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Extreme weather events can temporarily alter the structure of coastal systems and
generate floodwaters that are contaminated with fecal indicator bacteria (FIB); however,
every coastal system is unique, so identification of trends and commonalities in these
episodic events is challenging. To improve our understanding of the resilience of coastal
systems to the disturbance of extreme weather events, we monitored water quality,
FIB at three stations within Clear Lake, an estuary between Houston and Galveston,
and three stations in bayous that feed into the estuary. Water samples were collected
immediately before and after Hurricane Harvey (HH) and then throughout the fall of 2017.
FIB levels were monitored by culturing E. coli and Enterococci. Microbial community
structure was profiled by high throughput sequencing of PCR-amplified 16S rRNA
gene fragments. Water quality and FIB data were also compared to historical data
for these water body segments. Before HH, salinity within Clear Lake ranged from
9 to 11 practical salinity units (PSU). Immediately after the storm, salinity dropped
to < 1 PSU and then gradually increased to historical levels over 2 months. Dissolved
inorganic nutrient levels were also relatively low immediately after HH and returned,
within a couple of months, to historical levels. FIB levels were elevated immediately
after the storm; however, after 1 week, E. coli levels had decreased to what would be
acceptable levels for freshwater. Enterococci levels collected several weeks after the
storm were within the range of historical levels. Microbial community structure shifted
from a system dominated by Cyanobacteria sp. before HH to a system dominated
by Proteobacteria and Bacteroidetes immediately after. Several sequences observed
only in floodwater showed similarity to sequences previously reported for samples
collected following Hurricane Irene. These changes in beta diversity corresponded to
salinity and nitrate/nitrite concentrations. Differential abundance analysis of metabolic
pathways, predicted from 16S sequences, suggested that pathways associated with
virulence and antibiotic resistance were elevated in floodwater. Overall, these results
suggest that floodwater generated from these extreme events may have high levels
of fecal contamination, antibiotic resistant bacteria and bacteria rarely observed in
other systems.

Keywords: tropical storms, metagenomic, nutrient, fecal indicator bacteria, PICRUSt (phylogenetic investigation
of communities by reconstruction of unobserved states), antibiotic resistant bacteria (ARB), NMDS
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INTRODUCTION

Hurricane Harvey deluged the Houston metropolitan area in
August of 2017 with over a meter of rain in less than 48 h. This
rainfall set a record for the continental United States (Cappucci,
2017), and exposed thousands, perhaps millions, of citizens
and first responders to potentially contaminated floodwaters.
In rural regions typical of areas north of Houston, flooding
of agricultural land could release animal waste associated with
areas used for animal grazing (Gentry et al., 2007). In suburban
watersheds typical of the greater Houston-Galveston area, rainfall
could accelerate the resuspension and transport of waste from
onsite sewage facilities, such as residential septic tanks (Morrison
et al., 2017). Indeed, waterways in the Houston-Galveston area
frequently exceed fecal indicator bacteria (FIB) criteria during
high flow and flood events (Petersen et al., 2006; TCEQ, 2013).
Little is known about the health risks associated with exposure
to sewage and other human waste in floodwaters in urban,
industrialized watersheds (Ahern et al., 2005). Human waste
presents a particular health threat (Soller et al., 2014) and the
perception that floodwater is contaminated with sewage could
further alarm and mentally traumatize the public and hamper
recovery efforts (Few and Matthies, 2006; Du et al., 2012). These
threats to public health are expected to worsen, as several models
predict that the intensity, if not the frequency, of tropical cyclones
and hurricanes will increase over the next few decades (Webster
et al., 2005; Knutson et al., 2008).

Extreme weather events could also alter the quality of
receiving waters. Flooding can result in release of petroleum
products and other hazardous materials that could stress
aquatic systems (Rozas et al., 2000; O’Donnell, 2005; Girgin
and Krausmann, 2016). This environmental risk is high in
the Galveston Bay systems; the Houston Ship Channel is the
largest petrochemical complex in the United States (Bridges,
2019). Floodwaters can also temporarily alter nutrient cycles.
For example, Hurricane Bob, a category 3 storm when it landed
on Cape Cod, increased nutrient loading to estuaries in Cape
Cod, Massachusetts, but the system appeared to recover rapidly
(Valiela et al., 1998). Hurricane Ivan exacerbated eutrophication
in Pensacola Bay, Florida temporarily, but the system recovered
in a few days (Hagy et al., 2006). The extent to which these
few studies can be extrapolated to other areas with unique
geographies reflects the paucity of data and inherent challenges
of quantifying multiple stressors during extreme, yet ephemeral,
events (Córdova-Kreylos et al., 2006). Metagenomic methods
have the potential to provide additional insight the health of
aquatic systems, particularly with respect to extreme weather
events (Ghaju Shrestha et al., 2017).

