
TYPE Original Research

PUBLISHED 23 August 2022

DOI 10.3389/fmicb.2022.878223

OPEN ACCESS

EDITED BY

Daniel Yero,

Universidad Autónoma de Barcelona,

Spain

REVIEWED BY

Bram Van Dijk,

Max Planck Institute for Evolutionary

Biology, Germany

Farrah Bashey,

Indiana University, United States

Jan-Ulrich Kreft,

University of Birmingham,

United Kingdom

*CORRESPONDENCE

Jan F. M. Van Impe

jan.vanimpe@kuleuven.be

SPECIALTY SECTION

This article was submitted to

Evolutionary and Genomic

Microbiology,

a section of the journal

Frontiers in Microbiology

RECEIVED 17 February 2022

ACCEPTED 29 July 2022

PUBLISHED 23 August 2022

CITATION

Hashem I and Van Impe JFM (2022)

The territorial nature of aggression in

biofilms. Front. Microbiol. 13:878223.

doi: 10.3389/fmicb.2022.878223

COPYRIGHT

© 2022 Hashem and Van Impe. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

The territorial nature of
aggression in biofilms

Ihab Hashem and Jan F. M. Van Impe*

Department of Chemical Engineering, KU Leuven, Ghent, Belgium

Microbial conflicts have a particularly aggressive nature. In addition to other

chemical, mechanical, and biological weapons in their repertoire, bacteria

have evolved bacteriocins, which are narrow-spectrum toxins that kill closely

related strains. Bacterial cells are known to frequently use their arsenal

while competing against each other for nutrients and space. This stands

in contrast with the animal world, where conflicts over resources and

mating opportunities are far less lethal, and get commonly resolved via

ritualized fighting or “limited war” tactics. Prevalence of aggression inmicrobial

communities is usually explained as due to their limited ability to resolve

conflicts via signaling as well as their limited ability to pull out from conflicts

due to the sessile nature of their life within biofilms. We use an approach that

combines Evolutionary Game Theory (EGT) and Individual-based Modeling

(IbM) to investigate the origins of aggression in microbial conflicts. In order

to understand how the spatial mode of growth a�ects the cost of a fight, we

compare the growth dynamics emerging from engaging in aggression in a

well-mixed system to a spatially structured system. To this end, a mathematical

model is constructed for the competition between two bacterial strains where

each strain produces a di�usible toxin to which the other strain is sensitive.

It is observed that in the biofilm growth mode, starting from a mixed layer

of two strains, mutual aggression gives rise to an exceedingly high level of

spatial segregation, which in turn reduces the cost of aggression on both

strains compared to when the same competition occurs in a well-mixed

culture. Another observation is that the transition from a mixed layer to

segregated growth is characterized by a switch in the overall growth dynamics.

An increased “lag time” is observed in the overall population growth curve

that is associated with the earlier stages of growth, when each strain is still

experiencing the inhibiting e�ect of the toxin produced by its competitor.

Afterwards, an exponential phase of growth kicks in once the competing strains

start segregating from each other. The emerging “lag time” arises from the

spiteful interactions between the two strains rather than acclimation of cells’

internal physiology. Our analysis highlights the territorial nature of microbial

conflicts as the key driver to their elevated levels of aggression as it increases

the benefit-to-cost ratio of participating in antagonistic interactions.
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evolutionary game theory (EGT), aggression, biofilms, bacteriocins, individual
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1. Introduction

One aspect in which bacteria drastically differ from free
roaming animals is the level of aggression in the microbial world
(Granato et al., 2019). Animals, from the same species, generally
avoid engaging in lethal fights among each other for resources,
territory or access to mates (Eibl-Eibesfeldt, 1961; Smith and
Price, 1973). One example of such “ritualized fighting” is how
snakes avoid using their venom against each other and opt
instead for wrestling contests to settle their conflicts (Shaw,
1948). On the other hand, bacteria have evolved bacteriocins,
which are narrow spectrum toxins that aim to inhibit the growth
of closely related strains (Gardner et al., 2004; Riley and Chavan,
2006; Hibbing et al., 2010; Alvarez-Sieiro et al., 2016; Granato
et al., 2019). Additionally, many bacterial species enjoy the
capacity of producing antibiotics, broad spectrum toxins which
aim to kill distantly related species (Kohanski et al., 2010; Ageitos
et al., 2017). That is in addition to other mechanical (Gebhart
et al., 2012) and even biological weapons in their arsenal (Brown
et al., 2009; Granato et al., 2019).

What drives the evolution of a high level of aggression in
the microbial world? A possible answer is that bacteria have a
limited capacity to resolve their conflicts via signaling (Granato
et al., 2019). When two animals face-off in a conflict, they can
exchange different kinds of signals to communicate their relative
strengths, and consequently, avoid a costly fight (Maynard-
Smith et al., 2003; van Lieshout et al., 2005). Bacterial regulatory
networks are clearly more simple than animal brains, and hence
are subject to more constraints to evolve such signaling systems
to resolve conflicts. Also, another reason that is usually invoked
to explain the lethal nature of bacterial contests is the sessile
nature of their life, an aspect they share with plants and fungi
(Sestari and Campos, 2021). Bacteria commonly grow as surface
attached communities of cells, known as biofilms, enclosed in a
self-produced extracellular polymeric matrix. Hence, most cells
inside the biofilm are effectively sessile, which translates into a
limited ability to run away from conflicts compared to a free
roaming animal (Granato et al., 2019; Rillich and Stevenson,
2019).

