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There is evidence that breastfeeding practices may impact the milk microbiota

diversity and differential abundance at the genera level; however, the

possibility that distinct feeding practices, such as exclusive (EBF) and non-

exclusive breastfeeding (non-EBF), might alter the milk microbiome at the

species level has not been explored. This cross-sectional study analyzed

the milk microbiome of 64 Mam-Mayan indigenous mothers from San Juan

Ostuncalco in Guatemala. Two breastfeeding practices [exclusive (EBF) vs

non-exclusive (non-EBF)] were analyzed at two stages of lactation [early

(5–46 days post-partum) vs late (109–184 days post-partum)]. EBF was

defined as offering only human milk and non-EBF was defined as feeding the

infant herbal teas (agüitas) and/or complementary foods while continuing to

breastfeed. Results identified four clusters with distinct microbial communities

that segregated bacterial species by both breastfeeding practices and stage

of lactation. Comparison among these clusters identified several notable

patterns. First, during EBF, the microbiome differed by stage of lactation where

there was a shift in differential abundance from Actinobacteria and Firmicutes

in early to Bacteroidetes and Proteobacteria species in late lactation. Second,

a similar comparison between non-EBF mothers by stage of lactation also

identified a higher differential abundance of Actinobacteria and Firmicutes

species in early lactation, but only Proteobacteria and not Bacteroidetes in

late lactation, indicating a further shift in the milk microbial ecosystem with

fewer oral bacteria present in late lactation. Third, comparisons between EBF

and non-EBF mothers at both early and late lactation showed that mothers

who exclusively breastfed had more differentially abundant species in early

(11 vs 1) and late (13 vs 2) lactation. Fourth, EBF at early and late lactation

had more commensal and lactic acid bacteria, including Lactobacillus gasseri,

Granulicatella elegans, Streptococcus mitis, and Streptococcus parasanguinis,

compared to those who did not exclusively breastfeed. Collectively, these

results show that EBF has more differentially abundant bacteria, including
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commensal and lactic acid bacteria, and that the addition of agüitas (herbal

teas) and/or complementary foods modify the milk microbiome composition

by reducing the oral bacteria and introducing more environmentally sourced

bacteria to the ecosystem.

KEYWORDS

human milk microbiome, exclusive breastfeeding, non-exclusive breastfeeding,
environmental bacteria, 16S rRNA sequencing

Introduction

Research on human milk microbiota has increased recently
due to growing interest in understanding factors shaping the
milk microbiome (Fitzstevens et al., 2017; Zimmermann and
Curtis, 2020; Lopez Leyva et al., 2021a). Several studies in
developed countries, where exclusive breastfeeding to 6 months
is limited (UNICEF, 2019), have analyzed the human milk
microbiota of breastfed and formula-fed infants (Bokulich
et al., 2016; Martin et al., 2016; Carvalho-Ramos et al., 2018),
noting that exclusive breastfeeding for 2 months was associated
with healthier gut bacterial communities (Ho et al., 2018).
In contrast, developing countries often report higher rates of
exclusive breastfeeding for up to 6 months than developed
countries (UNICEF, 2019). In fact, in Guatemala, exclusive
breastfeeding rates exceed 53% for the first 5 months, and in
rural communities, the prevalence increases to 61% compared
to 41% worldwide (UNICEF, 2019). However, few studies have
investigated breastfeeding practices in developing countries
(Lopez Leyva et al., 2021a). In LMIC (low- and middle-
income countries), cultural practices in early feeding may
include ritual fluids. This is a common practice in Mexico
(Deming et al., 2015; Rodríguez-Ramírez et al., 2016; Afeiche
et al., 2018), Bangladesh, Brazil, India, Nepal, Pakistan, Peru,
South Africa, and Tanzania (Patil et al., 2015). These ritual fluids
or herbal teas are usually culturally ‘prescribed’ to maintain
infant health (Wren et al., 2015) and to treat gastrointestinal
infections, colic, stomach pain, constipation, sore throat, or
fever (Doak et al., 2013), and for irritability and crying
(Chomat et al., 2015).

The possibility that these ritual fluids and the introduction
of complementary food might further impact the human milk
microbiome has not been widely considered. Interestingly,

Abbreviations: BLASTn, basic local alignment search tool; CAP,
constrained analysis of principal coordinates; CeSSIAM, Center for
Studies of Sensory Impairment, Aging, and Metabolism; DA, differential
abundance; DNA, deoxyribonucleic acid; ebf, exclusive breastfeeding;
FC, fold change; FDR, false discovery rate; LMIC, low- and middle-
income countries; NCBI, National Center for Biotechnology Information;
OTU, operational taxonomic unit; PCR, polymerase chain reaction; WHO,
World Health Organization.

