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There has been little study on the biogeographical patterns of microbial co-occurrence,
especially in agricultural soils. Here we investigated the biogeographical patterns
and major drivers of co-occurrence network topological structure, and the relative
abundance of keystone taxa for soil bacterial and fungal communities using high-
throughput sequencing on a set of 90 samples across a 1,092 km transect in wheat
fields of the North China Plain (NCP). We found that pH was the most important
environmental factor driving network topology and relative abundance of keystone
taxa. For the metacommunity composed of both bacteria and fungi, and for the
bacterial community alone, lower soil pH was associated with a more complex microbial
network. However, the network for fungi showed no strong trend with soil pH. In
addition, keystone taxa abundance was positively correlated with ecosystem function
and stability, and best explained by pH. Our results present new perspectives on
impacts of pH on soil microbial network structure across large scales in agricultural
environments. This improved knowledge of community processes provides a step
toward understanding of functioning and stability of agricultural ecosystems.

Keywords: bacteria, fungi, co-occurrence network, biogeographic model, keystone taxa, soil pH

INTRODUCTION

Soil microorganisms do not exist as individuals in nature, but are connected as complex ecological
webs through associations such as mutualism, competition, parasitism or neutral interactions,
which affect how they adapt to environmental fluctuation and change (Faust and Raes, 2012).
In order to better understand these complex associations, correlation-based network inference
methods have been developed to predict potential microbial associations from large volumes of
high-throughput sequencing data (Zhou et al., 2011; Faust and Raes, 2012). In co-occurrence
networks, nodes represent individual microbial taxa derived from operational taxonomic units
(OTUs), and positive/negative links between nodes represent potential associations between species
(Brian and Fath, 2019). Despite the lack of empirical evidence for the ability of network analysis to
provide explicable results, there is little doubt that it may help reveal information about community
structure and underlying function that is not available from alpha or beta diversity analyses
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(Fuhrman and Steele, 2008; Weiss et al., 2016), adding a
substantial dimension to reveal the stability and complexity
of ecological processes and ecosystem functions (Deng et al.,
2012). Firstly, network analysis may reveal niche overlap of
microorganisms in the community, because taxa that have the
similar niche requirements and responses to environmental
change may tend to coexist and vice versa (Wan et al., 2020).
Secondly, based on network topological features it is possible to
identify putative keystone taxa (those that are highly correlated
with other taxa in the network), which drive community
composition and function irrespective of their abundance
(Berry and Widder, 2014; Banerjee et al., 2018). In addition,
the network structure quantified by the network topological
features—such as network connectivity and stability—will change
with environmental disturbance. For example, Yuan et al.
(2021) reported that network interactions among different
phylogenetic populations in soil microbial communities would
change significantly due to climate warming. However, further
research is needed to determine whether similar trends occur
along other environmental gradients.

There are various mechanisms which may cause phylotypes
within the microbial community to co-occur more often
than by chance. One is similarity of niches, without direct
interdependence. In terrestrial ecosystems, phylotypes belonging
to diverse taxa may have similar phenotypic characteristics or life-
history strategies (Fierer et al., 2007; Barberán et al., 2017), so that
they tend to co-occur. Members of such microbial communities
that share niche spaces are identified as ecological clusters (Singh
et al., 2010). By identifying dominant phylotypes that have a
strong preference for a given environmental condition (e.g., low
or high pH), it is possible to use this information to predict
their distributions and enhance the ability to actively manage
soil communities (Delgado-Baquerizo et al., 2018). For example,
Delgado-Baquerizo et al. (2018) classified microbial communities
into different ecological clusters based on the association between
bacterial abundance and soil environmental characteristics,
which verified the possibility of predicting bacterial distribution
on a global scale. However, it is not clear whether soil microbes
with similar environmental preferences tend to co-occur in
farmland ecosystems.

Moreover, relating to co-occurrence patterns is the attribute of
microbial niche breadth. This is a comprehensive index reflecting
the resources available to species (Levins, 1968). Species with
large niche breadth that have strong ability and competitiveness
in resource utilization, and are called generalized species or
widespread species. Species with narrow niche breadths, on the
other hand, are called specialized species (Dolédec et al., 2000).
Species with broad environmental niches will be expected to
experience fewer specialized and predictable interactions within
a co-occurrence network. Thus, the intensity of interactions
in the network is likely to be inversely related to how broad
microbial niches are, on average. However, this niche width
attribute has not been widely explored in the literature on co-
occurrence networks.

