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Traditional Chinese medicine is one of the ancient medicines which is popular in Asian
countries, among which the residue produced by the use of anti-biodegradables is
endless, and causes significant adverse impacts on the environment. However, the
high acidity of anti-biodegradable residues and some special biological activities make
it difficult for microorganisms to survive, resulting in a very low degradation rate of
lignocellulose in naturally stacked residues, which directly impedes the degradation
of residues. We aimed to identify the fungal strains that efficiently biodegrade anti-
biodegradable residue and see the possibility to improve the biodegradation of it
and other agricultural wastes by co-cultivating these fungi. We isolated 302 fungal
strains from anti-biodegradable residue to test hydrolysis ability. Finally, we found
Coniochaeta sp., Fomitopsis sp., Nemania sp., Talaromyces sp., Phaeophlebiopsis
sp. which inhabit the anti-biodegradable residues are capable of producing
higher concentrations of extracellular enzymes. Synergistic fungal combinations
(viz., Fomitopsis sp. + Phaeophlebiopsis sp.; Talaromyces sp. + Coniochaeta
sp. + Fomitopsis sp.; Talaromyces sp. + Fomitopsis sp. + Piloderma sp. and
Talaromyces sp. + Nemania sp. + Piloderma sp.) have better overall degradation effect
on lignocellulose. Therefore, these fungi and their combinations have strong potential to
be further developed for bioremediation and biological enzyme industrial production.
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INTRODUCTION

Biomass is the fourth largest energy source in parallel with
wind energy, solar energy, nuclear energy, and other new
energy sources. This is considered the main alternative energy
source today (Sherwood, 2020). It includes lignocellulose in the
waste generated by plants, animals, and agricultural production
(Zeng et al., 2013). Lignocelluloses are composed of three
macromolecules: cellulose, hemicellulose, and lignin (Ni and
Tokuda, 2013), which constitute an anti-hydrolysis barrier and
make it difficult to be hydrolyzed (Ojha et al., 2015; Barros
et al., 2016). Among them, cellulose and hemicellulose can
be converted into glucose after hydrolysis. Xylose and other
fermentable sugars (monosaccharides) can be further used to
produce biofuels (Tan et al., 2014; Taha et al., 2016).

It has been widely studied that the application of traditional
industrial and agricultural biomass, and recognized by
filamentous fungi fermentation method to produce extracellular
enzymes for degradation of lignocellulose has a significant
effect (Lange, 2017; Kwak et al., 2019). In addition, enzymes
produced by filamentous fungi have been found in nature that
can be used for bioremediation, such as the ligninolytic enzyme
system, which can purify heavy metal dyes in sewage, and
depolymerize chlorophenols, polycyclic aromatic hydrocarbons
(PAHs), organophosphorus, and phenols (Falade et al., 2017).
Currently, the enzyme-producing fungi include Trichoderma
reesii, wood/white-rotting fungi, and Aspergillus (Namnuch et al.,
2020; Silva et al., 2020; Zhuo and Fan, 2021), which are mostly
isolated from agricultural wastes such as corn straw, bagasse,
wheat straw, rice husk, animal feces and some terrestrial plants
(Falade et al., 2017).

However, there are also quite a number of specialized
biomasses in the world, which are difficult to degraded
via ordinary exogenous microorganisms due to their various
characteristics, such as some extreme conditions of medical
waste biomass (Hutchins et al., 2019). Isolation and screening
of filamentous fungi with strong survival ability from their
own accumulation environment has been increasing, and many
successful cases have been reported recently. For example, Ming
et al. (Ming et al., 2019) screened out several enzyme-producing
filamentous fungi with strong acid tolerance from liquor grains
with high acidity.

Traditional Chinese Medicine (TCM) is one of the ancient
medicines which influences China and other Southeast Asian
countries. The States Environment Protection Agency (SEPA;
States Environment Protection Agency [SEPA], 1997) has
mentioned that 11,146 species of different herbs and plants
are used in TCM of which 492 species are cultivated and the
remaining 10,654 species are wild plants. However, with the
population growth, the demand for TCM has increased, and
TCM and its residues are causing different adverse impacts
on the environment (e.g., over-exploitation of plant materials,
soil degradation and erosion, chemical pollution in agricultural
lands). From a conservative estimate, the Chinese pharmaceutical
industry of TCM can produce 60–70 million tons of residues
every year, among which the TCMR (Traditional Chinese
Medicine Residues) with strong anti-microbial action residues

constitutes a significant proportion (Lu and Li, 2021). At the
same time, such pharmaceutical residues are often accompanied
by extremely low pH values, which makes it difficult for ordinary
microorganisms to survive, leading to a low degradation rate
of natural stacking of TCMR and irreversible damage to the
environment. However, it is also a kind of agricultural biomass,
containing high lignocellulose (Čater et al., 2015; Zhang and
Sun, 2018; Zhu and Sun, 2018). If used correctly, it has the
potential to not only reduce the pollution created by the
particular environment but also to find a way for the development
of biomass energy.