The fundamental difference in nature between microbial
and animal contests, sessile vs. motile, has resulted in a
corresponding difference in the mathematical frameworks used
to tackle each problem. Models of animal contests that do not
take space into account, such as the classical paper by Smith
and Price (1973), have been used to explain animal behaviors in
contests. On the other hand, the evolution of social phenotypes
in biofilms has been successfully studied by a spatial modeling
framework, called Individual-basedmodeling (IbM) (Kreft et al.,
2001). In IbM, the individual cell behavior is explicitly modeled,
by describing all its main known physiological processes such as
its growth, reproduction, death, and motility, while the spatial
structure of the environment is also modeled with a focus on
diffusion phenomena. Then, the simulation gets seeded with

a number of cells and the population behavior emerges from
the interactions between individual agents. IbMs have been
applied to explain a wide range of social phenomena in biofilms,
including aspects of cooperation (Kreft, 2004; Mitri et al., 2011),
competition (Xavier and Foster, 2007; Bucci et al., 2011), and
communication (Schluter et al., 2016).

Smith and Price (1973) tackled the problem of explaining
limited wars in animal conflicts via the construction of the
influential hawk-dove model. They managed to prove that the
hawk, which is an abstraction of an aggressive strategy, will not
necessarily dominate the population. The evolutionary stable
state of the population has been shown to be a polymorphic state
with both hawks and doves. And the level of aggression in the
population, the fraction of the population that displays a hawk
behavior at equilibrium, has been shown to be proportional
to the ratio between the value of the resource in dispute to
the cost of a potential fight. This result has been later verified
experimentally (Hansen, 1986; Tainaka et al., 2007; Oprea et al.,
2011) and it transcends the assumptions of this particular
model to even political conflicts (Georgiev et al., 2013; Glowacki
et al., 2017; Krahé, 2020). A striking example is the difference
between conflict patterns among carnivores and herbivorous
animals (Georgiev et al., 2013). Animals which compete for high
nutritional value resources, like carnivores, undergo contests
that are characterized by having high resource value to cost ratio,
as the food is scarce and relatively nutritious. Hence, relatively
violent fights erupt (Kruuk and Kruuk, 1972; Wrangham, 1980;
Koenig and Borries, 2009). On the other hand, for herbivorous
species, since grass has low nutritional value, the value of
the resource to cost of a fight ratio is relatively small. And
these animals hence tend to avoid direct, aggressive, contests
(Isbell, 1991; Young and Isbell, 2002).

In the microbial world, aggression, or spite, has been found
to be dependent on the scale of competition (Gardner andWest,
2004), where bacteriocin production has been found to be most
favored when the competition is localized and at intermediate
relatedness (Gardner et al., 2004). Czárán et al. (2002) and
Weber et al. (2014) analyzed how spiteful interactions help to
maintain and promote microbial diversity. Using a spatial game
theoretic model, Czárán et al. (2002) showed how diversity
can be maintained in a three strain system consisting of an
antibiotic producer, resistant, and sensitive strains. Further
research focused on the selection pressures driving the evolution
of toxin regulation (Doekes et al., 2019) as well as the role of
stochastic processes in this process (von Bronk et al., 2017).
It is also noted that bacteriocin production by bacteria is a
cooperative behavior from the point of view of the clonemates.
The phenomenon of cheating in the context of bacteriocin
production has been studied by West et al. (2006) and
Rankin et al. (2007).

In this paper, we investigate the aggression dynamics in
microbial conflicts, with a focus on how the spatial mode of
microbial growth as in biofilms affects the cost of engaging
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TABLE 1 Model parameters.

Parameter Denotation Value

f Fraction of energy invested in

toxin production

0.1

KN Half saturation constant 5× 10−4 (mg l-1)

KT Toxin’s killing rate 9× 10−4 (l mg toxin-1 h-1)

βT Toxin’s decay rate 10−1 (h-1)

µmax Maximum growth rate 1 (h-1)

Y Growth yield 0.7 (mg bacteria/ mg nutrients-1)

α Toxin’s stiochiometric

coefficient

4 (mg toxin/ mg bacteria-1)

DS Substrate’s diffusivity 4× 104 (µm2 h-1)

DT Toxin’s diffusivity 4× 104 (µm2 h-1)

in aggression endured by a microbial strain. To this end, a
model is constructed of the competition between two strains,
where each strain is capable of producing a bacteriocin to which
the other strain is sensitive. Different aggression scenarios are
investigated in both models of well-mixed cultures as well as
of a spatially structured environment, growing as a biofilm,
using EGT and IbM (Hashem and Van Impe, 2022a,b). An
EGT analysis is carried out first to find when engaging in
aggression is a beneficial strategy in the well-mixed culture, as
well as the optimal level of metabolic investment in bacteriocin
production in such case. Afterwards, using an IbM of biofilm
growth, the cost of engaging in aggression expressed as the
suppression of microbial growth rate as well as the growth
dynamics of the two-strain community are investigated, with
a focus on the relationship between spatial structuring and
engaging in aggression.