there is emerging evidence to suggest that environmental
bacteria in soil and water may function as a superorganism
that can replenish human microbial communities as inoculants
and provide beneficial microorganisms which could positively
impact human health (Blum et al., 2019). Some of the
benefits assigned to the interaction of bacteria present in
the environment and the human microbiome include less
propensity for allergies (Hanski et al., 2012), suppression of
soil-borne pathogens, exposure to immunoregulation-inducing
soil microorganisms, immune tolerance, and an increase in
microbial diversity (Wall et al., 2015). Soil or water genera
identified in human milk include Acinetobacter (Kumar et al.,
2016; Sakwinska et al., 2016; Urbaniak et al., 2016; Drell et al.,
2017; Patel et al., 2017), Bradyrhizobiaceae (Hunt et al., 2011),
Novosphingobium (Jiménez et al., 2015), Pseudomonas (Hunt
et al., 2011; Jiménez et al., 2015; Sakwinska et al., 2016; Pannaraj
et al., 2017; Patel et al., 2017; Moossavi et al., 2019), Ralstonia
(Hunt et al., 2011; Kumar et al., 2016; Vaidya et al., 2017;
Williams et al., 2017; Moossavi et al., 2019), Sphingobium
(Jiménez et al., 2015; Mueller et al., 2015), Sphingomonas
(Hunt et al., 2011; Urbaniak et al., 2014; Jiménez et al., 2015;
Davé et al., 2016; Kumar et al., 2016; Li et al., 2017; Ding
et al., 2019; Hermansson et al., 2019), and Stenotrophomonas
(Urbaniak et al., 2014; Davé et al., 2016). Although still debated
(Salter et al., 2014; Jiménez et al., 2015; Sakwinska et al., 2016;
Douglas et al., 2020), some of these environmental genera,
such as Bradyrhizobiaceae, Pseudomonas, Sphingomonas, and
Ralstonia, have been identified as part of the “core” human milk
microbiome (Hunt et al., 2011; Jiménez et al., 2015). It has
been suggested that human milk acquired these environmental
bacteria through a maternal diet based on legumes (Drago et al.,
2017), proximity to soil environments (Blum et al., 2019), and/or
agrarian lifestyles (Yatsunenko et al., 2012; Clemente et al., 2015;
Meehan et al., 2018).

Recently, we conducted a study in the Mam-Mayan
indigenous community in Guatemala to identify maternal
factors involved in modifying the human milk microbiome
at both the genera (Lopez Leyva et al., 2021b) and species
levels (Gonzalez et al., 2021) and identified distinct clustering
of microbial communities associated with both stages of
lactation and breastfeeding practices. The study conducted
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at the species level reported a shift from Staphylococcus and
Streptococcus species in early lactation to Sphingobium and
Pseudomonas species in late lactation (Gonzalez et al., 2021).
However, in this later study, breastfeeding practices were
not considered.

To date, no studies have investigated the relationships
between the stage of lactation and breastfeeding practices in the
shaping of the human milk microbiome at the species level. This
is important because reporting at the species level provides more
information about the functionality and facilitates biological
interpretation by having an improved resolution of the data
(Lopez Leyva et al., 2021a). The purpose of this study was
to explore how two breastfeeding practices [exclusive (EBF)
vs non-exclusive breastfeeding (non-EBF)] at two stages of
lactation [early (5–46 days) vs late (109–184 days)] might
modify the human milk microbiome. Our specific objectives
were (1) to characterize the milk microbiome of EBF in early
and late lactation in mothers living in eight rural Mam-speaking
indigenous communities in Guatemala and (2) to compare
shifts between mothers who exclusively breastfed vs those who
did not exclusively breastfeed (EBF and non-EBF) at each
stage of lactation.

Materials and methods

Study site and participants

This cross-sectional study was part of a collaboration
between McGill University and the Center for Studies of
Sensory Impairment, Aging, and Metabolism (CeSSIAM)
in the Republic of Guatemala. Field studies were conducted
from June 2012 through January 2013 in eight rural Mam-
speaking communities of the San Juan Ostuncalco region
in Guatemala (Chomat et al., 2015). The inclusion criteria
were indigenous lactating women with infants at (1) early
stage of lactation (5–46 days) or (2) late stage of lactation
(109–184 days) and who had a vaginal delivery. The exclusion
criteria were: (1) mothers with colostrum (milk < 4 days
post-partum) and (2) mothers treated with antibiotics during
the post-partum period. Ethical approval was obtained from
the Institutional Review Boards of both institutions, and
permission was obtained from community leaders and the
local authorities of the Ministry of Health. All mothers
provided written informed consent for participation in
the study.

Study design

Two breastfeeding practices [exclusive (EBF) vs non-
exclusive (non-EBF)] were analyzed at two stages of lactation

[early (5–46 days post-partum) vs late (109–184 days post-
partum)]. Exclusive breastfeeding (EBF) was defined as
providing only human milk to the infant and non-exclusive
breastfeeding (non-EBF) at the early stage was defined as
providing water or agüitas in addition to human milk. Agüitas
are ritual fluids; the infusions more commonly used are boiled
water, sugar water, chamomile tea, corn paste water, anise water,
orange leaf water, mint water, or sage water. Non-EBF at the late
stage was defined as providing agüitas and/or complementary
foods to the infant while they continued to breastfeed. From the
sample of 64 women, the four groups created were early EBF
(n = 15), early non-EBF (n = 14), late EBF (n = 18), and late
non-EBF (n= 17).

The classification of the type of breastfeeding practice
into groups was done based on a structured, in-depth
questionnaire administered to mothers about independent
factors (maternal, infant, and cultural practices and beliefs)
that may influence breastfeeding initiation, exclusivity, and
frequency (Wren et al., 2015). Trained local health care
workers administered the questionnaire orally in either Spanish
or Mam to participants during a 30- to 40-min interview
(Wren et al., 2015). Feeding patterns were defined as EBF
or non-EBF based on cumulative recall since birth. Mothers
were asked if they ever fed their infant agüitas since birth
(yes/no). If yes, the timing of the agüitas initiation was
queried (hours, days, and weeks post-partum). Likewise,
mothers were asked to identify from a list the type of
agüitas given to the infant and provide an open-ended reason
(Wren et al., 2015).