Meanwhile, the structure of lignocellulose is complicated
and different fungi have limitations in enzyme production.
Common single fungi cannot achieve complete degradation of
lignocellulose (Karuppiah et al., 2021). Research shows that
different microorganisms in the microbial community operate
synergistically through the secretion of a variety of biocatalysts,
in order to achieve comprehensive enzyme production to degrade
lignocellulose (Silva et al., 2021). Therefore, we can use the
method of artificial screening and mixing, fungi producing
different enzymes in the same medium for co-culture to improve
the degradation rate of lignocellulose.

In order to solve these problems, we report the
isolation of fungi from potent anti-biodegradable
TCMR, explore new lignocellulose-degrading enzymes
production strains, and by using the selected strain
of hydrolysis ability to build synergistic fungal
combinations (co-cultivation), realize the degradation
of lignocellulose. The results here would be helpful to
bioremediation and develop better enzyme producers for
lignocellulosic biorefinery.

MATERIALS AND METHODS

Materials
Fungal strains were directly isolated by the spread plate method
from anti-biodegradable residue which was piled up for 2–5 years
at Guizhou Shuangsheng Company (Guiyang, China). Glycine,
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid; ABTS),
Avicel, Briffon-Robinson 1buffer (pH 4.5), Birchwood, pNP-β-D-
glucopyranose (pNP-BGL), pNP-β-D-xylopyranose (pNP-BXL)
and other chemicals were purchased from Sigma-Aldrich to
determine enzymatic activity; Carboxymethyl cellulose and xylan
for solid media were purchased from Hongdaer Biotechnology
Company (Guiyang, China) for preliminary screening of fungi.

Analysis of Carbohydrate Composition
and Lignin Content in
Anti-biodegradable Residue
Fresh anti-biodegradable residue (younger than 2 months) was
obtained from Guizhou Shuangsheng Company and ground in a
blender (Conair Waring Pulverizer, Fisher Scientific), thereafter,
100 g was sieved through 50 mesh and was placed in a 40◦C
drying oven for 24 h. After grinding, carbohydrate composition
was determined using high-performance liquid chromatography
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by Shandong Kechuang Quality Testing Company, and the lignin
content was determined by a lignin assay kit (Solarbio, China)
according to the instructions provided by the manufacturer.

Isolation and Identification of Fungi
A suitable anti-biodegradable residue tissue block of 10 g was
selected and washed with sterile normal saline three times,
fungi were isolated by plant tissue separation (Makhuvele et al.,
2017; Thi Minh Le et al., 2019), the sample was repeated three
times. Genomic DNA of the purified fungi was extracted using
Ezup Column Fungal genomic DNA Extraction Kit (Qingke,
Chongqing) and used as a template for internal transcribed spacer
(ITS) region amplification (Bellemain et al., 2010). Prime pair
ITS5 and ITS4 (Mishra et al., 2017) was used to amplify the
ITS regions (Thermal Cycler PCR instrument BIO-RAD T100,
Japan). The PCR products were sequenced and used for the
identification of fungi by nucleotide BLAST (Altschul et al., 1990)
against the NCBI databases. The living strains were deposited at
Guizhou Medical University. Phylogenetic tree (Supplementary
Figure 1) was constructed by using ITS regional sequences of 302
residue isolates and by MEGA10 using the neighbor-joining (NJ)
method after multiple alignments of sequences data (Saitou and
Nei, 1987). The corrected evolutionary distance was evaluated
according to the p-distance model (Nei and Kumar, 2000). In
order to estimate the consensus of the branching, the bootstrap
resampling analysis of the phylogenetic tree was employed with
1000 replicates of the data set (Felsenstein, 1985). According to
the results of phylogenetic analysis, the pie chart was constructed
with Adobe Illustrator CS5 software and Office.