Exploring the geographic patterns of soil microbial
communities can help to discern spatial distribution
characteristics more clearly, and provide insights for

understanding the spatial aggregation of microbial communities
at a range of spatial scales (Ma et al., 2016). Jiao et al. (2019)
constructed an atlas of soil bacterial communities in maize and
rice fields in eastern China, finding that taxonomic richness in
maize fields was higher at high latitudes than that in low latitudes,
however, this trend was not found in rice soils. Similarly, Shi
et al. (2019) used a species distribution model to predict the soil
bacterial diversity and community composition across the North
China Plain. However, only a few studies have explored the
geographical distribution patterns of the co-occurrence network
topological features for microbial communities (Ma et al., 2016;
Wan et al., 2020; Chen et al., 2021), focusing on isolated soil
bacterial, fungal, and archaea communities. Yet, understanding
of the integrated biogeographic patterns of different communities
and their underlying drivers remains limited, which is crucial to
improving their ecological role and exploring the mechanisms
that constitute and sustain ecosystem functions.

In the present work, we sought to increase understanding of
broad scale trends in soil microbial community network structure
in an important agricultural environment. Our study area was the
North China Plain, the most important grain producing area in
China (Jeong et al., 2014). In order to comprehensively evaluate
the geographic patterns of microbial co-occurrence networks,
we used 16S rDNA high-throughput sequencing technology and
network analysis to investigate the soils of 90 typical wheat field
soil samples. We aimed to address the following questions: (1)
What is the biogeographic pattern of soil bacterial and fungal
community co-occurrence network in wheat fields of the North
China Plain? (2) What ecological factors drive the geographic
patterns of network topological features and the connections
between kingdoms (bacteria and fungi)? (3) What are the
keystone taxa in the community and what are the environmental
factors that regulate their relative abundance? Our findings
provide a basis for further understanding the biogeographic
pattern and environmental impact mechanism of soil bacterial
and fungal communities in wheat fields of North China Plain,
and may ultimately contribute to prediction and management the
microbial communities in farmland ecosystems.

MATERIALS AND METHODS

Soil Sampling and Data Collection
The sampling area of this study extends about 1,092 km from
approximately 30◦N to 40◦N and 109◦E to 122◦E across the
North China Plain, with an average annual temperature varying
between 8 and 15◦C, and the average annual precipitation varies
between 500 and 1,000 mm. This is the most important grain
producing region of China, mostly planted with wheat and maize
in a rotation, and supported by irrigation, fertilization and high
yielding crop varieties (Chen et al., 2004). The soils from the
sampling sites were classified as Ochric Aquic Cambosols (within
the Chinese soil taxonomy) in this area (Zhu et al., 2005). A total
of 90 samples were collected from 24 sites in North China Plain
during the winter season (the 20th–30th of November 2014)
(Supplementary Figure 1A), when winter wheat was at the
tillering stage and fertilizer was not yet applied to the field, which
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effectively avoided the strong effect of fertilizer on microbial
community. In order to ensure the integrity and uniformity
of soil pH gradient, we sampled a varying number of plots
(each plot is 100 m × 100 m) for each site (within 100 km)
(Supplementary Figure 1B and Supplementary Table 1), and
collected 12 cores within each plot at a depth of 0–15 cm and
mixed as one sample. All the samples were stored in ice boxes
and brought back to the laboratory within several hours to
minimize temperature changes on the way before they could
be stored in the freezer at −20◦C. Soil samples were sieved
using a 2 mm mesh to remove roots and stones, homogenized
in the laboratory.

For each sample, a total of 25 edaphic factors were tested,
while only those with Spearman correlation coefficient less
than 0.6 were retained for subsequent analysis (Supplementary
Figure 2). Finally, environmental factors include soil pH, SM
(soil moisture), OC (organic carbon), DOC (dissolved organic
carbon), DON (dissolved organic nitrogen), NH4

+ (ammonium),
NO3

− (nitrate), TP (total phosphorous), TK (total potassium),
AP (available phosphorous), AK (available potassium), EC
(electrical conductivity), K (potassium), Cr (chromium), Mn
(manganese), Cu (copper), Zn (zinc), Cd (cadmium), Pb
(plumbum), and As (arsenic). Specific measurement methods for
each factor have been presented in detail in the earlier published
article (Shi et al., 2018). The regional map of North China Plain
was obtained from the Resource and Environment Science and
Data Center1.

DNA Extraction From Soil and High
Throughput Sequencing
DNA was extracted from 0.5 g soil using a MoBio Power
Soil DNA extraction kit (MoBio Laboratories, Carlsbad, CA,
United States) by following the manufacturer’s instructions,
purified with an Ultra Clean 15 DNA purification kit (MO
BIO), and stored at −20◦C. Bacterial community analysis
was carried out using a 16s rRNA genes primer pairs
515F (5′-GTGCCAGCMGC CGCGGTAA-3′)/907R (5′-
CCGTCAATTCCTTTGAGT TT-3′) for the V4 hypervariable
regions (Biddle et al., 2008), the fungal ITS2 region was amplified
by primer sets ITS3 (5′-GCATCGATGAAGAACGCAGC-
3′)/ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) (Gade et al.,
2013). DNA concentration was measured on a Nano-Drop
ND-1000 spectrophotometer (Thermo Scientific, United States).
After sequencing, sequences were analyzed using the QIIME
pipeline2 (Caporaso et al., 2010). The low-quality sequences
that had a quality score < 20, contained ambiguous nucleotides,
or did not match the primer and barcode, were removed.
Operational taxonomic units (OTUs) were generated at 97%
similarity cutoff using the UCLUST method in QIIME (Edgar,
2010). Using Greengenes database3 to annotate taxonomic
information for each bacterial sequence, UNITE database
(Kõljalg et al., 2005) to identify fungal taxonomy.