2. Model description

2.1. Spatially mixed growth

A model of two bacterial strains, each capable of
constitutively producing its own toxin and both competing
over the same nutrient is constructed. Each strain is assumed
to be immune to its own toxin while being vulnerable to the
opponent’s toxin. The two strains are assumed to have identical
growth parameters, and similar sensitivity to the toxin produced
by the other strain. The model is described by the following set
of equations, with the model’s parameters provided in Table 1
(Bucci et al., 2011; Cornforth and Foster, 2013):

dP1

dt
= ((1− f1)µ − KTT2)P1 (1)

dP2

dt
= ((1− f2)µ − KTT1)P2 (2)

dT1

dt
= αf1µP1 − βTT1 (3)

dT2

dt
= αf2µP2 − βTT2 (4)

dN

dt
=

−1

Y
µ(P1 + P2) (5)

µ = µmax
N

N + KN
(6)

with P1 and P2 as the biomass densities of the two bacterial
strains (mg bacteria l-1). The concentrations of the two toxins
(mg/l) are denoted by T1 and T2, respectively. f1 and f2 is the
fraction of growth energy invested in producing the toxin by P1
and P2, respectively. KT and βT are the killing rate (l mg toxin-1

h-1) and the decay rate (h-1) of both toxins. N is the nutrient
concentration. µ and Y are the growth rate (h-1) and mass yield
(mg bacteria mg nutrients-1) of both strains, respectively. The
growth equation is modeled using Monod kinetics with µmax

and KN as the maximum specific growth rate (h-1) and the half
saturation constant (mg l-1), respectively. The model is visually
represented in Figure 1A.

2.2. Invasion analysis

To find the optimal level ofmetabolic investment that should
be allocated by any of the two strains in toxin production,
a technique from EGT, invasion analysis, is used. Here, it is
assumed that the two strains initially have the same level of
metabolic investment in toxin production, fres, termed here the
resident strategy. Then, a rare mutant appears in the population
with different level of investment, fmut , that may or may not be
able to invade the population and displace the resident strategy.
The aim of the analysis is to find the resident strategy that if
adopted by the whole population can not be displaced by any
mutant strategy. To do that, the concepts of the microbial life
cycle from Cremer et al. (2012) and the invasion index from
Mitri et al. (2011) and Nadell et al. (2010) have been used
(Niehus, 2016). The standard microbial life cycle is a modeling
approach which aims to mirror the cycle of microbial growth in
nature. The growth of bacteria involves the processes of colonies
initiation, maturation and then dispersal, to form new colonies.
So, in this modeling paradigm, bacteria are assumed to grow at
separate patches, that later undergo a mixing step. In this mixing
step, cells from all patches are assumed to undergo dispersal and
get mixed with each other to initiate new colonies and start the
next cycle of the simulation (Niehus, 2016; Niehus et al., 2021).
Previous work (Gardner and West, 2004; Bucci et al., 2011) has
already shown that aggression is favored when the competition
between strains is more localized. Our work focuses on the effect
of the spatial nature of growth in biofilms on the evolution
of aggression. And a high level of mixing between patches is
assumed. The model, illustrated in Figure 1B, begins with an
initialization step: the patches are seeded with the bacterial
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FIGURE 1

(A) An illustrative diagram (Hashem and Van Impe, 2022a,b) of a

competition between two constitutive toxin producers, where

each strain is immune to its own toxin, growing together on the

same nutrient. The diagram depicts two biological species, P1

and P2, each denoted by a square, and three chemical species,

N, T1, and T2, each denoted by a circle and representing the

common nutrient and the toxins produced by P1 and P2,

respectively. The consumption of N as well as the production of

T1 and T2 are denoted by solid lines, while the inhibiting e�ects

of T1 and T2 on P2 and P1, respectively, are denoted by dashed

lines. (B) An illustration of the microbial life cycle model: a

metapopulation of the two strains P1 and P2 is assumed to grow

in a finite number of separate patches. The model consists of (i)

an initialization step: all patches are seeded with the bacterial

strains, (ii) a growth step: the growth dynamics is simulated in

each patch separately until the population levels of all strains

reach a steady state, and (iii) a mixing step: all patches are mixed

with each other and the new composition of the

metapopulation is used to initialize a new cycle of the model.

strains, then a growth step: the growth of bacteria is simulated
at each patch separately, until the populations of all strains reach
a steady state. And finally a mixing step: the total mass of each
strain over all patches is computed so that it can be accordingly
redistributed over the patches in the next simulation cycle.

The evolutionary stable toxin production strategy,
represented by f ∗, is the investment in toxin production that,
if it is adopted by the population, no mutant with a different
f can invade the population. Instead of explicitly modeling
the microbial life cycle, the invasion analysis is carried out by
calculating an invasion index (Mitri et al., 2011). The implicit
assumption of the invasion analysis is that a mutant strategy,
fmut , is set to spread in the population if the fitness of the mutant
against a strain adopting the resident strategy, 5(fmut | fres), is
higher than the average fitness of the population. The fitness
of any strain here is equivalent to its biomass by the end of the
simulation when the population levels reach a steady state and

the nutrient is completely consumed. The average fitness of the
population is defined as the fitness of any of the two strains
adopting the resident strategy against each other, 5(fres | fres).
Hence, a mutant toxin production strategy is set to invade
a population adopting a resident toxin production strategy
whenever the invasion index, Iinv, is higher than one, where:

Iinv =
5(fmut | fres)

5(fres | fres)
(7)

An Evolutionary Stable Strategy (ESS), f ∗, is one that can not
be invaded by any mutant strategy. To determine it, the invasion
analysis is repeatedly carried out where the invasion indices of
all possible mutant strategies are calculated against all possible
resident strategies. The results are plotted in pairwise invasibility
plots (Brännström et al., 2013), which show when a mutant
strategy can invade a resident strategy. A resident strategy that
can not be invaded by any mutant strategy is set to be f ∗. All
the simulations were solved in MATLAB using ODE45 solver,
where the initial biomass density for both species is set to be 1mg
bacteria l−1 and the initial nutrient concentration is 104mgl−1.
The running time is set to be 500 h, at which the nutrient is
completely consumed in all simulations.

2.3. Biofilm modeling

For modeling competition within a biofilm, IbM simulations
were carried out using MICRODIMS, an in-house IbM platform
that has been built and applied to simulate microbial growth on
surfaces as biofilms or colonies (Verhulst et al., 2011; Tack et al.,
2015, 2017). MICRODIMS is implemented in Repast Simphony
toolkit (North et al., 2013), an open-source individual based
modeling toolkit, written in Java. It shares the same design
principles of other established microbial IbM tools that have
been used to study the role played by spatial growth on the social
interactions in a microbial community (Picioreanu et al., 1998;
Kreft et al., 2001; Xavier and Foster, 2007; Mitri et al., 2011).
The models simulate the growth of cells on an inert surface.
Cells are modeled as individual agents that consume nutrients,
grow, reproduce, and die, with nutrients diffusing from an
infinite source through the upper boundary of the simulation.
Hence, Dirichlet boundary conditions are applied such that
the chemicals’ concentrations are held at their initial value
at the upper boundary of the environment, while Neumann
boundary conditions are applied at the solid surface such that
the concentration gradients at the surface are equal to zero (Tack
et al., 2015). Periodic boundary conditions are applied at the
lateral ends of the model. The diffusion of nutrients and toxins
in the model is solved using a Forward-Time-Central-Space
algorithm (Anderson et al., 1997). A shoving algorithm (Kreft
et al., 2001) is used to avoid the overlapping of cells. A detailed
overview for the processes as well as the parameter values
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describing the movement, growth, reproduction and death of
cells can be found in Tack et al. (2015). All the simulations were
carried out using 50 replicates, and the mean of the results and
their standard deviation have been plotted, with the standard
deviation ≈ 1%, which is equivalent to a confidence interval >
95%. And, unless otherwise is mentioned, they were conducted
using a 800× 250 µm grid, seeded with a mixed layer consisting
of 80 cells of each strain and carried out till the biofilm height
reached 150µm. The fitness of each species is described in terms
of its average growth rate, its total biomass divided by the time
required to reach the maximum biofilm height at the end of
the simulation. The initial nutrient concentration is set to be
104 mg/l throughout all simulations. The high initial nutrient
concentration as well as starting with a dense mixed initial layer
of cells serve to minimize the effect of spatial structuring that
emerge from competition over nutrients.

3. Results and discussion

3.1. Competition dynamics in a
well-mixed system

We investigate the conditions under which toxin production
is a useful strategy in the context of the competition between two
toxin producing strains in a well mixed culture, where all cells
experience the same chemicals’ concentrations. It is expected
that releasing toxin would not always be an advantageous growth
strategy. For example, if the toxin killing rate, KT , is not high
enough, then a bacterial strain would fare better by not engaging
in aggression. Also, when the nutrients in the system are scarce,
it would be better for the microbes to allocate all their metabolic
energy to biomass production. An example of how the model’s
parameters can affect when aggression becomes a favorable
strategy is illustrated in Figure 2. Here, three contest scenarios
are simulated: (i) symmetric aggression: both strains adopt an
aggressive growth strategy, by producing toxin at a fraction
of investment corresponding to 10% of their growth rates,
consequently inhibiting each other’s growth, (ii) asymmetric
aggression: one strain is investing in toxin production while
the other is not, and (iii) no toxin production: the two strains
do not produce toxins and opt instead to fully allocate their
resources to growth. The biomass-time evolution of the two
strains is tracked for each of the three different scenarios, where
the fitness of each strain is defined as its final biomass by the
end of the simulation. When the toxin killing rate is low, we
find that no toxin production becomes the ESS for both strains.
As seen in Figure 2A, for the focal strain P1, the no toxin
production strategy strictly dominates the toxin production
strategy regardless of the behavior of the opposing strain. While
an aggressive strain can outgrow a non toxin producing strain
in the asymmetric scenario, switching to no toxin production
growth strategy leads to a higher final biomass regardless to

FIGURE 2

The evolution of the biomass density of the two bacterial strains

in time, under the scenarios of (i) symmetric aggression (red):

both strains produce toxins, by setting the toxin investment

fraction, f, for both of them to 0.1 (ii) asymmetric aggression

(blue): one of the strains, P1, produce a toxin, f = 0.1, while the

other fully invests in growth, f = 0 and (iii) No toxin production

(green): the two strains do not produce toxins and both fully

invest in growth, f = 0 for both strains. (A) At low toxin lethality.