Preliminary Screening of Fungi on
Special Media
The fungi were pre-grown on a PDA agar medium at 25◦C for
3–7 days, then mycelium was transferred to three different sole
carbon source media. (1) carboxymethyl cellulose Congo red agar
medium (CMC-red): 1% sodium CMC, 0.05% KH2PO4, 0.05%
MgSO4·7H2O, 1.5% agar, 0.02% Congo red, 0.2% gelatin, pH 6.8–
7.2; Gupta et al., 2012; Fen et al., 2014; Wu et al., 2016); (2) xylan
Congo red agar medium (Xyl-red): 0.5% xylan, 0.01% Congo red,
0.1% MgSO4·7H2O, 0.5% yeast extract, 0.1% KH2PO4, 1.5% agar,
0.1% (NH4)2SO4, 0.5% NaCl, pH 6.5–7; Liu et al., 2010), and (3)
potato dextrose agar containing 0.01% aniline blue (PDA-blue),
pH 6–7 (Wang H. et al., 2009). The ratio of the hydrolytic circle
(D) to fungal colony diameter (d) was measured after 5 days of
constant temperature incubation. Analysis of hydrolytic efficacy
was performed by division of the diameter of mycelium growth
by that of the clearance zone.

Re-screening of Fungi in Liquid Culture
Medium of Anti-biodegradable Residue
Fungi with high activity were cultured on a PDA plate to produce
mycelium and spores. The culture medium with fungus was then
placed in a sterile beaker, and spores and mycelia were separated
by Tween80. Adding 2 × 106 spores (Li et al., 2016) of each
fungus into minimal medium (MM; composed of 4 g/L glucose
and 10 g/L peptone), after shaking for 3–7 days at 28◦C and a

rotational speed of 30× g, mycelia were filtered through a 200-
mesh (10 cm diameter) sieve and collected, and fully washed with
sterile water. Mycelia weighing 2 g (wet weight) was transferred
into a 50 ml culture medium with anti-biodegradable residue
(the residue was filtered through a 50-mesh sieve) as the only
carbon source (anti-biodegradable residue 3 g, Peptone 0.5 g,
Yeast powder 0.25 g, NaCl 0.25 g, KH2PO4 0.05 g, MgSO4·7H2O
0.025 g, (NH4)2SO4 0.25 g, CuSO4 0.0003 g; Wang J. F. et al.,
2009; Cheng et al., 2012; Zhang et al., 2015) at 28◦C, 30× g,
2 mL supernatant was taken at the same time on d 3, 5, 7, 9,
11, centrifuged at 4◦C, 21,100× g for 10 min, and the clarified
supernatant was taken and stored in−80◦C for use.

Construction of Synergistic Fungal
Combinations (Co-cultivation)
The single filamentous fungi, which can degrade cellulose
hemicellulose lignin effectively, were paired by the permutation
group (Ming et al., 2019) method, in order to construct fungal
combinations that can degrade lignocellulose comprehensively.
The specific method is to use a sterile knife to cut the thriving
fungal culture medium into 5 mm square pieces, and transfer
them to a new PDA culture medium. Each piece of fungus is
separated by about 1 cm. Then, the medium is sealed in a 28◦C
medium for 3–7 days to observe the ability of fungi to grow in
co-cultivation conditions.

Enzyme Activity Assay
β-glucosidase and β-xylosidase activities were measured with the
substrates para-nitrophenyl β-glucoside (pNP-BGL) and para-
nitrophenyl β-xyloside (pNP-BXL), respectively. The reaction
contained 40 µl culture supernatant, 10 µl 0.1% pNP-BGL or
pNP-BXL, and 50 µl 100 mM sodium acetate, pH 5.0. The
reactions were performed overnight (∼16 h) at 25◦C followed by
the addition of 100 µl 250 mM Na2CO3 prior to measurement
of the absorbance at 405 nm using a microtiter plate reader
(biotek epoch2, US). Para-nitrophenol (0–100 µM) was used as
the standard (Patyshakuliyeva et al., 2016). One unit was defined
as the amount of enzyme releasing 1 µmol pNP from pNP-BGL
or pNP-BXL under the assay condition.

Cellulase and xylanase activities were measured toward
avicel cellulose and birchwood xylan, respectively. The reaction
contained 20 µl culture supernatant and 180 µl 1% avicel
or birch xylan in 50 mM sodium acetate, pH 5.0, and was
incubated overnight (∼16 h) at 25◦C. Mixing 100 µl of the
reaction mixture with 150 µl 3,5-dinitrosalicylic acid solution
(1% 3,5-dinitrosalicylic acid, 0.2% phenol, 0.05% Na2SO3, and
1% NaOH), incubated at 95◦C, 30 min and cooled on ice prior
to measurement of the absorbance at 560 nm using a microtiter
plate reader (Miller, 1959). 2–20 mM D-glucose or D-xylose was
used as standard (Peciulyte et al., 2017).