Human milk sample collection

Milk samples from early lactation (5–46 days post-partum)
and late lactation (109–184 days post-partum) were collected
during the period from 2012 to 2013. These ranges were
chosen to be consistent with our previous studies that measured
infant growth (Li et al., 2016, 2019; Wren-Atilola et al.,
2018). Prior to collection, the nipple and areola of the breast
were cleaned with 70% ethyl alcohol. Human milk samples
were collected during a 3-h time window in the morning
from the breast not recently used for breastfeeding via full
manual expression by a trained midwife, who used hand
sanitizer before and after collection. This is important since
other studies have shown differences in milk microbiome
diversity with the use of breast pumps (Moossavi et al., 2019).
Milk was collected into 60 ml plastic vials and immediately
stored on ice. Samples were partitioned into 15 ml tubes at
the field laboratory (−30◦C) prior to transfer on dry ice to
McGill University where they were stored at −80◦C, which
is known to preserve the milk microbiome integrity (Lyons
et al., 2021), until DNA extraction for microbiome analysis was
performed in 2018.
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16S rRNA gene amplification,
sequencing, bioinformatics, and
statistical analysis

Methodology (sequencing and microbiome
characterization) is as described in Gonzalez et al., 2021. Briefly,
DNA extraction was done using 1 ml of milk with DNeasy Blood
and Tissue mini kit from Qiagen according to the manufacturer’s
protocol. For PCR, a region of ∼526 bp in the 16S rRNA gene,
covering the V1–V3 region, was amplified with the universal
eubacterial primers 27F: AGAGTTTGATCCTGGCTCAG
and 533R: TTACCGCGGCTGCTGGCAC (Cabrera-Rubio
et al., 2012). The subsequent 16S rRNA gene sequencing
was performed using the Illumina MiSeq platform at McGill
University and Génome Quebec Innovation Centre. Amplicons
were assembled from 300 paired-end reads. Reagent controls
were below the detection limit used by Génome Quebec
Innovation Centre for quality assurance. Microbial data
processing was performed using ANCHOR, a 16S rRNA
gene amplicon pipeline for microbial analysis (Gonzalez
et al., 2019). Briefly, Mothur (Schloss et al., 2009) was used
to align and dereplicate sequences before high-count OTU
selection at a count threshold of 36 across all samples. NCBI
16S rRNA RefSeq, NCBI non-redundant nucleotide, SILVA,
and the Ribosomal Database Project (RDP) databases were
used to annotate OTUs using BLASTn with criteria of > 99%
for identity and coverage. When a BLASTn return had
100% identity and coverage hits across multiple databases,
priority was given to NCBI 16S rRNA RefSeq due to the high
standard of curation. Low counting amplicons (<36 counts)
were binned to high-count OTUs at a lower threshold of
>98% identity/coverage with multiple, equally good (highest
identity/coverage); all the annotation was retained and
reported. However, all annotation, and in particular species
calls, should be considered putative even when sharing 100%
sequence identity to a single species due to database errors.
Bacteria with errors in the data repositories which qualified as
unknown bacteria were identified as “DBinconsistency_MS” for
multiple species or “DBinconsistency_MG” for multiple genera.
Contamination was controlled at all stages of this analysis. This
included the use of aseptic sampling protocols monitored by
trained specialists as well as PCR blanks performed at Génome
Quebec in Canada (no samples were sequenced if any bands
were visible in negative controls). Contamination control
continued at the bioinformatics stage where the Canadian
Centre in Computational Genomics of McGill University
carried out contemporary investigation and control via sample
pre-processing including ordination analysis, control for
sparsity and prevalence, and identifying putative contamination
(decontam, R package; Supplementary File 1). Finally, the
biostatistics analysis involved a differential abundance test
(DESeq2) which contained a Cook’s distance analysis step
prior to the test.

Alpha diversity of human milk samples was measured
using Chao 1, Shannon, and Observed indices within the
Phyloseq R package (McMurdie and Holmes, 2013). Significant
differences between alpha-diversity indices were estimated
using a t-test (for normally distributed values) or a non-
parametric method (Mann–Whitney test). P-values were
corrected for multiple comparisons using the Benjamini-
Hochberg procedure. Beta diversity was assessed using the
constrained correspondence analysis (CCA) ordination method.
Dispersion ellipses were drawn using the veganCovEllipse
function from the Vegan package in R (Oksanen et al.,
2020). The significance of the different constraints in the CCA
analysis was evaluated using an ANOVA-like permutation test
(vegan package).

To characterize differentially abundant taxonomic
units between groups of samples, parametric models
developed in transcriptomics perform well when applied
to microbiome biomarker data (uneven library sizes,
sparsity, and sample representativity) (Gonzalez et al.,
2015; Jonsson et al., 2016; Weiss et al., 2017; Minerbi
et al., 2019; Brereton et al., 2020). DESeq2 procedure
(Love et al., 2014) was used to calculate differentially
abundant taxonomic units. Taxonomic units tested with
a false discovery rate (FDR or the expected proportion of
false-positive findings) <0.1 were considered significant
(Anders et al., 2013; Love et al., 2014, 2016; Gonzalez et al.,
2019).