1http://www.resdc.cn/
2http://qiime.sourceforge.net/
3http://greengenes.secondgenome.com/

Statistical Analyses
Meta-community co-occurrence network was constructed using
the “WGCNA” package (Langfelder and Horvath, 2012). All core
bacterial and fungal taxa in the top 20% relative abundance
and presented in more than 60% of all soil samples were
included in the network analysis, while those taxa having
no robust correlation relationships (Spearman’s correlation
coefficients of > 0.6 and false-discovery-rate-corrected P values
of < 0.01) with other taxa were lost during the generation
of the networks. Sub-networks for each soil sample were also
generated by subgraph function in the “igraph” package in
R (Csardi and Nepusz, 2006). These network images were
visualized with Gephi4 (Bastian et al., 2009). To describe
the topology structure of the network, we calculated a series
of topological features (Supplementary Table 2). Node-level
topological features describe the ecological location information
of each node in the network, nodes with higher node-level
topological feature values occupy the core position in the
network, whereas lower value nodes are in the peripheral position
(Ma et al., 2016). Network-level topological features with a
high value (such as number of edges, average degree, clustering
coefficient and density) indicate a more complex and connected
network, whereas those with lower values (such as average path
length and modularity) suggest closer connections and more
concentrated within the network (Barberán et al., 2012; Ma et al.,
2016).

To test the significance and importance of the environmental
variables for network-level topological features, first, multiple
regression model (MRM) on Euclidean distance matrices with
the R “ecodist” package (Martiny et al., 2011) were used to
assess the relative contribution of each non-collinear edaphic
variable in shaping the change pattern of overall network-
level topological features. Then, kriging interpolation maps were
performed in ArcGIS 10.45 to estimate the geographic patterns
of the co-occurrence network-level topological features. Pearson
correlation coefficients and P values of the predicted values of
topological attributes and observed values at the point calculated
by cor.test function in “stats” package in R (Field et al., 2012)
were used as the result of cross validation (“CV”), and a
simple linear regression between pH and the network level
topological characteristic was shown in each map. Additionally,
to test the potential roles of soil pH in bacterial and fungal
community assemblages, we clustered the core taxa into two
ecological preference groups (High pH and Low pH) based
on the significant Spearman correlations (P < 0.05) between
OTUs abundance and environmental factors (Chen et al., 2021).
Random forest analysis was performed to identify the major
environmental factors contributing to the relative abundance of
dominant taxa in high-pH and low-pH cluster for soil microbiota.
The analysis was performed using the randomForest function in
the “randomForest” package in R (Liaw and Wiener, 2002).

In order to further illustrate the effect of pH on the network
structure, we identified the ratio of link to node as network
complexity and compared the network stability of high and low

4http://gephi.github.io/
5http://www.esri.com/software/arcgis/arcgis-fordesktop
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pH clusters. A regression analysis between network complexity
and pH based on Pearson correlation was further conducted.
Robustness, as a measure of network stability, was calculated
by removing nodes in the static network to estimate how easily
robustness degraded. Edge information of the high and low
clusters pH were obtained and then nodes were randomly and
repetitively removed, and natural connectivity of the nodes was
used to assess the network robustness (Peng and Wu, 2016).
Moreover, to quantify habitat specialization for high and low
pH clusters communities, Levins’ niche breadth (B) index was
calculated using the formula:

Bi =
1∑N

i = 1 p
2
ij

where Bi represents the habitat niche breadth of species i; N
represents the total number of samples; Pij is the proportion
of species i in sample j (Levins, 1968; Pandit et al., 2009; Wu
et al., 2018). The habitat niche breadth was calculated using
the “niche.width” function in “spaa” package of R. Boxplot
were used to illustrate the habitat niche breadth of high and
low pH clusters, with t-test were used to reveal the significant
difference between them.

The within-module connectivity (Zi) and among-module
connectivity (Pi) of each node are calculated based on Markov
clustering algorithm with the “rJava” package in R to reflect
the topological role of each node, the Zi reflects how close a
node is connected to other nodes within its own module, and Pi
describes how close a node contacts with different modules. The
topological roles of different nodes can be categorized into four
types: peripherals (Zi ≤ 2.5, Pi ≤ 0.62), connectors (Zi ≤ 2.5,
Pi > 0.62), module hubs (Zi > 2.5, Pi ≤ 0.62) and network
hubs (Zi > 2.5, Pi > 0.62) (Deng et al., 2012; Cong et al.,
2015). Generally, connectors, module hubs and network hubs
are considered as putative keystone taxa of ecological network
(Olesen et al., 2006). These relatively rare but highly connected
taxa play an important role in improving soil functional potential
in agricultural ecosystems (Shi et al., 2020). Spearman correlation
and multiple regression model were performed to explore the
determinants of the identified keystone taxa.