Peroxidase and laccase activities were measured toward 2,2′-
azinobis (3-ethylbenzthiazoline-6-sulfonic acid; ABTS) with or
without supplement of hydrogen peroxide, respectively. The
peroxidase reaction contained 20 µl culture supernatant, 20 µl
140 µM ABTS, 10 µl 3% H2O2, 25 µl 400 mM Britton–Robinson
buffer, pH 4.5, and 125 µl ddH2O. Detection of initial rates of
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oxidation was performed at 440 nm with a 2 min interval up
to 60 min, at 25◦C using a microtiter plate reader. The laccase
reaction contained 20 µl culture supernatant, 20 µl 140 µM
ABTS, 20 µl 500 mM glycine-HCl, pH 3.0, and 140 µl ddH2O.
The initial rates of hydrolysis were determined by measuring
absorbance at 440 nm in a 2 min interval for 30 min, at
25◦C. Laccase and peroxidase activities were calculated based on
Lambert-Beer law, where the extinction coefficient of 3.6× 104

M−1 cm−1 was used as mentioned in Childs and Bardsley (1975)
and Srinivasan et al. (1995).

Hydrolytic Weight Loss Ability Test
The selected co-cultivation was incubated at 28◦C for 15 days,
and the actual hydrolysis capacity of the residue was tested.
The residue was taken from the liquid medium and thoroughly
dried before weighing to determine the total weight loss rate
of the residue as well as the degradation rates of cellulose,
hemicellulose, and lignin. Each strain was repeated three times,
and the residue liquid medium without inoculation was used as a
negative control. The negative control M0 was used to calculate
the hydrolysis rate of residue and cellulose, instead of residue
weight before inoculation of fungi M1, in order to eliminate
the natural loss of residue powder placed in the solution during
the experiment and ensure the strictest of the experiment. The
formula for calculating the total weight loss rate of drug residue
hydrolysis is (M0-M2)/M0, where M0 represents the dry weight
of drug residue after 15 days of culture in a negative control
group under the same conditions, and M2 represents the weight
of drug residue after hydrolysis (Ming et al., 2017). Hemicellulose
and lignin content in the hydrolyzed residue was detected by the
content detection Kit (Solarbio BC4445, Solarbio BC4205) and
cellulose content detection kit (ZCIBIO ZC-S0876). The specific
operation method is described in the instruction, three biological
replicates were performed.

RESULTS

Identification of Strains
The ITS sequences were used to identify the strains from
mega blast results in GenBank. In this preliminary study, we
only intended to check whether there are fungal taxa that are
inhabiting TCM residues. In Supplementary Table 1, we provide
results that were generated in the mega blast. It provides the
closest hits which are similar to our selected strains.

Determination of the Composition of
Anti-biodegradable Residue
The determination of glycosylated components in the residue
showed that glucose, accounting for 68.32%, glucose is the
reducing sugar of cellulose, indicating that the sample contains
a lot of cellulose. Plus, there were xylose, arabinose, mannose,
galactose, and other five-carbon sugars, accounting for about 30%
(Table 1), and the analysis of lignin content in the residue showed
that there was 13.66% lignin. The lignin content test suggests the
anti-biodegradable residue contains a moderate amount of lignin
in liquid samples. In addition, 50 ml of 6% residue is pH 4.9.

TABLE 1 | Table of carbohydrate composition of anti-biodegradable residue.

Carbohydrate composition mg/kg Accounted for (%)

Mannose 3694.24 0.7

Ribose 631.99 0.12

Rhamnose 3626.84 0.69

Glucuronic acid 1783.52 0.34

Galacturonic acid 11096.61 2.13

Glucose 355769.68 68.32

Galactosum 18197.96 3.49

Xylose 84775.66 16.28

Arabinose 39887.86 7.66

Fucose 1240.14 0.24

Biodiversity and Phylogenetic Analysis of
Isolated Filamentous Fungi
A total of 302 fungi were isolated and labeled as ZYJHYZ01-
ZYJHYZ302 (Supplementary Table 2). Phylogenetic analysis
showed that they belong to 30 genera in 3 phyla. Among the
isolates, 72.19% of strains (218 isolates of 16 genera) were
identified as Ascomycota, while 19.87% of strains (60 isolates of
12 genera) were identified as Basidiomycota and 7.95% strains
(24 isolates of two genera) were identified as Mucoromycota
(Figure 1A). At the genus level, 40.07% of isolates (n = 121)
belong to Aspergillus, 7.62% to Coniochaeta (n = 23), 6.29% to
Filobasidium (n = 19), 5.96% to Penicillium (n = 18), and 5.30%
to Mucor (n= 16; Figure 1B).