Here we apply metagenomics to determine the impact of
Hurricane Harvey (HH) on the health of Clear Lake, an
estuary between Houston and Galveston that connects with
upper Galveston Bay. This estuary is popular with anglers
and boaters and is routinely monitored by a consortium
of state agencies, non-profits and academic institutions. We
collected water samples at stations within well-defined water
body segments that represent a range of salinity (fresh to
brackish) and nutrients. Stations were sampled immediately

before and after landfall of Hurricane Harvey, and then weekly
into the fall. These samples were analyzed for fecal indicator
bacteria (FIB), dissolved inorganic nutrients (DIN) and microbial
community structure, as assessed by targeted metagenomic
analysis of 16S rRNA gene fragment amplicons. FIB counts,
DIN concentrations and other environmental parameters were
compared to data mined from public archives. Relative to
pre-storm levels, and values typical for waterbodies sampled
herein, HH elevated FIB counts and lowered DIN and salinity
concentrations. The structure of the community shifted from
a community dominated by Cyanobacteria and Actinobacteria
before the storm to a community dominated by the phyla
Proteobacteria and Bacteroidetes immediately after the event.
Shifts in the microbiological community structure corresponded
to changes in salinity and NOx concentrations.

MATERIALS AND METHODS

Sampling Locations and Collection
We selected sites around Clear Lake, an estuary between Houston
and Galveston (Figure 1), based on the availability of long-term
water quality data for these locations and ease of access. Water
samples were collected on the afternoon of August 24th, 2017,
1 day before Hurricane Harvey landed in the Corpus Christi
area. These samples, designated “pre” in this work, were collected
at baseflow conditions (Supplementary Figure 1). A second
set of samples was collected on August 30th. These samples,
designated “HH” throughout, correspond to Hurricane Harvey
samples and were collect hours after flow of a major tributary
into Clear Lake peaked (Supplementary Figure 1). We added
a second sampling site (N) when collecting the HH set to
collect floodwater received by segment 1101C (Figure 1). Starting
on September 8th we sampled six times to generate a “post”
sample set; all post-HH samples were collected during baseflow
conditions (Supplementary Figure 1). Samples collected in
August and September were designated as summer season.
Samples collected in October were designated as fall season. We
also generated a mock sample by mixing raw sewage, collected
as described previously (Amaral-Zettler et al., 2008), and surface
water collected from station H (Figure 1) in March of 2018. The
sewage and water were mixed at a ratio of 1 part sewage with 9
parts surface water.

At each sampling station, we collected surface water samples
with a bucket lowered from an overpass or dock. Temperature
and dissolved oxygen were measured in situ at 3–5 cm beneath
the surface with a YSI model 55 dissolved oxygen (DO) probe
(YSI Inc., Young Spring, OH). Water samples were split in the
field for FIB (E. coli and Enterococci), metagenomic and nutrient
analysis. For FIB analysis, unfiltered samples were transported
on wet ice and stored at 4◦C. Incubations for quantification
of FIB were initiated within 24 h of sampling. FIB samples
from pre-HH samples were discarded because we were locked
out of our laboratory for several days and sampling holding
times were exceeded.

Water samples collected before HH were stored on wet
ice, returned to the laboratory and filtered to collect microbial
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FIGURE 1 | Sampling stations around Clear Lake. Stations sampled in this study are indicated by red letters (H, C, K, J, R, and N). Water body segments as defined
by the TCEQ (1113B, 2424, etc.) are indicated in green. Inset indicates study area within a map of Texas. Figure was generated with scripts in
Supplementary File 1.

samples for metagenomic analysis and to archive nutrient
samples within 24 h of collection. Following HH, all samples
were filtered in the field immediately upon collection. For
metagenomic analysis, water samples were pulled through a
Sterivex SVGPL10RC 0.2 µm cartridge (EMD Millipore, Billerica
MA) until refusal (no flow at 15 psi), with a hand vacuum pump,
as described previously (LaMontagne and Holden, 2003). The
volume filtered, which ranged from 75 and 300 ml, was measured
with a graduated cylinder. Sample filtrates and cartridges were
transported on wet ice, temporarily stored at −20◦C, and
archived at −80◦C. Two technical replicates were generated by
collecting duplicate samples from station J on the eve of the storm
and from the sewage-spiked samples described above.

Laboratory Methods
Dissolved inorganic nutrient analysis for ammonium,
orthophosphate, and nitrate were done by colorimetric analysis in
microplates, as described previously (Ringuet et al., 2011). E. coli
and Enterococci were enumerated using Colilert and Enterolert
in the Quanti-Tray/2000 format following manufacturer
recommendations (IDEXX, Westbrook, ME). Microbial

community DNA for metagenomic analysis was recovered from
the Sterivex cartridges as described previously (Amaral-Zettler
et al., 2008) and assessed for molecular weight by agarose
gel electrophoresis. These crude extracts were subsequently
purified by passage through a OneStep PCR Inhibitor Removal
column (Zymo, D6030) and purity was assessed by UV-spectra.
Metagenomic analysis followed protocols outlined in the Earth
Microbiome Project (Caporaso et al., 2011). Briefly, the V4
region of the 16S rRNA gene was amplified to generate an
amplicon library. This library was multiplexed using Illumina
designed indices, pooled with equal amounts, and sequenced on
an Illumina MiSeq instrument as described by Caporaso et al.
(2012).