RESULTS

An Overview of the Constructed
Microbial Co-occurrence Networks
Across 90 soil samples collected from the North China Plain
(Supplementary Figure 1), we obtained a total of 1,800,450 and
996,840 high-quality bacterial and fungal sequences, respectively,
which were clustered into 65,761 bacterial operational taxonomic
units (OTUs) and 4,033 fungal OTUs based on 97% sequence
similarity. In this study, we selected OTUs that accounted for
the top 20% in terms of relative abundance and occurring
in more than 60% of all samples to construct co-occurrence
networks (Jiao et al., 2019). In total, we identified 1,129 bacterial
and 191 fungal dominant taxa (Supplementary Table 3),
which occupied a small part of the individual total taxa

(bacteria: 1.7%; fungi: 4.7%), but accounted for the majority
of the total number of sequences, respectively (bacteria: 70.9%;
fungi: 86.3%), which can maximize the representation of the
whole community without data redundancy. The majority of
bacterial sequences belonged to the phyla Proteobacteria (33.8%),
Actinobacteria (21.6%), Acidobacteria (16.2%), Chloroflexi
(7.2%), Gemmatimonadetes (6.3%) and Planctomycetes (3.9%).
And the fungal sequences were mainly from the phyla
Ascomycota (91.1%) and Basidiomycota (5.2%).

The constructed co-occurrence network consisted of 1,320
nodes (OTUs), including 1,129 bacterial OTUs and 191 fungal
OTUs. A total of 33,032 edges (associations between OTUs)
were inferred for the consensus microbial network (Figure 1A).
Supplementary Figure 3 showed that the curves of network
connectivity distribution fitted well with the power-law model,
which was indicative of scale-free networks and significantly
different from random networks. The associations were mainly
observed among phylum Proteobacteria, Actinobacteria,
Acidobacteria and Chloroflexi (Supplementary Figure 4 and
Supplementary Table 4). The presence of positive edges (65.3%)
is much greater than negative edges (34.7%) in the network.
Bacterial nodes had the most internal connections, fewer edges
between bacteria and fungi, and the fungal nodes had the fewest
internal connections (Figure 1A). Moreover, values for the
node-level topological features, including degree, eigenvector
and closeness centrality were significantly higher (P < 0.001)
in bacterial OTUs than in fungal OTUs (Figure 1C), which
suggested that bacterial taxa played a more critical role in the
network than fungal nodes.

Additionally, to explore the ecological preferences of soil
microorganisms in the North China Plain, we divided the
dominant bacterial and fungal taxa into two ecological clusters:
high and low pH based on the Spearman’s correlations
(P < 0.05) with soil pH, which had different habitat preferences
(Supplementary Table 5). Co-occurrence network captured 730
nodes belonging to the high pH cluster and 416 nodes for low pH
cluster, these taxa within the cluster that shared the same habitat
and environmental preferences tended to co-occur (Figure 1B).
Each of the ecological clusters consisted of multiple orders of
soil microbiota. iii1–15, Actinomycetales and Rhizobiales tended
to aggregate in soils with high pH, Gaiellales, Solibacterales and
Burkholderiales prederred low soil pH, while Xanthomonadales
and Rhodospirillales were relatively abundant in both high-pH
and low-pH soils (Supplementary Table 5). Random forest
analysis revealed that pH was the dominant environmental
factor affecting the relative abundance of high and low pH
clusters for bacterial and fungal communities (Supplementary
Figure 5). Regarding the node-level topological features, the
values of all parameters (including degree and betweenness,
eigenvector and closeness centrality) in the low pH cluster were
significantly higher than those in the high pH cluster (Figure 1D).
Similar trends were seen in subnetworks constructed for bacterial
community (Supplementary Figure 6A). These results showed
that taxa of the low pH cluster, in comparison to those of the
high pH cluster, were more often occupied the central positions in
the network. Putative keystone species composition information
below also confirms this conclusion (Supplementary Table 6).
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FIGURE 1 | Meta-community co-occurrence network with nodes colored according to dominant microbial taxa [top: bacteria and fungi (A)] and ecological clusters
[bottom: high pH, low pH, and others (B)] of soil microbiota on the North China Plain. The connection stands for a strong (Spearman’s r > 0.6) and significant (false
discovery rate-corrected P < 0.01) correlation. The size of each node is proportional to the relative abundance of the operational taxonomic units (OTUs). A red edge
indicates a negative correlation, and a gray edge indicates a positive correlation. A summary of node–edge statistics is provided to bottom right of the network.
Colored numbers represent the number of nodes in corresponding categories; black numbers indicate the number of inner connections, and the numbers above
edge connections represent the number of cross-community interactions. Node-level topological features for dominant microbial taxa (C) (top) and different
ecological clusters (D) (bottom). *P < 0.05, **P < 0.01 and ***P < 0.001, based on Wilcoxon rank sum tests.