A Single Polymer Was Used as the Sole
Carbon Source in Solid Medium With
Indicator
Three-hundred and two (302) isolates were screened by
inoculating onto a solid medium with a single polymer (CMC,
xylan, or glucose) as the sole carbon source and indicator added:
CMC-red, PDA-blue, Xyl-red, 25◦C, the ratio of the hydrolytic
circle (D) to fungal colony diameter (d) was measured after
5 days of constant temperature incubation. From this analysis,
we were able to find that 35 strains produced transparent circles
while 24 strains showed a ratio greater than or equal to 2
(Supplementary Table 3).

Among them, the D/d ratio of ZYJHYZ163, ZYJHYZ254,
ZYJHYZ257, ZYJHYZ265, and ZYJHYZ270 were greater than
other strains. According to the mega blast results, Aspergillus
fumigatus (ZYJHYZ279) and Aspergillus flavus (ZYJHYZ260)
were indicated as harmful to human and animal health, thus,
further experimental studies were abandoned. Therefore, fungi
with a total score of 2 were preliminarily screened through three
kinds of solid media for the next experiment, and a total of 24
strains were identified: ZYJHYZ257, ZYJHYZ259, ZYJHYZ261,
ZYJHYZ263, ZYJHYZ265, ZYJHYZ267, ZYJHYZ268,
ZYJHYZ269, ZYJHYZ270, ZYJHYZ271, ZYJHYZ272,
ZYJHYZ273, ZYJHYZ274, ZYJHYZ53, ZYJHYZ163,
ZYJHYZ244, ZYJHYZ242, ZYJHYZ28, ZYJHYZ246,
ZYJHYZ254, ZYJHYZ255, ZYJHYZ240, ZYJHYZ247, and
ZYJHYZ256 (Figure 2).
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FIGURE 1 | Composition of the filamentous fungal strains isolated from anti-biodegradable residue. (A) The classification was shown at the phyla level. (B) Generic
level.

Comparison of Lignocellulose Degrading
Enzyme Capacity of Single-Cultured
Fungi
All fungi produce different levels of enzymes with different
activities. Here, we screened for six different enzymes,
viz., β-glucosidase, cellulase, β-xylosidase, xylanase, laccase,
and peroxidase. β-glucosidase – In general, most fungi can
produce higher β-glucosidase activity on days 7–9 (Figure 3A),
among which Fomitopsis sp. (ZYJHYZ247) produces the
highest β-glucosidase level on day 7 (151.68 U/L) followed
by Nemania sp. (ZYJHYZ263) reached 134.22 U/L on
day 9. Cellulase – However, the peak time of production
was different among different fungal strains, among which
Aspergillus niger (ZYJHYZ242) reached 66.55 U/L on day 7,
and Fomitopsis sp. (ZYJHYZ247) reached 64.63 U/L on day 9
(Figure 3B). β-xylosidase – Figure 3C, showed that multiple
fungi had the same enzyme production, among which the best
enzyme-producing fungus was Coniochaeta sp. (ZYJHYZ246)
and Phaeophlebiopsis sp. (ZYJHYZ254). Coniochaeta sp.
(ZYJHYZ246) had the highest enzyme production at 80.97 U/L
on the eighth day while Phaeophlebiopsis sp. (ZYJHYZ254)
had the highest enzyme production at 79.92 U/L on the
nineth day. Xylanase – In Figure 3D, Phaeophlebiopsis sp.
(ZYJHYZ254) had the highest enzyme production, with the
highest enzyme production time reaching 81.59 U/L on the 5th
day, Bjerkandera sp. (ZYJHYZ257) and Isaria sp. (ZYJHYZ259)
performed higher xylanase activity at day 9 and 7 with 76.14
and 72.98 U/L, respectively, in addition, Talaromyces sp.
(ZYJHYZ163) also showed excellent and stable β-xylosidase and

xylanase activity. Laccase – From Figure 3E, strain Piloderma
sp. (ZYJHYZ268) reached the highest enzyme production
(99.39 U/L) on the fifth day, followed by Coniochaeta sp.
(ZYJHYZ246) and Cladosporium sp. (ZYJHYZ265) with 99.31
and 99.24 U/L, respectively. Peroxidase – From Figure 3F,
including Phaeophlebiopsis sp. (ZYJHYZ254), Piloderma sp.
(ZYJHYZ268), Coniochaeta sp. (ZYJHYZ246), Coniochaeta
sp. (ZYJHYZ244), Aspergillus sp. (ZYJHYZ242) showed
significantly higher enzyme activity than other fungi, with
Phaeophlebiopsis sp. (ZYJHYZ254) having the highest enzyme
activity, reaching 602.96 U/L on day 7, followed by Coniochaeta
sp. (ZYJHYZ246) and Aspergillus sp. (ZYJHYZ242) with 580.42
and 561.06 U/L, respectively.

In conclusion, strains belonging to Coniochaeta, Fomitopsis,
Phanerochaete, and Piloderma are capable of producing a
higher amount of lignocellulose degrading enzymes compared
to other strains.