Data Analysis
Water quality data were analyzed and figures were generated
with custom scripts presented in Supplementary Files 2, 3.
These scripts included functions from packages from ggplot2
(Wickham, 2009). This data set included water quality data
collected as described above and public data previously collected
by the Texas Commission for Environmental Quality (TCEQ)
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and cooperating organizations. Data from the TCEQ archive
was limited to samples collected between January 1st, 2011 and
May 6th, 2021. For this time period, the mean for each of these
five segments was calculated by grouping by segment, month
and year. This data range was then merged with water quality
data generated from samples collected in this study to generate
Supplementary File 4.

MiSeq data were processed to determine alpha diversity
of the microbial community using functions from DADA2 v.
1.20.0 (Callahan et al., 2016), with custom scripts presented
in Supplementary File 5. Briefly, reads were filtered, trimmed,
denoised, and merged to yield sequences from 251 to 253
nucleotides long. Chimeras were then removed with the
function removeBimeraDenovo in DADA2 and putative non-
chimeric sequences were assigned taxonomy and aligned with
the functions IdTaxa and AlignSeqs in Decipher v 2.20.0
(Wright et al., 2012). Amplicon sequence variants (ASVs) and
taxonomic identifications were merged to create a phylogseq-
class object—available as Supplementary File 6—with functions
in phyloseq v 1.36.0 (McMurdie and Holmes, 2013). ASVs with
uncertain taxonomic identification at the phylum level were then
removed before fitting the alignments into a phylogentic tree
with functions in phangom v 2.7.1 (Schliep, 2010). Technical
replicates (two samples collected at the same time and place
but processed independently) were then merged and meta-
data (volume filtered, environmental conditions, FIB counts,
DIN, etc.) and reference sequences were combined to create
a phylogseq-class object—available as Supplementary File 7—
with functions in phyloseq and Biostrings (v 2.60.2 Pagès et al.,
2021). Reference sequences were also exported in fasta format
and compared to public sequences with the Seqmatch application
(RDP Taxonomy 18) available through the Ribosomal Database
Project (Cole et al., 2013). Default settings were used in Seqmatch.
MiSeq data is available in the NCBI SRA under accession
number/Bioproject ID: PRJNA795782.

Alpha diversity (richness and Shannon indices) was estimated
with the plot_richness function after sewage-spiked samples were
removed. Analysis of variance, calculated with a core function in
R version 4.1.1, was used to test for significance of differences
between samples collected before HH made land fall (sampled
August 25th), vs. samples collected immediately after the storm
(August 30th) and in September and October. Significance of
differences was assessed with a Tukey test using the function
HSD.test in the R package agricoloe v 1.3.5 (de Mendiburu,
2020). Coverage of the library of reads used for diversity analysis
was visualized with the function rarecure in vegan v 2.5.7
(Oksanen et al., 2020).

The relationship between microbial community structure and
nutrient levels was determined with correspondence analysis with
custom scripts presented in R markdown in Supplementary File
8. This workflow started with a phyloseq object (S7). A prevalence
threshold of 10% was set to remove rare taxa. Counts of the
remaining 1,616 ASVs were transformed with Hellinger option
prior to non-metric multidimensional scaling analysis (NMDS)
with functions in vegan v 2.5.7 (Oksanen et al., 2020). NMDS was
first run with all 44 samples, prior to removal of sewage-spiked
samples. Goodness of fit of NMDS ordination was visualized

with a Shepard plot generated prior to fitting meta-data to the
ordination with functions in vegan. The resulting ordination
plots were visualized with functions available in R package
ggordiplots v 0.4.0 (Quensen, 2020).

Functional composition was predicted from the 1,616 ASVs
used in NMDS analysis (above) with PICRUSt2 v 2.3.0-b
(Douglas et al., 2020). To prepare the data, an ASV abundance
table and fasta files were exported from a phyloseq object
(S09) to a biom file (S10) and a sequence file (S11) using R
package biomformat v 1.20.0 (McMurdie and Paulson, 2021).
This pipeline, including bash scripts used in PICRUCSt2 analysis,
are presented in Supplementary File 12.

Differential abundance of pathways (Supplementary Files 13,
14) predicted from ASVs and ASVs themselves was assessed
using functions in R package ANCOM-BC v 1.2.2 (Lin and
Peddada, 2020), following scripts presented in Supplementary
File 15. Pathways that were differentially abundant were plotted
with functions available in R package Heatplus v 3.0.0 (Ploner,
2021), following scripts presented in Supplementary File 16.
Pathway functions and expected taxonomic range associated with
them were identified with the web application MetaCyc v 25.5
(Caspi et al., 2013).