However, there was no significant difference in the node-level
topological characteristics between high and low pH clusters in
the fungal subnetwork (Supplementary Figure 6B). Moreover,
when comparing the subnetwork stability of the high and low
pH clusters, the natural connectivity at low pH was greater than
that at high pH after removing the same proportion of nodes,
which indicates the subnetwork of low pH cluster was more
stable (Figure 2A).

Co-occurrence Patterns of Dominant
Bacterial and Fungal Taxa Driven by
Environmental Filtering on the North
China Plain
To examine the relative contribution of multiple environmental
factors to the co-occurrence patterns on the North China

Plain, we singled out 20 relatively independent (Spearman’s
correlations: ρ2 < 0.6) environmental factors based on
correlation (Supplementary Figure 2), and calculated a
series of network-level topology characteristics for each soil
sample. Based on correlation and hierarchical clustering analysis,
the network-level topological features could be divided into
two clusters (Figure 3A). The first cluster included number
of edges, clustering coefficient, density, average degree, and
degree centralization. The second cluster contained betweenness
centralization, number of nodes, modularity, average path length,
and eigenvector centralization. The first cluster of network-level
topological features was positively correlated with soil pH, TP,
EC, Cd, and As, and negatively correlated with NH4

+, AP, and
Pb, whereas the second clusters were on the contrary. Multiple
regression on distance matrices (MRM; Figure 3B) showed
that the contribution of pH (R2 = 34.2%, P < 0.001) to the
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FIGURE 2 | (A) Network robustness analysis of different ecological clusters (high pH and low pH). (B) Relationship between soil pH and co-occurrence network
complexity (the ratio of edge to node).

network-level topological features overwhelmed than of other
environmental factors. And the variance interpretation of each
environment variable was shown in Table 1. The variation of each
network-level topology characteristics could be well explained by
the environmental variables. However, the explanatory quantities
were not the same among the parameters, soil pH contributed the
most toward explaining the variation in the topological features.

Furthermore, in order to better visualize the relationship
between pH and network-level topological characteristics, we
performed Kriging interpolation on pH and each network-
level topological feature to obtain the spatial distribution maps
(Figure 4). The predicted spatial patterns showed that the
network-level topological features in the first cluster had higher
values in the low pH regions than high pH regions. In contrast,
the features in the second cluster were higher in high-pH soil than
in low-pH soil. These observations were confirmed by multiple
regression analysis. Significant and negative linear regressions
were found between soil pH and the network-level topological
features in the first cluster. However, the mostly features in the
second cluster strongly increased with increasing pH, while the
number of nodes peaked at neutral pH (Figure 4). Altogether,
these results indicated that the ecological network of dominant
bacterial and fungal taxa was more complex in low pH regions
than that of high pH regions. In order to avoid the effect of
microbial abundance to the ecological network when illustrate
the change of the network pattern along pH gradient, the ratio
of links to nodes were calculated as the network complexity.
The result of Pearson correlation between network complexity
and pH reconfirmed that the network of dominant bacterial
and fungal taxa was significantly affected by pH, with an R2

of 0.7057 (P < 0.001) and was more complex in low pH than
that of high pH (Figure 2B). For the sub-network generated
for bacteria, the same network-level topological characteristics
and pH variation patterns were observed, but not for fungal
subnetworks (Supplementary Figures 7, 8).

In addition, to determine how the number of connections
between subnetworks changed, we applied regression analysis

and found there were significantly negative relationships
between soil pH and the number of positive/negative edges
within the bacterial community. Moreover, the number of
positive edges between the two kingdoms decreased with
increasing pH, whereas the number of negative edges peaked
at neutral pH. For the fungal community, there was no
significant correlation between the number of positive and
negative edges and pH (Supplementary Figure 9). The links
between the number of positive and negative associations
within and between communities and each environmental
factor were detected by Mantel tests (Figure 5). Number
of connections in the bacterial network were significantly
correlated with pH, TP, AP, EC, and Cd. The number of
positive edges between kingdoms was significantly affected
by pH and Cd, and AK was correlated to the number of
negative edges between kingdoms. However, no significant
relationships among fungal community connections number and
soil factors were observed.

Linkage Among Keystone Taxa and Soil
Properties
Keystone nodes (network hubs, module hubs, and connectors)
were identified by analyzing the topological roles that each
node played in the network of dominant bacterial and fungal
taxa (Figure 6A). In this study, a total of 2 network hubs,
26 module hubs, and 17 connectors were detected in the
microbial network. Both network hubs belonged to the
phylum Proteobacteria. The detected module hubs were
composed of six taxa within the Proteobacteria, five taxa
within Ascomycota, two taxa within Firmicutes, and one
taxon within each of the phyla Acidobacteria, Chloroflexi,
Gemmatimonadetes and Zygomycota. The connectors
consisted of eight taxa within the Actinobacteria, six taxa
within Proteobacteria, three taxa within Acidobacteria, two taxa
within Planctomycetes, Gemmatimonadetes, Chloroflexi, one
taxon within Verrucomicrobia, Ascomycota, and Bacteroidates
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FIGURE 3 | The importance of environmental factors for network-level topological features of meta-communities in individual (A) and aggregate (B) (Only the top six
factors are shown to be significant). The R2 values was estimated with the multiple regression on distance matrices analysis, and asterisks represent significance of
correlation (*P < 0.05, **P < 0.01, ***P < 0.001).