Results

Maternal characteristics and
breastfeeding practices

Population characteristics are summarized in Table 1.
The participating mothers were categorized into four
groups depending on the stage of lactation (early or late)
and breastfeeding practices (EBF or non-EBF). In early
lactation, 51.7% of infants were EBF and 48.3% were
non-EBF (added agüitas), whereas in late lactation, 51.4%
were EBF and 48.6% were non-EBF (22.9% provided
agüitas and human milk and 25.7% provided agüitas,
complementary foods, and human milk). With regard to
other breastfeeding practices, 59% breastfed within the
first hour, and the average frequency of breastfeeding was
11± 3.5 feeds per day.

Bacterial characteristics of the human
milk

A total of 503 OTUs were assembled and captured
77,827 sequence reads across all 64 human milk samples
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(Supplementary File 2). These could be annotated as 287
OTUs, 134 genera, and 76 family or higher taxa, as well
as 109 which could not be recognized as 99% similar
(in both identity and coverage) to any known taxa and
were labeled as unknown. Of the 287 OTUs annotated as
putative species, the average BLASTn return identity was
99.8% including 173 perfect hits (100% identity). Main factors
were projected onto an unconstrained ordination diagram
(NMDS), and each variable regression was independently
tested by Monte Carlo permutation (envfit function from R
package Vegan). The goodness of fit obtained is described in
Supplementary File 3.

Figure 1 shows the estimation of alpha diversity (A)
and beta diversity (B). The indices Chao 1, Shannon, and
Observed used to estimate alpha diversity identified differences
between early and late lactation for EBF and non-EBF
mothers. Differences in alpha diversity using Chao 1 were
significant between early non-EBF and late EBF (FDR = 0.01)
and between early EBF and late EBF (FDR = 0.04); using
Observed, there were significant differences between early
EBF and late EBF (FDR = 0.002), early non-EBF and
late EBF (FDR = 0.005), and late EBF and late non-EBF
(FDR = 0.08; Supplementary File 4). In beta-diversity analysis,
CCA ordination significantly segregated (p = 0.021) the four
groups: early EBF, early non-EBF, late EBF, and late non-
EBF.

Comparison of milk microbiome in
exclusive breastfeeding during early
(5–46 days) and late lactation
(109–184 days)

The differential abundance (DA) analysis between EBF
at early and late stage identified 52 significant differentially
abundant OTUs (FDR < 0.1), from which 24 OTUs were
more abundant in the early stage and 28 OTUs in the
late stage (Figure 2A). OTUs from Actinobacteria and
Firmicutes were more abundant at the early stage, whereas
at the late stage, Bacteroidetes and Proteobacteria were more
abundant. The OTUs with the highest fold change (log2
FC ≤ −5) at early stage were the commensal and lactic
acid bacteria: Lactobacillus gasseri_1 [false discovery rate
(FDR) = 2.16 × 10−8; log2 FC = −11], the oral bacteria
Streptococcus mitis_14 (FDR = 2.16 × 10−8; log2 FC = −7),
Streptococcus parasanguinis_3 (FDR = 4.5 × 10−4; log2
FC = −7), and Corynebacterium xerosis_1, bacteria commonly
found on the skin (FDR= 0.05; log2 FC=−5).

At late stage, the OTUs with the highest log2 FC
(log2 FC ≥ 5), excluding the ones labeled as unknown
were Streptococcus mitis_11 (FDR = 0.003; log2 FC = 9),
a species commonly found in the oral cavity, followed
by OTUs commonly found in the environment, including

Pseudomonas fluorescens_1 (FDR = 6 × 10−5; log2 FC = 8),
Pseudomonas koreensis_1 (FDR = 4.35 × 10−5; log2 FC = 7),
Porphyromonas_1 (FDR= 0.03; log2 FC= 6), and Pseudomonas
MS_1 (FDR= 1.82× 10−6; log2 FC= 6).

Comparison of milk microbiome in
non-exclusive breastfeeding during
early (5–46 days) and late lactation
(109–184 days)

The DA analysis between non-EBF at the early and late
stage identified 39 significant differential abundant OTUs
(FDR < 0.1), from which 20 OTUs were more abundant in
the early stage and 19 in the late stage (Figure 2B). The shift
observed in EBF groups across early and late stages repeats
in the non-EBF groups, where OTUs from Actinobacteria and
Firmicutes dominated at the early stage and Proteobacteria at
the late stage. In contrast to late EBF, OTUs from Bacteroidetes
were not differentially abundant in non-EBF groups. The OTUs
with the highest log2 FC (log2 FC ≤ −5) in early non-EBF
were a mix of oral and environmental bacteria, but there was
still a high presence of bacteria commonly found in oral cavity
and human tissues: Staphylococcus MS_1, which shows 100%
match with Staphylococcus haemolyticus, a species commonly
found in human tissues (FDR = 4.9 × 10−13; log2 FC = −22),
Kocuria carniphila_1 (FDR = 5.38 × 10−9; log2 FC = −22),
Corynebacterium segmentosum_1 (FDR = 2.84 × 10−4; log2
FC=−17), the OTU Corynebacterium_5 (FDR= 4.61× 10−6;
log2 FC = −13), Lactobacillus gasseri_1 (FDR = 1.01 × 10−7;
log2 FC = −10), Corynebacterium MS_2, which could be
C. jeikeium, C. amycolatum, or C. xerosis (FDR = 0.01; log2
FC = −10), Acinetobacter MS_1 which could be A. guillouiae
or A. lwoffii (FDR = 0.004 × 10−5; log2 FC = −9), the
OTU Streptococcus_4 (FDR = 0.02; log2 FC = −6), and
Staphylococcus hominis_2 (FDR= 6.88× 10−5; log2 FC=−5).