Construction of Fungal Strains and Their
Co-cultivation Potential to Improve
Enzymatic Degradation
Through the screening for six fungal extracellular enzymes,
the first three fungal strains with the highest activity of each
enzyme were selected for further co-cultivation; Aspergillus
sp. (ZYJHYZ242), Fomitopsis sp. (ZYJHYZ247), and Nemania
sp. (ZYJHYZ263) for cellulose degradation. Talaromyces
sp. (ZYJHYZ163), Phaeophlebiopsis sp. (ZYJHYZ254), and
Bjerkandera sp. (ZYJHYZ257) for hemicellulose degradation.
High lignin-degrading strains numbered as Coniochaeta
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FIGURE 2 | Growth and activity ratio of the selected fungi grown on solid media. The media contains 1% cellulose (CMC-red), 0.5% xylan (Xyl-red) or 0.01% aniline
blue (PDA-blue). Fungi in bold showed > 2.0 growth ratio and were chosen for cultivation in liquid media. The growth and activity ratio was estimated by hydrolytic
diameter/colony diameter after 5 days.

sp. (ZYJHYZ246), Phaeophlebiopsis sp. (ZYJHYZ254), and
Piloderma sp. (ZYJHYZ268), the BLAST results from NCBI
as Supplementary Table 3. A total of 27 fungal co-cultivation
was constructed by permutation and combination of the above
fungi, in order to screen out fungi that can comprehensively
degrade lignocellulose. Twelve co-cultivation were growing
together through the symbiosis test (Figure 4) and their enzyme
activities showed in Figure 5. The other strain combinations
were excluded from liquid cultivation.

Comparison of Lignocellulose Degrading
Enzyme Capacity of Co-cultivation Fungi
According to Figure 5, the activities of 5 enzymes (except for
lignin peroxidase) have been greatly improved over those strains
in single culture conditions. β-glucosidase – contained more
than 100 U/L activities in most fungal combinations while only
three single-cultured fungi were capable of production at this
level. The highest β-glucosidase was produced on day 11 of
incubation by fungal co-cultivation no. 1 (313.63 U/L), followed

by no. 10 (325.03 U/L; Figure 5A). Cellulase – showed that
multiple fungi had the same enzyme production, the cellulase
activity performed highest on the seventh after inoculation by
fungal combination nos. 8 and 9 with 91.86 and 132.43 U/L,
respectively (Figure 5B), the highest enzyme activity of no. 9
reached 132.43 U/L, was about twice that of a single fungus.
β-xylosidase – the peak of enzyme production in combinations
nos. 5 and 11 was on the third day, and then decreased with
time, while the other fungal combinations had an opposite trend,
mostly reaching the peak around the ninth day, and β-xylosidase
activity performed highest at day 11 and 9 after inoculation by
fungal combination nos. 9 and 2 with 213.07 and 197.86 U/L,
respectively (Figure 5C). Xylanase – most fungal combinations
showed the highest xylanase activity from day 3 to day 5, among
which the highest was no. 6, which reached 107.47 U/L on
day 5, followed by no. 11 (103.55 U/L at day 3; Figure 5D).
Laccase – from Figure 5E, the enzyme activity of no. 4, 9, and
10 were significantly higher than that of other combinations.
The enzyme activity of no. 9 reached 215.46 U/L on the seventh
day of inoculation, more than twice that of a single fungus,
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FIGURE 3 | Extracellular enzyme activities of selected fungi for pre-screening. (A) β-glucosidase, (B) Cellulase, (C) β-xylosidase, (D) Xylanase, (E) Laccase, and
(F) Peroxidase activity of culture supernatant of fungi grew in 6% anti-biodegradable residue (in water) as the sole carbon source. The culture supernatants were
collected on 3, 5, 7, 9, and 11 days after the inoculation. Three biological replicates were performed for each of the above data.

followed by no. 10 (187.69 U/L). Peroxidase – it can be seen
from Figure 5F that the peak of enzyme production of almost
all fungal combinations was on day 11, and the enzyme activity
of fungal combination no. 12 on day 11 was at least twice that
of other fungal combinations, reaching 355.65 U/L. In addition,
the enzyme activity of fungal combinations no. 6, 9, and 10 are
also relatively advantageous, but not as high as that of single
fungi (Figure 5F).