RESULTS

Environmental Conditions
Hurricane Harvey lowered the salinity for Clear Lake. On the
eve of HH (August 25th, 2017), surface salinity at stations
C, K, and J, which correspond to water body segments 2425
and 2425B (Figure 1), ranged from 9 to 12 practical salinity
units (PSU, Figure 2A). These pre-HH salinity levels are within
the 95% confidence interval of the 10-year average for salinity
for records for these two water body segments (2425 and
2425B, Supplementary Figure 1). Immediately after the storm,
salinity dropped to < 1 PSU at all stations sampled herein and
then gradually increased to pre-storm levels over the next 2
months (Figure 2A).

Oxygen levels in Clear Lake and tributaries to that system
did not show a strong response to HH. Across all segments,
oxygen levels averaged 6.8 mg/L before HH and 5.2 mg/L
after. This temporal difference was not significant (p = 0.131);
however, spatial differences between segments were significant
(p = 0.0003). Oxygen levels averaged 6.9–7.1 mg/L for segments
2425 and 2425B, respectively, and less than 6 mg/L for
stations 1101C, 1101, and 1113B (Figure 2B). Lowest oxygen
concentrations were observed at station H in waterbody segment
1113B, where DIN concentrations are relatively high (see below).

Hurricane Harvey lowered the concentration of dissolved
inorganic nutrients (DIN). On the eve of the storm, nitrate/nitrite
(NOx) ranged from 1 to 59 µM (Supplementary Figure 3).
These pre-HH NOx levels are in the range for records for the
last 10 years for these segments (Supplementary Figure 3).
Immediately after the storm, NOx ranged from 1 to 9 µM
and varied significantly between segments (p < 0.001) and
type (pre-storm, HH, and post-storm). Highest levels of DIN
were observed for samples collected from segment 1113B, which
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FIGURE 2 | Salinity and Oxygen. Water body segments are as Figure 1. Boxes indicate 25 and 75% quantiles. Whiskers indicate range. Horizontal lines indicate
median or, for segments where only one sample was taken, the value for that individual sample. Figure was generated with scripts in Supplementary File 3.
(A) Salinity concentrations in practical salinity units (PSU). All dates are 2017. (B) Boxplots of oxygen levels in the Clear Lake system. Sample type “pre” indicates
samples collected on August 25th (before HH). Type “HH” indicates samples collected on August 30th (immediately after HH). Type “post” indicates samples
collected from September 8th to October 30th. Type “TCEQ” indicates historical data collected by TCEQ and partner agencies during 2011–2021.

is approximately 50 m downstream of the outfall pipe of a
wastewater treatment plant.

NOx showed a non-conservative mixing relationship with
salinity (Figure 3). That is the system is a sink NOx. High
concentrations (>10 µM) were associated with samples that

showed salinities of 3 PSU or less. In contrast, samples with
higher salinities (>3 PSU), typically showed NOx levels of 3
µM or less, which suggests a freshwater source. Ammonium and
phosphate levels showed a similar pattern with salinity as NOx.
High concentrations of ammonium (Supplementary Figure 4)
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FIGURE 3 | Mixing diagram of salinity vs. nitrate/nitrite for the Clear Lake
system. Note DIN data is not available for the sample collected before HH
from waterbody segment 1113B. Segments and types are as Figure 2.
Figure was generated with scripts in Supplementary File 3.

FIGURE 4 | E. coli concentrations over time. MPN/100 ml were assessed by
culturing as described in Methods. Dates are as Figure 2A. Figure was
generated with scripts in Supplementary File 3.

and phosphate (Supplementary Figure 5) were associated
with low salinities. DIN/P ratios were generally below 16
(Supplementary Figure 6). These ratios were on average highest
(7–8) for segments 1101C and 1113B, respectively, and < 2 for
segments 2425 and 2425B.

Fecal Indicator Bacteria
E. coli levels ranged from 488 to 1,733 MPN/100 ml for the six
stations sampled on September 1st, 2017 (Figure 4), which was
72 h after HH pasted over the study area. The geometric mean
(GM) for this set of samples was 1,018 MPN/100 ml. These values
exceeded the statistical threshold value (STV) for single samples
and GM recommended for water contact by the EPA (USEPA,
2012) and by the TCEQ for these particular water body segments
(TCEQ, 2013). After 1 week, the E. coli levels had decreased
to < 100 MPN/100 ml and remained relatively low until the end
of October, when levels spiked again.