The OTUs with the highest log2 FC (log2 FC ≥ 5)
in late non-EBF, excluding the OTUs labeled as unknown,
were predominantly environmental bacteria: Pseudomonas
koreensis_1 (FDR = 8.17 × 10−4; log2 FC = 7), Streptococcus
MS_13 (FDR = 2.23 × 10−4; log2 FC = 6), Sphingobium
yanoikuyae_4 (FDR= 1.12× 10−7; log2 FC= 6), Streptococcus
MS_10 (FDR = 0.002; log2 FC = 5), and Stenotrophomona
maltophilia_6 (FDR= 0.03; log2 FC= 5).

Comparison of milk microbiome in
exclusive breastfeeding vs
non-exclusive breastfeeding during
early lactation (5–46 days)

During early lactation, EBF mothers had more DA
OTUs than non-EBF mothers. Figure 3A shows the 12
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TABLE 1 Maternal characteristics and breastfeeding practices.

Maternal factors Population
characteristics

Early stage (5–46 days) Late stage (109–184 days)

Exclusive Non-Exclusive Exclusive Non-Exclusive

EBF Non-EBF EBF Non-EBF

N/% 64 15 (51.7) 14 (48.3) 18 (51.4) 17 (48.6)

Age, y 23.6± 5.9 24.3± 5.9 22.3± 4.9 23.8± 4 24± 8.1

BMI, kg/m2 23.8± 3.3 22.8± 2.6 24.5± 3.1 23.8± 3.6 24.1± 3.8

Normal, kg/m2 22.2± 2 21.5± 2 22.9± 2 22.1± 2 22.5± 1.7

Overweight, kg/m2 28± 3 26.2± 2 28.5± 1 28.1± 2.9 29.3± 4.2

Normal, % 73.4 73.3 71.4 72.1 76.5

Overweight, % 26.6 26.7 28.6 27.8 23.5

Parity, %

Primiparous 44.4 33.3 50 29.4 64.7

Multiparous 55.6 66.7 50 70.6 35.3

Education, %

No 77.4 86.7 85.7 76.5 62.5

Primary education or higher 22.6 13.3 14.3 23.5 37.5

Breastfeeding practices

Breastfeeding in first hour, % 59 64.3 42.9 70.6 56.25

Breastfeeding frequency, times/day 11.4± 3.5 12.3± 3.8 11.3± 3.3 10.4± 3.2 11.8± 3.7

Infant first food, %

Breast 88.7 100 78.6 100 75

Agüitas 11.3 0 21.4 0 25

DA in EBF vs non-EBF mothers (FDR < 0.1), where 11
had higher relative abundance in early EBF and 1 had
higher relative abundance in early non-EBF. Early EBF
was the only group where two OTUs were identified
as unique to the group. These were Corynebacterium
jeikeium_1 (FDR = 7.08 × 10−4; log2 FC = −16) and
Lactobacillales MS_1 (FDR = 0.02; log2 FC = −7).
The first one is a species commonly found in the
environment, and the second one could be Abiotrophia
paraadiacens or Granulicatella adiacens. The rest of the
OTUs more abundant in early EBF were a mix of oral,
human tissue, and environmental bacteria: Staphylococcus
epidermis_8 (FDR = 2.04 × 10−11; log2 FC = −24),
Streptococcus mitis_14 (FDR = 2.04 × 10−11; log2
FC = −8), Veillonella_1 (FDR = 0.05; log2 FC = −8),
Stenotrophomonas maltophilia_6 (FDR = 0.002; log2
FC = −7), Streptococcus parasanguinis_3 (FDR = 0.002;
log2 FC=−7), Stenotrophomonas maltophilia_2 (FDR= 0.004;
log2 FC = −6), Streptococcus mitis_5 (FDR = 0.005; log2
FC = −4), Streptococcus_MS_8 (FDR = 0.003; log2 FC = −4),
and Pseudomonas_MS_2 (FDR = 0.1; log2 FC = −3),
The only OTU DA in early non-EBF was unknown_160
(FDR= 0.1; log2 FC= 4).

Comparison of milk microbiome in
exclusive breastfeeding vs
non-exclusive breastfeeding during
late lactation (109–184 days)

During late lactation, the differences in DA OTUs between
EBF and non-EBF mothers were similar to early lactation
where EBF had more OTUs than non-EBF (Figure 3B).
Of the 13 OTUs that were DA (FDR < 0.1), 11 OTUs
belonged to late EBF and 2 OTUs to late non-EBF. In
relation to the source, six of the 13 OTUs were identified
as commonly found in the environment, and the rest
(seven) were identified as commensal and commonly
found in the oral cavity or human tissues. The OTUs
in EBF with the highest log2 FC (log2 FC ≤ −5) were
as follows: Novosphingobium_4 (FDR = 2.78 × 10−9;
log2 FC = −24), Corynebacterium segmentosum_1
(FDR = 9.96 × 10−8; log2 FC = −22), Kocuria carniphila_1
(FDR = 9.11 × 10−10; log2 FC = −22), Acinetobacter_MS_1
(FDR = 1.97 × 10−5; log2 FC = −12), Streptococcus
mitis_11 (FDR = 0.002; log2 FC = −9), Corynebacterium_5
(FDR = 0.004; log2 FC = −9), and Sphingobium limneticum_1
(FDR= 0.006; log2 FC=−6).
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FIGURE 1

Alpha and beta diversity. (A) Alpha diversity indices were not significantly different in Shannon (t-test, p > 0.05) index across the four groups.
Chao 1 was significant (t-test, p < 0.05) between early EBF (n = 15) and late EBF (n = 18). (B) Beta-diversity analysis using constrained
correspondence analysis (CCA) ordination representation for each breastfeeding practice (Exclusive and Non-Exclusive) at early and late
lactation stages (=0.021).