Thus, we suggest using co-cultivation viz., no. 1 Fomitopsis
sp. (ZYJHYZ247) + Phaeophlebiopsis sp. (ZYJHYZ254);
no. 6 Talaromyces sp. (ZYJHYZ163) + Coniochaeta sp.
(ZYJHYZ246)+ Fomitopsis sp. (ZYJHYZ247); no. 9 Talaromyces
sp. (ZYJHYZ163) + Fomitopsis sp. (ZYJHYZ247) + Piloderma
sp. (ZYJHYZ268); no. 10 Talaromyces sp. (ZYJHYZ163) +
Nemania sp. (ZYJHYZ263) + Piloderma sp. (ZYJHYZ268) to
degrade the anti-biodegradable residue rather introducing them
as a monoculture.

Hydrolytic Weight Loss Ability Test of
Co-cultivation
In the co-cultivation, fermentation broth with anti-biodegradable
residue as the sole carbon source was added at a constant

temperature of 30× g at 28◦C for 15 days (Figure 6). Compared
with the negative control, about half of the residue was left in nos.
1 and 6, and about one-third of residue was left in nos. 9 and
10. The overall weight loss rate of TCMR is shown in Table 2.
According to Table 2, the weight loss rate of no. 10 hydrolysis
for 15 days is the highest, reaching 60.34%. The overall weight
loss data is also consistent (Figure 6). Results of lignocellulosic
content are shown in Table 3. It can be seen that the weight
loss rate of cellulose in no. 1 after 15 days of hydrolysis is
the highest, reaching 57.46%. Nos. 9 and 10 had the strongest
hydrolysis ability for hemicellulose, and the weight loss rate of no.
10 reached 38.83%. No. 9 had the strongest hydrolysis capacity of
lignin, reaching 64.47%.

DISCUSSION

Herbal medicine plays a vital role in Asian countries and has a
long history. Kloos mentioned that TCM has an average of 15%
of annual growth between 2011 and 2016 (Kloos, 2017). Besides,
Dang et al. (2016) reported that the value of different products
of TCM is over 120 billion USD by the end of 2014 which
represents 31% of the total pharmaceutical industry market in
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FIGURE 4 | Growth of fungi in synergistic combinations (co-cultivation). 1, 2, 3, 4. . . is co-cultivation code; (A). from above, (B). from below.

China. Hence, TCM is still in considerable demand. This also
directly leads to the discharge of a large number of TCMR, long-
term accumulation is currently the most adopted method, for
environmental protection and economic development are great
challenges. In recent years, they are often used for fermentation
and composting research, due to the special properties of the
TCMR (such as high acidity and strong bacteriostasis). In this
study, the characteristics of the residue itself are taken as the
starting point to screen out the fungi that can resist such an
unusual environment, so as to solve the environmental pressure
and lay a foundation for the development of bioenergy.

Three hundred and two (302) strains that belong to 30 genera
have been isolated. A total of 35 strains with lignocellulosic
degradation ability were obtained by single polymer solid
medium screening. According to the diameter ratio, 24 strains
were further screened out for 6 plant-degrading enzyme activities:
β-glucosidase, cellulase, β-xylosidase, xylanase, laccase, and
peroxidase. Among these six enzymes, we found that most fungi
in 7–9 days can produce higher β-glucosidase and Cellulase.
Aspergillus sp. (ZYJHYZ242) and Fomitopsis sp. (ZYJHYZ247)
had the highest enzyme activity and the best cellulose degradation
potential. Aspergillus is an important industrial fermentation
strain that can produce cellulose (Van Munster et al., 2020; Zhao
et al., 2020). Fomitopsis has also been repeatedly reported as
a model brown rot fungus that causes destructive wood decay
based on cellulase systems, producing cellulolytic enzymes and
lignin decomposing enzymes (Hong et al., 2017). In the detection

process of enzymes related to lignin degradation, it was found
that the peak of enzyme production of most strains was 5–
7 days, among which Phaeophlebiopsis sp. (ZYJHYZ254) had
the highest peroxidase production, which reached 602.96 U/L
on the seventh day, which was two to three times of the fungi
with high total lignin peroxidase production reported in the
current literature (Saito et al., 2018; Su et al., 2018). In addition,
Phaeophlebiopsis sp. (ZYJHYZ254), Piloderma sp. (ZYJHYZ268),
and Coniochaeta sp. (ZYJHYZ246) were also the three strains that
produced the highest lignin-degrading enzymes. Coniochaeta was
also reported to produce β-glucosidase, cellulase, hemicellulase
and laccase (Mondo et al., 2019). Piloderma is a common
ectomycorrhizal fungus (EMF) in forest soil. It is well known
that EMF can produce a large number of peroxidase to degrade
the complex structure containing lignin (Heinonsalo et al.,
2015). Recently, Rineau et al. also found more than one laccase
gene was encoded in the genome of Piloderma (Rineau et al.,
2012). In the hemicellulase activity results, Phaeophlebiopsis sp.
(ZYJHYZ254) had the highest xylanase production, and the
highest enzyme production time was on the fifth day, and
β-xylosidase production was similar among the fungi. The best
enzyme-producing fungi was Coniochaeta sp. (ZYJHYZ246) and
Phaeophlebiopsis sp. (ZYJHYZ254).