Enterococci levels ranged from 63 to 3,050 MPN/100 ml for
samples collected in the fall of 2017; however, because of logistical

FIGURE 5 | Alpha diversity in Clear Lake system before and after Hurricane
Harvey. Y-axis indicates Shannon diversity indices. Categories correspond to
before (pre), immediately after (HH) and more than a week after (post). Figure
was generated with scripts in Supplementary File 5.

issues, Enterococci levels were not measured until September
18th. For this period (post-HH), Enterococci levels did not differ
between segments sampled (Supplementary Figure 7), and 22 of
24 samples exceeded the STV for single samples recommended
for recreational water contact by the EPA (USEPA, 2012); GM
(495 MPN/100 ml) exceeded, by an order of magnitude, the
GM recommended for recreational water contact by the EPA
(USEPA, 2012). FIB counts of samples taken in the post-HH
period, were significantly higher (p < 0.001) than counts for the
same segments collected over the last decade, where the GM of
Enterococci was 74 MPN/100 ml.

Microbial Diversity
Alpha diversity of the bacterial and archaeal community did
not differ significantly between samples collected before and
after HH (Figure 5). Average Shannon diversity indices ranged
from 4.95 to 4.89 for samples after the event and averaged 4.44
for samples collected immediately before the storm. Diversity
was relatively lower for samples collected before HH at stations
1101 and 1113B but only one sample was collected at that
time point (Supplementary Figure 8). Average richness ranged
from 761 to 633 for samples collected after the event and
488 for samples collected before (Supplementary Figure 9).
Rarefaction analysis suggested the sequence library appeared
to have the depth to describe alpha diversity (Supplementary
Figure 10). After quality control, which included removing
sequences that did not classify at the phylum level, average depth
of the library was 112,178 reads. In other words, all 44 samples
reached an asymptote.

Beta diversity of the bacterial and archaeal community
structure, as assessed by NMDS, differed significantly between
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FIGURE 6 | Non-metric multidimensional scaling analysis (NMDS) of microbial
community structure for samples collected before and after Hurricane Harvey.
NMDS was run on the abundance of amplicon sequence variants as
described in Methods. Type indicates segment (see Figures 1, 2) sampled
and season: “brack” corresponds to segments 2245 and 2245B, “fresh”
corresponds to segments 1101, 1101C, and 1113B, “sewage” indicates a
sewage-spiked sample and “HH” indicates samples collected immediately
after HH. Eclipses were drawn to highlight indicated two coherent clusters
supported by 95% confidence intervals. Figure was generated with scripts in
Supplementary File 8.

samples collected before and immediately after HH (Figure 6).
The good fit (r2 = 0.999) of a stressplot (Supplementary
Figure 11), and low stress value (0.036), suggest this model is
an excellent fit (Dexter et al., 2018). NMDS showed two clear
clusters. Three samples collected before HH in segments (2425
and 2425B), that showed brackish salinities (8–12 PSU), formed a
coherent cluster, with similarity to samples collected in the same
segments in fall. Samples collected immediately after HH also
formed a coherent cluster, with similarity to a sample spiked with
sewage. One sample collected in March 2018 in segment 1113B
clustered with the HH samples.

Recovery of Clear Lake progressed from the summer through
the fall in segments (2425 and 2425B). These segments typically
have brackish conditions. In the summer following HH the
microbial community within these stations within Clear Lake
looked similar, in terms of NMDS, to communities sampled
from freshwater tributaries to the estuary (Figure 6). This
recovery of the estuary’s microbiome appeared driven by
salinity (Supplementary Figure 12). Salinity appeared strongly
(p = 0.001) associated with pre-HH samples. NOx and oxygen
appeared strongly (p = 0.016 and 0.020, respectively) associated
with post-HH samples. Phosphate also appeared associated with
post-HH samples but the significance was weak (P = 0.086).

Bacterial community structure of the Clear Lake system
shifted from a system dominated by Cyanobacteria before HH
to a system dominated by Proteobacteria and Bacteroidetes
immediately after (Figure 7). SAR324 clade (Marine group) was
relatively abundant before HH and in the fall in segments we
defined as brackish (2425 and 2425B). A total of 59 phyla were
detected in 7,491 ASVs generated from 44 samples. Almost all
of these ASVs (7,410/7,491) classified as bacteria. After removing
taxa with relatively low (<10%) prevalence, almost all of the
ASVs (1,534/1,617) were found to be differentially abundant, at
a significance threshold of P < 0.05, in a model that tested the
factors: salinity, NOx, and sample type (pre, HH, and post). In
other words, these factors predicted the abundance of 95% ASVs.

Sample type predicted the majority of abundances. For
example, the abundance of 819 (51%) ASVs differed between
pre-HH and HH samples and the abundance of 1,007 (62%)
ASVs differed between pre-HH and post-HH samples. Of the 10
most abundant ASVs observed in samples collected immediately
after HH, nine classified as γ-Proteobacteria. Most of these
(7/9) classified within the family Comamonadaceae and showed
similarity to bacteria typically observed in freshwater systems.
For example, ASV18 showed similarity to Limnohabitans curvus
MWH-C1a, which was isolated from a lake (Hahn et al., 2010).
The other two highly abundant ASVs (ASV64 and ASV23)
showed similarity to γ-Proteobacteria isolated from rhizosphere
soil (Jung et al., 2007) and freshwater systems (Hahn, 2003),
respectively. ASV6, the most abundant ASV in libraries generated
from floodwater samples, accounted for 5–17% of the reads
generated in those six libraries. This ASV showed similarity to
Aquirufa strains isolated from lakes (Hahn, 2006; Lee et al., 2018).
The ASV showed the greatest differential abundance between
pre-HH and HH samples (ASV103) showed high similarity to
two uncultured bacteria (KP686762 and KP686755) generated
from floodwater collected in North Carolina immediately after
Hurricane Irene (Balmonte et al., 2016).