TABLE 1 | Variation explained by environmental variables in the regression models for network-level topological features in wheat fields across the North China Plain.

Environmental
Factors
Network-level
topological features

pH NH4
+ EC AP Pb DOC Total

Number of nodes 19.36% 4.58% 26.90%

Number of edges 25.98% 10.49% 9.91% 10.27% 3.74% 53.98%

Average degree 22.34% 13.42% 1.72% 5.48% 49.12%

Average path length 16.64% 12.89% 35.35%

Density 21.43% 2.40% 3.81% 5.62% 46.19%

Modularity 20.47% 10.59% 1.77% 49.75%

Clustering coefficient 28.7% 8.73% 3.93% 8.06% 54.19%

Degree centralization 17.91% 2.64% 42.12%

Betweenness centralization 4.50% 12.31% 28.01%

Eigenvector centralization 4.26% 20.91% 6.46% 39.07%

NH4
+, ammonium-nitrogen; EC, electrical conductivity; AP, available phosphorous; Pb, plumbum; DOC, dissolved organic carbon.

(Supplementary Table 6). Additionally, significant and
negative linear correlations were found between pH and
the relative abundance of keystone taxa (Supplementary
Figure 10), suggesting that increasing soil pH reduced
the number of keystone taxa significantly correlated with
network complexity.

To explore the linkages between environmental parameters
and the relative abundance of keystone taxa, we then
correlated the keystone taxa to soil properties and identified
the major drivers for each keystone taxon (Figure 6B).
Spearman correlation analysis revealed that there were distinct
environmental preferences between keystone taxa. Compared
with network hubs and module hubs, connectors had less
correlation with environmental variables, suggesting that they
were more resistant to environmental changes. Moreover, the
results of multiple regression model showed that pH was the most
important predictor for the relative abundance of keystone taxa,
TP, SM, OC, Cu, DOC, and NO3

− also played important roles.

DISCUSSION

The sheer complexity of microbial communities makes it
challenging to assess potential microbial associations (van Dijk
et al., 2014). Therefore, analysis of co-occurrence networks
has been widely used to infer potential associations between
microorganisms, and for the most part seems to only way
forward since experimental culturing or removal experiments
are prohibitively difficult and time consuming, and limited
in the numbers of interactions they can study simultaneously
(Faust et al., 2012; Jiang et al., 2017; Fan et al., 2018). Here,
we have constructed co-occurrence networks of bacteria and
fungi in soil from wheat fields across the North China Plain as
an example of an important agricultural region. We explored
the network topological features and keystone taxa geographic
patterns, and demonstrated that different microbiomes and
different ecological clusters differed in terms of network
topological features showing strong correlations with certain
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FIGURE 4 | Spatial distribution of network-level topological features on the North China Plain. The cross-validation (“CV”) of the maps was calculated based on the
Pearson correlation between the predicted and observed values at each sampling site. The relationship between network-level topological features and pH were
estimated via linear least-squares regression analysis.
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FIGURE 5 | Correlation of environmental factors with inter-community and intra-community associations. Pairwise comparisons of environmental factors are shown,
with a color gradient denoting Spearman’s correlation coefficient. The number of positive and negative associations within and between communities were related to
each environmental factor by Mantel tests. Edge width corresponded to the Mantel’s r statistic for the corresponding distance correlations, and edge color denoted
the statistical significance based on 9,999 permutations. BB included associations only between bacteria-bacteria; BF included associations only between
bacteria-fungi; FF included associations only between fungi-fungi. P: positive; N: negative.

environmental variables. The results provide a basis for further
understanding the distribution pattern and influencing factors of
microorganisms in agricultural ecosystem.

Soil pH Dominates the Geographic
Patterns of Microbial Network
Topological Features Across the North
China Plain
The role of environmental pH shifts is a prominent topic in the
study of interspecies interactions. Following on from the study by
Shi et al. (2021) which explored high and low pH as discontinuous
and discrete categories, we found that in fact the topological
characteristics of the co-occurrence network influenced by soil
pH vary along a continuous gradient, and that the influence of pH
was far greater than any other measured environmental factors.
This is broadly consistent with recent studies of soybean fields
showing that soil pH plays a key role in rhizosphere microbial
interactions (Zhang et al., 2018).