The only more abundant OTUs in late non-EBF were
Streptococcus MS_16 (FDR= 0.03× 10−4; log2 FC= 6), which
could be S. mitis or S. pneumoniae and Streptococcus MS_10
(FDR = 0.08; log2 FC = 4), which could be S. mitis, S. oralis, S.
pneumoniae, or S. pseudopneumoniae; all were OTUs commonly
found in the oral cavity or human tissues (Figure 3B).

Discussion

To our knowledge, this is the first study to analyze the
impact of exclusive and non-exclusive breastfeeding on the
human milk microbiome at the OTU level and to determine
whether different breastfeeding practices further modified the

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2022.885588
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-885588 September 3, 2022 Time: 15:53 # 8

Lopez Leyva et al. 10.3389/fmicb.2022.885588

FIGURE 2

Differentially abundant bacteria associated with the lactation stage. Significantly different OTUs between groups were estimated using DESeq
(FDR < 0.1). Species are grouped by phylum and ordered by logFC in each group. The dashed red line indicates “infinite” log fold change, where
an OTU had detectable counts in samples from only a single group. (A) Differentially abundant OTUs between the early EBF (n = 15) and late
EBF (n = 18) groups. Fifty-two OTUs were differentially abundant, of which 24 were more abundant at early EBF and 28 at late EBF.
(B) Differentially abundant OTUs between the early non-EBF (n = 14) and late non-EBF (n = 17) groups. Thirty-nine OTUs were differentially
abundant, of which 20 were more abundant at early non-EBF and 19 at late non-EBF.
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FIGURE 3

Differentially abundant bacteria associated with EBF and non-EBF. Significantly different OTUs between groups were estimated using DESeq
(FDR < 0.1). Species are grouped by phylum and ordered by logFC in each group. The dashed red line indicates “infinite” fold change, where an
OTU had detectable counts in samples from only a single group. (A) Differentially abundant OTUs between the early EBF (n = 15) and early
non-EBF (n = 14) groups. Twelve OTUs were differentially abundant, of which 20 were more abundant in early EBF and 1 in early non-EBF.
(B) Differentially abundant OTUs between the late EBF (n = 18) and late non-EBF (n = 17) groups. Thirteen OTUs were differentially abundant, of
which 11 were more abundant in late EBF and 2 in late non-EBF.

milk microbiome during early and late lactation. Additional
novel findings reported in this study include the following.
When comparing the lactation stages in EBF, early lactation
was associated with a higher relative abundance of commensal,
oral, and lactic acid bacteria, whereas at late lactation, we
observed several species commonly found in the environment.
In non-EBF at early lactation, although there was a mix of
bacteria of the oral cavity, bacteria of human tissues origin,
and environmental bacteria, bacteria commonly found in the
oral cavity and human tissues showed a higher presence than
the environmental bacteria. Finally, milk of non-EBF at late
lactation had predominantly environmental bacteria.

Dominant bacteria

Streptococcus emerged as a dominant genus among all
breastfeeding practices, but the OTUs differed by stage of
lactation and by breastfeeding practice. S. mitis was observed
in all breastfeeding practices, S. salivarius in early EBF
and late non-EBF, and S. parasanguinis in early and late
EBF. Streptococcus has been considered part of the “core”
microbiota in human milk (Hunt et al., 2011; Cabrera-
Rubio et al., 2012; Lackey et al., 2019; Moossavi et al.,
2019), and in fact, the few studies that have reported
results at the species level have also reported Streptococcus
salivarius and Streptococcus mitis as part of the dominant
species in human milk (Heikkilä and Saris, 2003; González
et al., 2013; Jost et al., 2013). They are known prevalent

species in the oral cavity of infants (Könönen, 2000). Of
importance, Streptococcus salivarius is capable of suppressing
the growth of pathogenic bacteria, such as Staphylococcus
aureus, and it has also been reported as a putative probiotic
(Damaceno et al., 2017).