PICRUSt2 analysis predicted the abundance of 418 metabolic
pathways from 1,616 ASVs generated from 44 samples.
Differential abundance analysis suggested that 76 of these
pathways were significantly different between samples. Cluster
analysis, based on the relative abundance of these 76 pathways,
suggested that floodwater samples formed a coherent group
(Figure 8). That is, with one exception (sample eH), floodwater
samples were relatively similar to each other in terms of predicted
pathways. The outlying sample was also similar to samples
collected immediately after HH in terms of numerically abundant
phyla. In particular, eH and floodwater samples showed relatively
high proportions of Proteobacteria and Bacteroidetes.

Comparison of pathways predicted from samples collected
immediately before and after HH, identified 29 differentially
abundant pathways (Supplementary Figure 12); 14 of these were
significantly higher in samples collected before HH and 15 were
significantly higher after the storm. Half (7/14) of the pathways
associated with samples collected before HH were biosynthesis
pathways. These include PWY-5347, which produces methionine
and PWY-5840, which produces menaquinol-7. In contrast, only
3 of 14 pathways that were differentially abundant in samples
collected immediately after HH were biosynthesis pathways, and
two of these biosynthetic pathways are associated with virulence.
PWY0-1338 confers resistance to the antibiotic polymyxin and
PWY-6143 produces pseudaminic acid, which is associated with
pathogenic Gram negative bacteria (Schirm et al., 2003). The vast
majority (11/15) of pathways that were more abundant in samples
collected immediately after HH were degradation pathways.
These include pathways ORNDEG-PWY, ARGDEG-PWY, and
ORNARGDEG-PWY, which are associated with degradation
of L-arginine, putrescine, 4-aminobutanoate, and L-ornithine
(Caspi et al., 2013).

Salinity and NOx levels appeared associated with the
abundance of 30 pathways. Of these 12 of were associated
positively with salinity and 13 were associated negatively
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FIGURE 7 | Relative abundance of numerically dominant microbes in Clear Lake for samples collected from August 2017 to March 2018. Samples were merged by
baseline salinity of segment (brack: 2425 and 2425B, fresh: 1101, 1101C, and 1113B) and type [pre-HH (pre), HH, summer (sum), fall and spring (sprg)].
A sewage-spiked (swg) sample is included for comparison. The hundred most abundant ASV are shown. Figure was generated with scripts in
Supplementary File 8.

(Supplementary Figure 13). All but one of the pathways
positively associated with salinity were biosynthesis pathways.
These included five pathways (PWY-6165, 6349, −6350, −6654,
−6167) associated with archaea and PWY-622, which is
associated with starch biosynthesis by photoautotrophs (Caspi
et al., 2013). In contrast, 6 of 13 pathways negatively associated
with salinity were degradation pathways. These included two
pathways (PWY-5427, −6956) associated with naphthalene
degradation by bacteria and PWY-5088, which is associated
with glutamate degradation by members of the Firmicutes
phylum (Caspi et al., 2013). NOx concentrations appeared
associated with the abundance of five pathways (Supplementary
Figure 14). The two positively associated pathways were
degradation pathways; both are associated with mandelate
degradation by Proteobacteria. Pathways negatively associated
with NOx concentrations include PWY-6174, which is associated
with the mevalonate pathway in archaea, and PWY-5183,
which is associated with toluene degradation by Proteobacteria
(Caspi et al., 2013).

DISCUSSION

Rising sea levels and warming waters, associated with global
warming, are predicted to increase the frequency of coastal
flooding (Vitousek et al., 2017). Global warming is also expected
to increase the severity of hurricanes (Knutson et al., 2021). These
climate driven changes could alter the structure of coastal systems

and offshore systems (Shore et al., 2021) and more frequently
bring many people into contact with floodwater. This creates a
public health risk (Cann et al., 2012; Du et al., 2012). The response
of the system and risks to the populace will vary depending
on the system and storm. Here we studied the water quality
and microbial communities of samples collected from the Clear
Lake system, a rapidly developing area between Houston and
Galveston. Hurricane Harvey temporarily shifted the structure of
the Clear Lake system from a brackish (∼ 10 PSU), estuary, fed
by eutrophic, fresh tributaries, to a freshwater system, with little
difference between the lake and tributaries in terms of salinity,
nutrients and other chemical parameters.