(B) At high toxin lethality.

whether the opponent produces toxin or not. It is noted here that
not producing toxin becomes an optimal growth strategy under
the model’s assumption of high mixing between patches. If the
competition is more localized, as explained in Gardner andWest
(2004), then it would suffice for a toxin producer to outgrow a
non toxin producer locally, as in the mixed case in Figure 2A, to
be able to invade the population.

Changing the model’s parameters, as by increasing the
potency of the toxins, would lead to a change in the observed
ESS, as shown in Figure 2B. Here, toxin production is the
dominant strategy. In the asymmetric aggression scenario for
example, while the toxin producer grows slower than the non
toxin producer opponent at the earlier stages of growth, toxin
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FIGURE 3

Pairwise invasibility plots for the competition between two

constitutive toxin producing strains under di�erent conditions.

The green areas are where a mutant toxin production strategy,

fmut, fares better than a resident toxin production strategy, fres.

And thus can spread in the population. A resident strategy is said

to be evolutionary stable if it can not be invaded by any mutant.

(A) High toxin lethality/high initial nutrient concentration

[N(t = 0) = 104 mg l−1, KT = 15 × 10−4 l mg toxin−1 h−1]: here,

producing toxin can be advantageous up to a certain extent.

When the two strains are producing toxin at an optimal

investment rate f∗, lying here at the center of the graph, no

mutant can fare better. (B) At low toxin lethality/ low initial

nutrient concentration parameter region [N(t = 0) = 103 mg l−1

KT = 1.5× 10−4 l mg toxin−1 h−1: in such conditions producing

(Continued)

FIGURE 3 (Continued)

toxin is disadvantageous to the producing strain. Hence in a

population in which the strains are attacking each other using an

investment in toxin production, fres, any mutant with lower level

of toxin production, fmut < fres, will fare better. The graph shows

that the only strategy that is evolutionary stable lies at the origin:

when the two strains are not producing toxins at all. (C) The

pairwise invasibility plot when multiple evolutionary stable

growth strategies exist [N(t = 0) = 103 mg l−1, KT = 13× 10−4 l

mg toxin−1 h−1]. Here, both no toxin production and toxin

production at an optimal investment rate are evolutionary stable.

accumulation in the system later inhibits the growth of the
sensitive strain (around t = 18 h) leading to the monopolization
of the available resources by strain adopting the toxin production
strategy. Through inspecting the two other scenarios as well,
the toxin production strategy leads always to a higher fitness
regardless of the strategy of the opponent and aggression is
favored. However, as expected, when the two strains opt to toxin
production they both end up with much lower fitness than the
no aggression scenario.

Afterwards, we allow the fraction of investment in toxin
production to vary. To find the specific level of investment
in toxin production corresponding to the ESS that should be
adopted by both strains at evolutionary equilibrium, an invasion
analysis is carried out. For that, it is assumed that the two
strains initially have a level of investment in toxin production
f1 = f2 = fres. And the question is whether a mutant of any
of the two strains that has a different level of investment in
toxin production, fmut , would be able to invade the population.
For that the invasion index of the mutant strategy, calculated
according to Equation (7), must be higher than one. By repeating
this analysis for all possible combinations of fmut and fres (see
Figure 3), the value of fres where no mutant strategy fares better
than the resident strategy can be determined. At high toxin
lethality/ initial nutrient concentration, the optimal investment
in toxin production can be found using the pairwise invasibility
plot depicted in Figure 3A where at the optimal point, f1 =

f2 = f ∗, a mutant belonging to any of the two strains adopting a
lower or higher toxin investment fraction than f ∗ will achieve
lower final biomass when compared to the resident strategy.
The optimal strategy in such situation is investment in toxin
production, but only up to a certain extent, f ∗, after which,
the gain from producing toxin is outweighed by the growth
deficiency due to the excessive investment in toxin production
at the expense of biomass production. The optimal point, f ∗,
will depend on the toxin killing rate and the initial nutrient
concentration, among other factors (see Niehus, 2016 for more
extensive discussion). By contrast, at low toxin lethality/ initial
nutrient concentration, see Figure 3B, for two strains adopting a
certain level of investment in toxin production, f1 = f2 = fres,
whenever a mutant emerges with a lower level of investment,
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FIGURE 4

A parameter map showing the optimal, evolutionary stable,

growth strategy (aggressive vs. no toxin production) under

di�erent combinations of toxin killing rate and initial nutrient

concentration. For a constitutive toxin producer, aggression is

favored as the initial nutrient concentration and the toxin

lethality increase. Peaceful growth conversely is the optimal

growth strategy when nutrients are more limited and the toxin is

less lethal. A third, narrower, parameter region exists which is

characterized by the existence of multiple evolutionary stable

growth strategies.

fmut < fres, it will end up with higher fitness than the resident
strategy. The only point where no mutant strategy can gain
an improvement in fitness is at the origin, when the resident
population produces no toxin, fres = 0. Hence, the evolutionary
stable state of this competition is when the two strains fully
commit to peaceful growth.

