g., 
control of cell cycle program; Perrino et  al., 2021) and the 
control of microbial communities composition (Fiore et  al., 
2017; Liao et  al., 2019), with applications in various field from 
bioproduction (Briat and Khammash, 2018; Zhao et  al., 2021) 
to biomedicine (Davidson et  al., 2013; Din et  al., 2020).
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