In addition to Streptococcus (Hunt et al., 2011; Boix-Amorós
et al., 2016), other dominant bacteria observed in the present
study aligned with previous findings at the genera level. These
included the presence of bacteria from the genera Pseudomonas
(Hunt et al., 2011; Jeurink et al., 2013; Boix-Amorós et al.,
2016), Sphingobium, and Novosphingobium (Jeurink et al., 2013).
However, there is still a debate as to whether Novosphingobium
and Pseudomonas are part of the “core” microbiota of human
milk or contaminants (Salter et al., 2014; Jiménez et al., 2015).
Novosphingobium has been considered a potential laboratory
contaminant in sequence-based microbiome analyses (Salter
et al., 2014), but it has also been considered part of the
“core” microbiome of human milk (Jiménez et al., 2015).
Since it was one of the dominant OTUs in our study and
it was more abundant in EBF in late lactation, it would
suggest that Novosphingobium may be acquired in late lactation
through retrograde flow (Ramsay et al., 2004). In relation
to Pseudomonas, we observed the OTUs Pseudomonas_MS_2
and P. cedrina in early EBF, Pseudomonas_MS_2 was also
more abundant in late EBF, and Pseudomonas koreensis
and P. fluorescens were more abundant in early non-EBF.
Pseudomonas is a genus that has been reported as dominant
in other studies (Hunt et al., 2011; Jeurink et al., 2013; Boix-
Amorós et al., 2016), and according to the latest systematic
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review in human milk, the microbiome Pseudomonas has been
found in 50% of the studies analyzed with a relative abundance
ranging from <1 to 17% (Zimmermann and Curtis, 2020).

In our study, we observed similarities in the shift of
microbial phyla, genera, and species between early and late
lactation. In EBF, the bacterial composition shifted from a
higher abundance of the phyla Actinobacteria and Firmicutes
in early lactation to a higher abundance of Bacteroidetes,
Proteobacteria, and unknown bacteria in late lactation. This
same shift also occurred in mothers who did not exclusively
breastfeed. At the genera level, we observed a shift from
Corynebacterium, Staphylococcus, and Streptococcus in early
lactation to Novosphingobium, Pseudomonas, Sphingobium, and
Stenotrophomonas in late lactation. These findings align with
previous results that analyzed the impact of the stage of lactation
and confirmed a shift from early to late stage (Gueimonde
et al., 2007; Collado et al., 2008; Cabrera-Rubio et al., 2012;
Khodayar-Pardo et al., 2014; Latuga et al., 2014; Chen et al.,
2018; Gonzalez et al., 2021; Lopez Leyva et al., 2021b). In
a study at the species level (Gonzalez et al., 2021), we also
observed a shift from Corynebacterium jeikeium, Lactobacillus
gasseri, Staphylococcus hominis, Staphylococcus epidermidis,
Streptococcus mitis, and Streptococcus parasanguinis species in
early lactation to Sphingobium yanoikuyae, Pseudomonas putida,
and Stenotrophomonas maltophilia species in late lactation, but
this previous study only analyzed the stage of lactation and
did not consider the type of breastfeeding practice (Gonzalez
et al., 2021). In the present study, we confirmed the presence of
distinct species in those who breastfed at early and late lactation,
indicating that the stage of lactation is an important modifier
of the human milk microbiome. Our conclusion is that this
general shift remains regardless of the breastfeeding practices
(EBF or non-EBF).

Association of exclusive breastfeeding
with lactic acid bacteria and
commensal bacteria

In EBF, more differentially abundant OTUs were
observed at both stages of lactation, including lactic acid
bacteria and commensal species with potential health
benefits and specific functions. EBF had more abundance
of lactic acid bacteria, including Granulicatella elegans,
Lactobacillales_MS_1, Lactobacillus gasseri, Streptococcus
mitis, and Streptococcus parasanguinis. The presence of these
species is important due to the known benefits of LAB which
include their ability to protect from harmful microorganisms
and improve the nutrient acquisition of the host through
their enzymatic functions (Vieco-Saiz et al., 2019). LAB can
also counteract gastrointestinal infections, enhance lactose
metabolism, minimize Helicobacter pylori infections, and
strengthen immune responses (Ashraf and Shah, 2014). In fact,

Lactobacillus gasseri has been recognized as a putative probiotic
(Damaceno et al., 2017). Of note, both Lactobacillus gasseri
and Granulicatella elegans were also present in the milk of
mothers who did not exclusively breastfeed at early lactation.
In contrast, when we compared EBF vs non-EBF at both stages
of lactation, the addition of agüitas and/or complementary
foods was associated with an overall lower abundance of LAB
and commensal bacteria. Collectively, these results support
the importance of WHO breastfeeding recommendations to
continue exclusive breastfeeding for at least 6 months (World
Health Organization [WHO], 2008), by showing a higher
differential abundance of commensal and LAB associated
with EBF.

Environmentally sourced bacteria and
breastfeeding practices

The presence of environmental bacteria in human milk
remains a controversial area with regard to their source
(Salter et al., 2014; Jiménez et al., 2015; Sakwinska et al.,
2016; Douglas et al., 2020). A recent review that considered
environmental sources of bacteria in human milk found
that only 40% of human milk bacteria were isolated from
human tissue, while the other 60% were first observed in
association with the environment (Togo et al., 2019). In our
study, we found environmental bacteria in mothers who
exclusively breastfed, including Brevundimonas_MS_1 and
Poaceae_MS_2 in early lactation and Novosphingobium
clariflavum_1, Comamonadaceae_MS_1, Pseudomonas
cedrina_1, Pseudomonas_MS_2, Stenotrophomonas
maltophilia_3, Pseudomonas_MS_1, Pseudomonas koreensis_1,
Pseudomonas fluroescens_1, Cloacibacterium normanense,
and the OTU Cloacibacterium_1 in late lactation, suggesting
inoculation of human milk microbiome via either the entero-
mammary pathway (Martín et al., 2004) or via retrograde flow
(Ramsay et al., 2004). Alternatively, environmental bacteria
could be introduced through water, or the herbs used for
“agüitas”, the method of administration (spoon, bottle, or
cup), or through the complementary foods provided to the
infant. In our study, at early and late lactation, mothers who
added agüitas and/or complementary foods also had a high
abundance of environmental bacteria, including Acinetobacter
MS_1, the OTUs Corynebacterium_5, Corynebacterium_MS_2,
and Corynebacterium tuberculostearicum_1 in early lactation
and Novosphingobium clariflavum_1, Comamonadaceae_MS_1,
Pseudomonas fluorescens_1, Pseudomonas_MS_2, Pseudomonas
koreensis_1, Stenotrophomona maltophilia_2, and
Stenotrophomona maltophilia_ 6 in late lactation. Other
studies have reported Pseudomonas and Sphingomonas as
part of the “core” human milk microbiome (Hunt et al.,
2011; Jiménez et al., 2015). The species Novosphingobium
clariflavum, Stenotrophomona maltophilia, Pseudomonas
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fluroescens, and Pseudomona koreensis have been previously
identified as species with extensive hydrocarbon degradation
activity (Babalola and Ayangbenro, 2019; Gonzalez et al., 2021).
Overall, there were fewer differentially abundant bacteria in
the milk of mothers who did not exclusively breastfeed, but
the associations and consequences of this on infant health will
require further investigation.