Soil pH shapes microbial metabolism in different ways. Firstly,
as an integrating index to measure soil conditions (Lauber
et al., 2009), soil pH is highly correlated with a wide range of
biogeochemical conditions [e.g., NH4

+, TP, AP and many metal
ions (Figure 4)], which significantly affect the environmental
conditions related to microbial growth and survival (Pan et al.,
2014; Ma et al., 2018). The pH also affects the activity of
extracellular enzymes and the reactivity of natural organic

matter (Paul et al., 2006). Secondly, soil pH directly imposes a
physiological constraint on soil microorganisms (e.g., in affecting
homeostasis of intracellular pH), and any slight change in pH
value unit will have a significant impact on microbial growth
and metabolic activity (Fernandez-Calvino and Baath, 2010).
Additionally, pH may also affect the rate of energy expenditure in
microbial respiration and hence microbial community structures
by regulating the thermodynamics and kinetics of redox reactions
(Jin and Kirk, 2018). Therefore, it is reasonable that one would
find a close connection between pH and microbial interactions at
the community level.

In general, taxa of microorganisms (especially prokaryotes)
show preferences for ranges of soil pH, with the greatest species
diversity and abundance in neutral soils, “acidity specialists”
exist in acidic soils as well as “alkalinity specialists” in alkaline
soils (Barberán et al., 2012; Jones and Bennett, 2017; Vieira
et al., 2020). Among the low-pH cluster of microbial taxa
that we detected, the abundance of Xanthomonadales has
been found to be significantly negatively correlated with pH
(Zhang et al., 2020), while Nocardioidaceae and Sordariales
from the high-pH cluster, favors high-pH environments (Huang
et al., 2017). In addition, we found a unique bacterial class
Gammaproteobacteria, which proved to be widespread in
wheat fields with low pH and high NO3

−-N concentrations
(Hamamoto et al., 2018). The main families within this class were
Chromatiaceae, Sinobacteraceae, and Xanthomonadaceae, all of
which have been reported as only being found in agricultural soils
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FIGURE 6 | Identification of potential keystone taxa and their relative abundance in relation to environmental factors. (A) Z-P plot showing the classification of nodes
to identify putative keystone taxa of ecological network. Each symbol represents an OUT. The bar charts on the top and right represent critical phylum in module
hubs and connectors, respectively. Black represents the phylum of bacteria and red represents the phylum of fungi. Network hubs composition in the box. Aci,
Acidobacteria; Act, Actinobacteria; Asc, Ascomycota; Bac, Bacteroidetes; Chl, Chloroflexi; Fir, Firmicutes; Gem, Gemmatimonadetes; Pla, Planctomycetes; Pro,
Proteobacteria; Ver, Verrucomicrobia; Zyg, Zygomycota. (B) Environmental contributions to the distributions of keystone taxa in wheat fields across the North China
Plain. Correlation and multiple regression model for the relative abundance of keystone taxa and environmental factors were shown in heatmap. Circle size
represents the variable importance (i.e., the proportion of explained variance calculated via multiple regression modeling and variance decomposition analysis).
Colors represent Spearman correlations.

(Kuramae et al., 2012), which could be used as indicator groups
in farmland ecosystems.

Patterns of Microbial Community
Interactions Along the pH Gradient
Co-occurrence networks represent strong correlations between
OTUs, indicating potential species-species interaction in
communities (Ma et al., 2018). In the present study, we found
that bacteria and fungi were more closely related within their
respective community, suggesting a wide range of interactions
between species such as the exchange of metabolites (Woyke
et al., 2006) and cooperation in biofilm construction (Rodríguez-
Martínez and Pascual, 2006). We also observed some correlations
between microbes in the two kingdoms. It is no surprise that
several bacterial taxa, such as Burkholderia, Sphingomonas
and Pseudomonas, have been found to interact with fungi in
soil (Gamalero et al., 2008; Warmink and van Elsas, 2008).
In general, the products (such as water-soluble sugars and
phenolic compounds) released by fungi during the degradation
of refractory organic matter (lignin and cellulose) in soil can
be utilized by bacteria (Boer et al., 2005). Although fungi
can produce a portion of carbon, plant root exudates (i.e.,
amino acids, sugars and organic acids) are considered to be
the main carbon source for bacteria (Philippot et al., 2013).
Therefore, the nutrient dependence of bacteria on fungi in
farmland ecosystems may be low, resulting in a low proportion

of bacteria-fungus edges in the co-occurrence network. In
addition, most of the network links were between bacteria:
often linking Proteobacteria, Actinobacteria and Acidobacteria
with other bacterial phyla. Amongst the fungi, there were many
positive associations among Ascomycota, which is consistent
with previous results, that is, phylogenetically related taxa are
also ecologically related (Barberán et al., 2012). This suggests
that these ascomycetes may either have synergies or share similar
ecological niches in the farmland environments.