The temporary shift to a freshwater system was accompanied
with a dramatic, temporary, decrease in cyanobacteria. In
parallel, γ-Proteobacteria, which are typically observed in soils
and freshwater systems, increased. This pattern of dilution and
recovery is consistent with a model of the recovery time for
salinity in that system (Du and Park, 2019), but is a few weeks
slower for the time reported for salinity recovery for Galveston
Bay (Steichen et al., 2020). Overall, the recovery of the Galveston
Bay system appears slower than estuaries impacted by Hurricane
Bob (Valiela et al., 1998) and estuaries impacted by multiple
hurricanes in North Carolina (Peierls et al., 2003) and the shift
in bacterial community structure is consistent with changes
reported following HH for Galveston Bay (Yan et al., 2020).

Bacteria dominated this system, as assessed by metagenomic
analysis of PCR-amplified 16S rRNA gene fragments, and the
structure of this community corresponded to salinity, DIN
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FIGURE 8 | Heatmap of Metabolic Pathway Abundances. Pathways on lower horizontal axis were predicted from ASVs with PICRUSt2 as described in Methods.
Representative sample codes are indicated on right vertical axis, where lower case letter indicates date (see Supplementary Figure 1) and upper case letter
indicates station (see Figure 1). Sample types are indicated by colors in block on left vertical axis, where blue = pre, red = HH, and green = post. Inset shows key for
counts of pathways in colors and a histogram. Figure was generated with scripts in Supplementary File 15.

and oxygen concentrations. The relationship between salinity
and bacterial community structure parallels a report that
salinity corresponded to changes in viral community structure
in Galveston Bay following HH (Woods et al., 2022). These
results also agree with a previous study of systems in Louisiana
impacted by Hurricanes Katrina and Rita (Amaral-Zettler
et al., 2008) and with previous reports for estuaries in general
(Tee et al., 2021).

The strong influence of DIN corresponds to the dogma
that nitrogen limits productivity in coastal systems. That is,
if nitrogen limits primary production, a change in nitrogen
availability would change the entire system. Indeed, low N/P
ratios suggests that nitrogen limits productivity in Clear Lake,
which is consistent with Ryther and Dunstan’s dogma (Ryther
and Dunstan, 1971); however, only inorganic nutrients were
measured herein. Organic matter also contains significant
pools of nitrogen and phosphate. For example, in Galveston
Bay total nitrogen concentrations were about 5X higher
than DIN concentrations for samples collected following HH
(Steichen et al., 2020).

Oxygen was not depleted significantly in water segments
sampled herein following HH, relative to pre-storm levels and
historical records, but oxygen levels did relate to microbial

community structure (Supplementary Figure 12). Hypoxic
conditions (<3 mg/L) were only observed once in this study.
This agrees with a previous report for Bayous in the Houston-
Galveston area, where relatively rural watershed receiving waters,
like Peach Creek, did not go hypoxic, with the exception of
the headwaters of Clear Creek (Kiaghadi and Rifai, 2019).
The general lack of hypoxia in this system contrasts with
previous reports for other systems in the Gulf of Mexico.
For example, hypoxia persisted in Pensacola Bay for months
following Hurricane Ivan (Hagy et al., 2006) and floodwaters
overlying New Orleans were hypoxic following Hurricane
Katrina (Pardue et al., 2005).

High E. coli MPNs for samples collected immediately after
HH, suggests that floodwaters were contaminated with fecal
matter. These elevated MPNs agree with previous reports for
Bayous within the Galveston Bay system (Yu et al., 2018; Kiaghadi
and Rifai, 2019; Yang et al., 2021), for the Guadalupe River
(Kapoor et al., 2018), which was also in the path of HH, and
the report of Enterobacteriaceae in marine sponges offshore of
Galveston Bay (Shore et al., 2021). The EPA and TCEQ (2013)
recommend Enterococci for estuaries and coastal waters; however,
because of logistical issues, Enterococci MPNs were not available
for several weeks after HH. Levels of these FIB remained elevated
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relative to typical levels for this system for weeks (Supplementary
Figure 7). These high MPNs agree with the observation that
bacteria typically observed in human waste, such as Bacteroides
spp., abounded in libraries generated from all samples collected
immediately following HH (Figure 7).

PICRUSt2 analysis suggested that flooding also enriched for
antibiotic resistant genes (ARG), virulence factors and carbon
cycling pathways. These predictions of functional genes from
rRNA sequences, and the inference of microbial community
structure from targeted metagenomic analysis in general, should
be treated with caution. Every step in targeted metagenomic
analysis, from sampling to data analysis is fraught with bias
(Pollock et al., 2018). In particular, PICRUSt2 depends on
reference genomes, which are largely derived from the human gut
microbiome. This creates a bias depending on the sample type
(Sun et al., 2020). For example, PICRUSt2 underestimates certain
pathways in soil systems (Toole et al., 2021).