Nevertheless, studies have shown that a single strain cannot
degrade lignocellulose completely (Karuppiah et al., 2021).
Hence, it is recommended to construct co-cultivation to achieve
complete degradation of lignocellulose. The main aim of the
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FIGURE 5 | Extracellular enzyme activities of sixteen fungal co-cultivation supernatant at days 3, 5, 7, 9, and 11 after inoculation in water with 6%
anti-biodegradable residue; (A) β-glucosidase, (B) Cellulase, (C) β-xylosidase, (D) Xylanase, (E) Laccase, and (F). Peroxidase. Three biological replicates were
performed for each of the above data.

co-cultivation is to improve the overall lignocellulolytic activity,
as lignocellulose is the main component in agricultural waste
(Čater et al., 2015; Ming et al., 2019). However, it is not feasible to
predict which strains will be able to grow together. Hence, we first
grew different combinations on solid complex media (Hu et al.,
2011). Strain combinations showing a separation zone or barrage
line indicated incompatibility among the strains. These strain
combinations were excluded from liquid cultivation. The enzyme
activity of co-cultivation (12 groups) that can grow together
was detected. It was found that except for lignin peroxidase, the
enzyme activity of the other 5 enzymes had a significant increase,
with the same amount of mycelium inoculation as that of a single
strain, the effect of enzyme production of the co-cultivation was
two to three times higher than that of a single strain, indicating
that the co-cultivation was successfully constructed. However, it
should be noted that the enzyme activity of the co-cultivation of
Figure 5F was generally lower than that of the single fungi, which
may be due to the interaction of various chemical substances
produced by fungi, resulting in low overall enzyme activity.

To sum up, we believe that co-cultivation viz., no.
1 Fomitopsis sp. (ZYJHYZ247) + Phaeophlebiopsis sp.
(ZYJHYZ254); no. 6 Talaromyces sp. (ZYJHYZ163) +
Coniochaeta sp. (ZYJHYZ246) + Fomitopsis sp. (ZYJHYZ247);
no. 9 Talaromyces sp. (ZYJHYZ163) + Fomitopsis sp.
(ZYJHYZ247) + Piloderma sp. (ZYJHYZ268); no. 10
Talaromyces sp. (ZYJHYZ163) + Nemania sp. (ZYJHYZ263)
+ Piloderma sp. (ZYJHYZ268) has a better overall degradation
potential of lignocellulose. Based on these results, we conclude
that wood white rots fungi and other inhabiting fungi are
capable of producing higher concentrations of extracellular
enzymes, such as Coniochaeta sp. (ZYJHYZ246), Fomitopsis sp.
(ZYJHYZ247), and Phaeophlebiopsis sp. (ZYJHYZ254).

Nevertheless, as this is not a taxonomy paper, we did only
preliminary identification for strains. It is essential to carry out
multi-gene analyses to identify cryptic species in Aspergillus
and other prominent species which are inhabiting species
complexes. Current results showed that the all isolated strains
are acid-resistant, and with the extension of residue stacking
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FIGURE 6 | Residue after 15 days of fermentation in liquid medium. (A) and (D) Negative control, (B) no. 1, (C) no. 6, (E) no. 9, and (F) no. 10.

TABLE 2 | Total weight loss rate of residue after 15 days of hydrolysis.

Negative control 1 6 9 10

Initial amount of residue (g) 3 3 3 3 3

Residual amount after 15 days of fermentation (g) 2.7090 1.6625 1.8726 1.1615 1.0744

Weight-loss ratio (%) 38.63 30.87 57.12 60.34

time, their pH value will be lower, the diversity of fungi will
gradually decline, and the nutritional type of strains will tend
to be single. Therefore, it can be predicted that the longer
the residue stacking time, the more likely it is to isolate the
lignocellulose-degrading enzymes strain. It is generally believed
that the unique high acidity and bacteriostatic environment
of TCMR tend to give it special characteristics of its own

TABLE 3 | Lignocellulose weight loss rate after 15 days of hydrolysis.

1 6 9 10

Weight-loss rate of cellulose (%) 57.46 29.34 36.43 51.34

Weight-loss rate of hemicellulose (%) 25.21 15.55 37.34 38.83

Weight-loss rate of lignin (%) 11.57 30.75 64.47 59.68

microorganisms, so the special functions of isolated strains can
be further discussed.
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