Strengths and limitations

This is the first study to characterize the DA of microbial
species associated with EBF and to contrast it with shifts
in the milk microbiome in mothers who did not exclusively
breastfeed in the first 6 months of lactation. Our high-resolution
analysis at the species level expands our understanding of the
differences in milk microbiome composition, which may not
be identifiable at the genera level. Finally, our milk collection
methodology involved manual collection rather than the use
of breast pumps, which has been shown to affect the milk
microbiome analysis (Moossavi et al., 2019). Collectively, the
aforementioned factors allowed us to characterize the human
milk microbiome composition in a developing country and
observe the impact of different breastfeeding practices at early
and late lactation on the milk microbiome.

However, we recognize several limitations, including the
cross-sectional nature of the study. Self-reported data, which
were used to classify the mothers into the defined groups,
may have introduced recall bias and could be a limitation.
Moreover, we used the selected primers (27F/533R targeting the
V1–V3 regions), which have high coverage for amplification of
the genus Cutibacterium but not for species within the genus
Bifodibacterium (Klindworth et al., 2012; Lopez Leyva et al.,
2021a). Also, we are limited by the presence of several unknown
or unidentified bacteria in the current libraries. Similarly, the
lack of bacteriological studies of the water, soil, agüitas, and
complementary foods limits the possibility of fully associating
human milk microbiota with these factors.

Conclusion

Understanding the impact of breastfeeding practices and the
lactation stage on the milk microbiome is critical for advancing
our comprehension of an optimal milk microbiome, and for
supporting the current breastfeeding recommendations. Our
findings highlight the importance of exclusive breastfeeding
in promoting milk microbiota with more commensal bacteria
during the first 6 months of lactation compared to non-
exclusive breastfeeding. In contrast, non-exclusive breastfeeding
before 6 months was associated with lower abundance of
commensal and lactic acid bacteria. Collectively, these findings
advance our understanding of the factors that affect the milk

microbiome, which could provide preliminary evidence to
further strengthen the recommendation by health practitioners
for “exclusive breastfeeding on demand for 6 months” (World
Health Organization [WHO], 2008) in order to establish a
healthier infant microbiome.

Finally, this study addressed several informational
gaps. These included the impact of feeding agüitas and
complementary foods to the infant on the milk microbiome
profile of rural indigenous mothers and the recognition of
environmental bacteria as part of the milk microbiome.
However, there is a need to close other gaps in the scientific
literature that still exist, and future studies are required.
This need includes uncovering associations of the human
milk microbiome with sources of environmental bacteria,
with functional properties and with early infant growth and
development. Application and investment in more advanced
technologies for human milk microbiome analyses will advance
our current understanding of the human milk microbiome and
its impact on infant health.
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SUPPLEMENTARY FILE 1

Decontam ran on this dataset identified 1 OTU as putative
contamination out of 1,505 OTUs. As expected, this OTU was not
selected by DESeq2 as a candidate for differential abundance, due to
low prevalence and high sparsity.

SUPPLEMENTARY FILE 2

A total of 503 OTUs were assembled and captured 77,827 sequence
reads across all 64 human milk samples. These could be annotated as
287 OTUs, 134 genera, and 76 family or higher taxa, as well as 109
which could not be recognized as 99% similar (in both identity and
coverage) to any known taxa and were labeled as unknown.

SUPPLEMENTARY FILE 3

Main factors were projected onto an unconstrained ordination diagram
(NMDS), and each variable regression was independently tested by
Monte Carlo permutation (envfit function from R package Vegan). The
goodness of fit obtained is described in the table.

SUPPLEMENTARY FILE 4

The indices Chao 1, Shannon, and Observed used to estimate alpha
diversity identified differences between early and late lactation for EBF
and non-EBF mothers. Alpha-diversity indices were not significantly
different in Shannon (t-test, p > 0.05) across the four groups.
Differences in alpha diversity using Chao 1 were significant between
early non-EBF and late EBF (FDR = 0.01) and between early EBF and late
EBF (FDR = 0.04) groups, and using Observed, there were significant
differences between early EBF and late EBF (FDR = 0.002), early
non-EBF and late EBF (FDR = 0.005), and late EBF and late
non-EBF (FDR = 0.08).
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