A parameter map showing the N0 and KT combinations at
which each growth strategy, no toxin production vs. aggression,
is dominant is shown in Figure 4. It is noted that two
main parameter regions emerge. When the initial nutrient
concentration and toxin lethality is low, a strain is better off
investing in fast growth. Investing in toxin production on the
other hand is most beneficial when the nutrient concentration
is higher and the toxin killing rate is relatively high. It is
also observed in Figure 4 that as the bacteriocin killing rate
increases, aggression becomes the dominant strategy. However,
this will lead to grave consequences as the fitness of both
contestants deeply suffers from mutual aggression. This goes
inline with previous research, where an analysis by Frank (1994)
of the competition between a toxin producer and a sensitive
strain has shown that investment in toxin production becomes
more favorable at high nutrient concentrations and high toxin
lethality. Finally, a narrow parameter region exists where both
peaceful growth and producing toxin at an optimal level are non-
invadable ESS strategies, an example of a pairwise invasibility
plot where this occurs is shown in Figure 3C.

It is seen from the well-mixed culture simulations, that
aggression is favorable at high initial nutrient concentration and
high toxin lethality. In such conditions, the game dynamics can
be classified as a Prisoner’s dilemma, where each of the two

FIGURE 5

While the spatial mode of growth significantly reduce the cost

endured in the mutual aggression scenario due to the resulting

spatial segregation, the outcomes of other scenarios are not

significantly altered from the well-mixed growth setting. (A) No

aggression: competition between two non toxin producers in

the biofilm mode of growth. Starting from an initial mixed layer

of cells, the two strains grow together to form a mixed biofilm

with little linage segregation. (B) Asymmetric aggression:

competition between a toxin producing strain (red) and a non

toxin producing strain (blue), in spatial settings. The constitutive

toxin producer come to dominate the competition at early

stage, leading to the elimination of the non toxin producing

strain.

strains is better off engaging in aggression using an optimal
level of investment in toxin, f ∗, as shown through the pairwise
invasibility plots. However, at equilibrium, when both strains
engage in releasing toxins, they end up with much lower
final biomass than the peaceful growth scenario. The cost of
aggression is rather high in well-mixed bacterial systems.

3.2. Competition dynamics in a biofilm

How does the competition dynamics change when moving
from a well-mixed system, to a spatial mode of growth, as in
biofilm growth? To investigate that, the competition between
two strains growing on a surface is simulated using IbM
under conditions of high toxin lethality where aggression is a
favorable strategy. The simulation is initialized with a randomly
distributed layer of cells. Three scenarios are again simulated: (i)
two non toxin producing strains growing together, (ii) a toxin
producing strain vs. a non producer, and (iii) the case of two
toxin producers against each other.

For the first two scenarios, (i) and (ii), shown, respectively,
in Figures 5A,B, the results produced are similar to their
counterparts in a well-mixed system: the two strains grew to
form amixed biofilm in the first scenario and the toxin producer
completely dominates the biofilm in the second. In the case of
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FIGURE 6

An individual-based model of a competition between two toxin

producing strains, growing together as a biofilm starting from an

initial mixed layer of cells. The two strains gradually segregate

into two distinct clusters. The cells lying at the clusters’

boundaries are experiencing negative growth, due to the toxins’

e�ect, and the further a cell lies from the clusters’ boundaries,

the lower the damage it su�ers.

two toxin producers however (iii), it is observed that the two
strains gradually segregated from each other, as seen in Figure 6.

This is an example of pattern formation resulting from local
self-activation, growth, and lateral inhibition, due to toxins,
as explained in Meinhardt and Gierer (2000). This process of
pattern formation is guided by the initial asymmetries present in
the initial layer of cells which get amplified by positive feedback
loops to result in a significant deviation from the initial near
homogeneous state, causing the segregation effect (Magoroh,
2017). The same process can also be explained through the lens
of clonal expansion of cells, which allows the segregation of
the two strains leading to the formation of the distinct clonal
groups/clusters, ultimately reducing the strength of the non-kin
competition within the biofilm.

These random variations in the initial density and the
growth behavior of the cells of the two strains will break
the “spatial symmetry” of the contest, meaning that in some
segments of the surface, the red strain will have an advantage
over the blue strain while in other segments the opposite will
occur. An initial advantage in the density or the growth of one
strain over the other would lead to a higher concentration of the

toxin produced by the former strain. This in turn will lead to
amplifying the said advantage in the next layer as the dominant
strain’s toxin will inhibit the growth of the less ubiquitous strain.
This positive feedback loop finally culminates in the segregation
of the two strains into distinct clusters across the surface.
A consequence of the spatial segregation is a reduction in
concentrations, and consequently the effects of the toxins on the
cells which lie far from the “front lines.” It can be observed that
there is a discrepancy in the growth of the cells based on their
position within the each cluster. While the cells growing close to
the center of a cluster experience positive growth, the cells lying
at the edge of each cluster suffer from negative growth due to
the toxins’ inhibiting effect. This in turn leads to a significant
increase in the overall fitness of the two strains compared to
the corresponding well-mixed growth scenario, as most of the
cells in the simulation have less exposure to toxins. Furthermore,
another factor that contributes to the spatial segregation between
the two strains is the bottlenecking effect and the competition
over the nutrient (Nadell et al., 2010). The structuring effect
resulting from the competition over the nutrient is however
relatively weak compared to that resulting from toxin release,
as observed by comparing the degree of spatial segregation in
Figures 5A, 6.