Prediction of increase in carbon cycling bacteria agrees with
reports that loading of dissolved organic carbon (DOC) during
extreme weather events can enhance carbon cycling by bacterial
communities in receiving waters (Balmonte et al., 2016) and high
DOC levels in Galveston Bay following HH (Steichen et al., 2020;
Yan et al., 2020). Because of the velocity of water moving through
the system, metabolic pathways associated with floodwaters
sampled herein were ephemeral and do not suggest long term
changes in microbial community functions for the Clear Lake
system. Nevertheless, prediction of ARG and virulence factors
with PICRUSt2 in samples collected immediately following HH
suggests that these floodwaters could pose a public health risk.
The abundance of these virulence factors agrees with previously
published qPCR measurements of ARG in samples collected
from soils flooded during HH (Pérez-Valdespino et al., 2021), in
samples collected within Galveston Bay 2 weeks after HH (Yang
et al., 2021), and ARG and pathogens in floodwaters and bayous
following HH (Yu et al., 2018).

CONCLUSION

The massive influx of freshwater from Hurricane Harvey into
the Clear Lake system temporarily changed the system from a
brackish estuary with relatively low levels of FIB and a microbial
community dominated by primary producers, to a freshwater
system with high levels of FIB. The microbial community
observed immediately following the hurricane included bacteria
that have also been reported in estuaries following hurricanes, but
rarely elsewhere, and enrichment of antibiotic resistant bacteria.
Recovery of the system to pre-storm conditions, in terms of
nutrients and salinity, exceeded 2 months.
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Supplementary Figure 1 | Stream flow for Clear Creek. Data was downloaded
for USGS station 08076997 from https://waterdata.usgs.gov/nwis/
inventory?agency_code=USGS&site_no=08076997. Vertical lines indicate
sampling dates. Lower case letters next to lines indicates dates, where a = August
25th, b = August 30th etc. Figure was generated with scripts in
Supplementary File 15.

Supplementary Figure 2 | Historical salinity data for Clear Lake system. Stations
correspond to segments in Figure 1. Data is from 2011 to 2021. Figure was
generated with scripts in Supplementary File 2.

Supplementary Figure 3 | Nitrate/nitrite concentration by water body segments
and sample type. Type and segment are as Figure 2. Figure was generated with
scripts in Supplementary File 3

Supplementary Figure 4 | Mixing diagram of salinity vs. ammonium for the Clear
Lake system. Symbols are as Figure 3. Figure was generated with scripts in
Supplementary File 3.

Supplementary Figure 5 | Mixing diagram of salinity vs. phosphate for the Clear
Lake system. Symbols are as Figure 3. Figure was generated with scripts in
Supplementary File 3.

Supplementary Figure 6 | Mixing diagram of N/P ratio vs. phosphate for the
Clear Lake system. Symbols are as Figure 3. Figure was generated with scripts in
Supplementary File 3.

Supplementary Figure 7 | Comparison of historical Enterococci concentrations
vs. concentrations following Hurricane Harvey. Symbols are as Figure 3. Figure
was generated with scripts in Supplementary File 3.

Supplementary Figure 8 | Alpha diversity of bacterial communities in the Clear
Lake system before and after Hurricane Harvey. Shannon diversity indices were
calculated by targeted metagenomic analysis, as described in Methods. Boxes,
whiskers and horizontal lines are described in Figure 2. Sample types are
described in Figure 3. Figure was generated with scripts in
Supplementary File 5.
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Supplementary Figure 9 | Microbial richness in Clear Lake system before and
after Hurricane Harvey. X-axis indicates number of amplicon sequence variants.
Categories correspond to before (pre), immediately after (HH) and more than a
week after (post). Figure was generated with scripts in Supplementary File 5.

Supplementary Figure 10 | Rarefaction analysis of richness by number of reads.
Symbols are as Figure 9. Figure was generated with scripts in
Supplementary File 5.

Supplementary Figure 11 | Shepards diagram showing fit of NMDS to
dissimilarity of any two pairs of samples. Figure was generated with scripts in
Supplementary File 8.

Supplementary Figure 12 | Fit of environmental data to NMDS model of
microbial community structure. Stress value for model was 0.032, which suggests
an excellent fit. Environmental variables that showed a significant (P < 0.10)

relationship with community structure are shown. Only samples with DIN data
available are shown. Note conductivity and salinity vectors were practically
identical to each other and would overlap, so only salinity vector is shown. Figure
was generated with scripts in Supplementary File 8.

Supplementary Figure 13 | Waterfall plot showing pathways enriched (red) or
depleted (teal) in comparison of samples collected before or immediately after
Hurricane Harvey. Figure was generated with scripts in Supplementary File 15.

Supplementary Figure 14 | Waterfall plot showing pathways enriched (red) or
depleted (teal) as function of salinity concentration. Figure was generated with
scripts in Supplementary File 15.

Supplementary Figure 15 | Waterfall plot showing pathways enriched (red) or
depleted (teal) as function of nitrate concentration. Figure was generated with
scripts in Supplementary File 15.
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