In Figure 7A, the average fitness of a strain in a mutual
aggression scenario is plotted as a fraction of the average fitness
in case of no aggression, for both the well-mixed and spatial
competition settings. For different toxin killing rates, it is noticed
that a strain’s fitness in case of spatial aggression is consistently
much higher than its fitness in case of well-mixed competition.
It is crucial to note however that the discrepancy in the fitness
of the competing species engaging in aggression between the
IbM and the well-mixed simulations can not yet be solely
attributed to the spatial structuring effects within the biofilm
growth, since there are also other factors that characterize the
IbM model which are different from the well-mixed model,
namely differences in boundary conditions between the two
models: (i) continuous supply of nutrients in the IbM model
vs. limited amount of nutrients in the well-mixed model, (ii)
toxin leakage from the top boundary of the IbM model while
toxins accumulate in the well-mixed model, and finally (iii)
stochastic effects only exist in the IbM model. Therefore, to pin
down the effects of spatial structuring on the improvement in
fitness of the two strains engaging in aggression in a biofilm, two
“pseudo” well-mixed models have been created within the IbM
environment. In the first model, named Mixed growth(IbM)I,
the well-mixed growth within an IbM environment is simulated
by randomizing the positions of the cells after every iteration,
following Schluter et al. (2016). Additionally, a second model,
Mixed growth(IbM)II, is created where local differences in toxin
concentrations across the biofilm is eliminated by uniformizing
the toxins’ concentrations at the horizontal direction. This is
done by replacing the toxins’ concentrations at each spatial unit
in each row of the environment grid by the average of the toxin’s
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FIGURE 7

(A) The average fitness of two strains engaging in mutual

aggression, relative to their fitness in the no aggression scenario,

in case of a spatial vs. well-mixed mode of growth, at di�erent

toxin lethalities, using three di�erent models of mixed growth as

a benchmark. Besides the initial simple mixed growth model,

two additional mixed growth models have been created within

the IbM environment. In Mixed growth(IbM)I, the spatial mixing

e�ect is induced by randomizing the positions of the cells after

each iteration, while in Mixed growth(IbM)II the concentrations

of the toxins are made to be uniform at the horizontal direction

by replacing the toxin concentration at each spatial point in

each row of the environment grid by the average value of the

toxins’ concentration in the row to which the spatial point

belongs. (B) The e�ect of mutual aggression on the lag phase of

a microbial community: the growth curves of the overall

population in case of (i) mutual aggression scenario (red) and (ii)

No aggression (black) for two strains growing together in a

spatial settings as a biofilm. The duration of the lag phase is

defined here as the intersection of the maximum slope at the

exponential phase with the horizontal asymptote at the initial

population level, shown with the dotted lines.

concentration in this row of spatial units. This way, toxins in the
simulation keep diffusing away in the vertical direction while
being uniform in the horizontal direction across the biofilm,
regardless of the local biomass densities of each strain. Results
from both models still show a significant improvement in the
strains’ fitness at the spatially structured IbM when compared to
the two pseudo well-mixed models, which both provided similar
results. This shows that spatial structure plays a significant role
in alleviating the cost of aggression in biofilms.

The growth curve of bacteria is known to start with a lag
phase, during which, little to no cellular division occurs, as cells
adapt to the new medium by synthesizing necessary enzymes,
RNA and other cellular components essential to initiate the

exponential phase of growth (Rolfe et al., 2012; Madigan et al.,
2018). An interesting observation in the case of competition
between two toxin producers is the emergence of a competition-
induced lag time in the overall population growth curve. The
lag time of the total population in case of mutual aggression
is compared to the no toxin production scenario in Figure 7B,
where the lag time is defined as the intersection of the maximum
slope at the exponential phase with the horizontal asymptote at
the initial population level in the graph showing the evolution of
the log of the number of cells with time (Baty and Delignette-
Muller, 2004). The emerging lag time is associated with the
initial, mixed, phase of growth of the population. When the two
aggressive strains are fully mixed, they are under the growth
inhibiting effect of each other, leading to a phase of slow linear
growth. Afterwards, as spatial segregation comes into effect, the
two strains became less affected by each other’s inhibiting effect.
This leads to the beginning of the exponential phase of growth. It
should be remarked here that the exponential phase of growth is
a consequence of the high substrate diffusivity assumed for this
model, which does not allow for the emergence of linear growth
rate regime observed in other modeling studies (Ward et al.,
2005). It is also observed that the slope during the exponential
growth phase decreases with time, this dampening effect is due
to the accumulation of the toxin in the medium, leading to a
progressively lower slope compared to the no toxin case. Finally,
it should be also noted that while the lag time in Figure 7B
is determined using the same method as when calculating the
classic lag phase in batch cultures, the nature of the lag time here
is different as it emerges from the competitive social interaction
between the cells, and not due to the individual adaptation of the
cell to the environment.

3.2.1. E�ect of varying toxins’ di�usivities

Next, the effect of varying toxins’ diffusivity is investigated,
by comparing the outcomes of the competition under low and
high toxin diffusion coefficients. A toxin’s diffusivity is known
to be dependent on the medium composition, temperature
and the toxin itself. In the low diffusivity scenario, where KT

is set at the nominal value, it is noticed in Figure 8A that
segregation happens earlier in the simulation, giving rise to
curved clusters with well defined borders. Between the clusters,
a no-man’s land where bacteria experience negative growth can
be located. A higher toxins’ diffusivity would be expected to lead
to longer wavelength patterns, and thus wider clusters. When
running the high toxins’ diffusivity scenario, by setting KT to
ten times the nominal value, a more complex picture emerge as
seen in Figure 8B; it is observed that the segregation happens
later in the simulation, and the growth is more uniform. Also,
while the cells growing within each cluster from the opposite
strain get inhibited, the effects on the borders are less clear.
The reason is that when the toxin’s diffusivity increases, its
effectiveness decrease, as it gets quickly diluted in the medium.
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FIGURE 8

(A) The competition between two toxin producing strains at low

toxins di�usivities in a grid of 1, 200× 200µm. The low toxin

di�usivity, increases its e�ectiveness, resulting in clusters with

sharp, well-defined, boundaries. (B) Competition between two

toxin producing strains, at high toxins di�usivities in a grid of

1, 200× 200µm, where DT is set to 10 times the nominal value.

The high toxin di�usivity reduces its e�ectiveness as it gets more

quickly diluted, resulting in a more uniform growth with less

defined boundaries between the two spatially segregated

strains. (C) The average fitness of the two strains engaging in

mutual aggression, relative to their fitness in the no aggression

scenario, under low and high di�usivities.

Increasing toxin’s diffusivity is here equivalent to decreasing
toxin’s killing rate, and consequently, its effectiveness. The
higher the diffusivity, the more the toxin gets diluted within the
biofilm and the lower its concentration. Hence, the lower toxin
effectiveness will have two results: a delayed, less sharp, spatial
segregation, and a lower inhibiting effect on the growth of the
two strains involved, as shown in Figure 8C, when compared to
the low diffusivity scenario.

3.3. The territorial nature of microbial
aggression

Previous research has shown that benefit-to-cost ratio of
engaging in toxin production in structured habitats plays a
key role in the promotion of evolution of anticompetitor
toxins (Chao and Levin, 1981) as well as maintaining microbial
diversity (Durrett and Levin, 1997). Chao and Levin (1981)
shows that in structured habitats a colicin releasing bacteria
is more likely to outgrow a sensitive strain as an inhibition
zone is created out the microbes of the colicinogenic colonies
which increases the availability of the resources to them, thus
increasing the benefit-to-cost ratio of the competition. Our
paper highlights the territorial nature of microbial conflicts
betweenmutually aggressive strains and how spatially structured
competition helps to increase the benefit-to-cost ratio of the
competition by reducing the cost of engaging in fight. This cost
encompasses here not only the metabolic cost of producing
the toxin, but also the growth inhibiting effects resulting
from engaging in microbial warfare with another strain. The
reduction in growth rate of two toxin producing strains
competing against each other has been shown to be dependent
on the mode of growth. In a well-mixed system, the strength
of the intra- and inter-species competition is the same. On the
other hand, in a spatially structured system, the emergence of
clustering reduces the strength of the intra-species competition,
allowing the cells from the same kin to enjoy a relatively harm-
free growth.

Different strains engage in a fight to establish their own
territories at the early phase of biofilm growth. Once segregation
happens, most of the cells from each strain will enjoy harm-free
growth, away from the front-lines of the war. It is important
to remark that spatial segregation can be reinforced by other
aspects of competition, other than toxin production, as well.
Nutrient limitation and growth bottlenecks have been known
to give rise to spatial segregation between different genotypes
growing out of a well-mixed, diverse biofilm (Hallatschek
and Nelson, 2008; Nadell et al., 2008; Mitri et al., 2016).
Furthermore, besides the spatial structuring, other factors could
play a role in promoting the evolution of aggression which
have not been the focus of this paper, such as the scale of
competition (Gardner and West, 2004; Bucci et al., 2011).
Additionally, to keep the model simple, only the competition
between constitutive toxin producers has been considered. In
reality, the use of damage-dependent regulation mechanisms
for toxin release is widespread (Breidenstein et al., 2011;
Dobson et al., 2012; Cornforth and Foster, 2013; LeRoux
et al., 2015), which would have also lead to reducing the
cost of aggression in the spatial competition compared to
well-mixed growth as the fight would stay confined to the
clusters’ boundaries, while the rest of the cells can fully invest
in growth.
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The territorial nature of aggression in the biofilm mode
of growth would be expected to increase aggression due
to the notable increase in the benefit-to-cost ratio in a
territorial conflict compared to the well-mixed competition.
It has been well-documented that territorial conflicts have a
particularly aggressive nature due to the high benefit-to-cost
(Georgiev et al., 2013). This would be especially true in the
microbial world as well, where the dominance of a bacterial
strain over a territory is translated into a monopoly over
the resources there, as well as being relatively safe from the
harm of its competitors. Another interesting observation that
characterized the spatial simulations is the emergence of a
socially-induced lag time in the overall growth curve of the
biofilms. This is due to the growth-inhibiting effect of the
toxins at the early, mixed, stage of competition. Since the
lag phase has been traditionally understood as a result of
non-social mechanisms which are related to the adaptation
of the individual cells to a new environment, these results
can serve to highlight that social interactions can also induce
a lag time in the overall population growth curve of a
microbial community.
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