In this study, we observed that the number of nodes in the co-
occurrence network peaked at about pH 7, which is consistent
with previous studies confirming the highest diversity of soil
bacterial communities with near-neutral pHs (Lauber et al.,
2009). However, microbial taxa were more closely correlated in
the low pH area than in the high pH area, this may be due to the
close contact between Acidobacteria and other microbial groups
(Supplementary Table 4), which has been shown to increase
toward lower pH (Jones et al., 2009). In addition, soil acidity
supports basic soil properties and functions, such as the solubility
of exchangeable ions and nutrients, or the use of internal and
external acid gradients by bacteria to produce ATP and rotate
flagella motors (Braus and Whitman, 2021). As far as is known,
the large pH gradient between the inside and outside of the
cell causes microbes living in an alkaline environment to greatly
reduce the proton dynamics (PMF) used to produce ATP—much
less so than for acidophiles (REF). This makes it energetically less
favorable for alkaliphiles to generate energy through oxidative
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respiratory chains and oxidative phosphorylation (Padan et al.,
2005), and results in a decrease in the frequency of microbial
interaction in the community.

Understanding ecological niches is important for determining
the mechanisms of community assembly (Jiao and Lu,
2020). Here, we further investigated the differences of
environmental adaptive capabilities between different ecological
clusters (high pH and low pH). We found that the niche
breadth of low pH cluster was narrower than that of high pH
cluster (Supplementary Figure 11), implying that interspecific
interactions (such as competition, etc.) are stronger in low
pH clusters, thus the co-occurrence network is more closely
connected. Deterministic processes tend to have a stronger
impact on the habitat specialists with a narrow niche breadth
than on generalists with a wide niche breadth (Pandit et al.,
2009). Therefore, it is perhaps unsurprising that the lower pH
regions have more stable co-occurrence network structures.
However, this observation is inconsistent with previous studies
on the Tibetan Plateau, and we reason that this difference might
be mainly since Chen et al. (2021) explored the associations of
microbial communities in the pH range under the influence of
different vegetation types (alpine steppe and alpine meadow) and
did not study a unified microhabitat.

It is also interesting that in our NCP study, the pH-related
trend is essentially dominated by bacteria. Fungi by themselves
showed no significant trend, while bacteria alone—and fungi
in combination with bacteria—showed the same clear trend.
Generally, fungal community structure shows much weaker
trends in relation to pH than bacteria, and fungi generally exhibit
wider pH ranges for optimal growth. For instance, the fungal
genus Mariannaea, has been found to grow between pH 5.5–8.5
in culture-based studies (Domsch et al., 1980), which may relate
to the larger cells and much lower surface to volume ratio of fungi,
which enables better cellular pH homeostasis (Beales, 2004).

Unlike the trend in network connectivity, the associations
within communities were most stable at neutral pH
(Supplementary Figure 9), where they were dominated by
negative associations. This greater stability may reflect the
greater available energy and resources for niche specialization
by bacterial cells at around neutral pH, since high and low
pH are each thought to act as a drain on resources due to the
requirements for cellular homoeostasis, relative to neutral pH
(Lauber et al., 2009). The high ratio of negative interactions
may reflect narrow specialized niches and strong competitive
exclusion at around neutral pH.

Linkages Between Keystone Taxa and
Ecosystem Functions
Through network analysis, keystone taxa can often be detected
as network hubs, module hubs, and connectors (Olesen et al.,
2007; Faust and Raes, 2012). Only a few hubs or connectors
have a wide distribution across different plots, supporting the
environmental dependency theory that keystone taxa do not
dominate anywhere or at any time, but only play a key role
in specific environments (Abdul Salam et al., 2013). We noted
that the relative abundance of keystone taxa decreased as soil
pH increased, consistent with the previous observation that the

putative keystone taxa change with conditions (Lu et al., 2013).
Although they were not abundant, these low abundance keystone
taxa may have disproportionately large impacts on ecosystem
functions and services (Lynch and Neufeld, 2015). Such a
network hub, Oxalobacteraceae, has been previously found to be
closely related to plant growth and nitrogen acquisition (Yu et al.,
2021). Module hub Burkholderiales and connector Rhizobiles,
are dominant members of the rhizosphere microbiome and are
considered keystone taxa across different ecosystems (Banerjee
et al., 2018). Another connector, Mortierella, has the ability to
decompose complex organic substrates and with an important
phosphate lysozyme that promotes soil activity and plant
growth (Zhang et al., 2011). In addition, taxa within the phyla
Gemmatimonadetes and Planctomycetes are often associated
with the rhizosphere of plants and indirectly promote plant
growth by participating in a variety of ecological processes, which
have also been identified as kinless hubs in previous studies
(Shi et al., 2020). The presence of these keystone taxa could
thus be critical to maintaining soil health and crop productivity.
Hence, manipulation of keystone taxa in microbial network
structures, such as the addition or removal of functionally specific
keystone taxa, may provide a promising approach for agricultural
management to improve crop yields (Banerjee et al., 2018).

CONCLUSION

In this study, network analysis was used to integrate the
complex associations between bacterial and fungal microbiota
in the soil of wheat fields across the North China Plain,
into the predictable topological features of the co-occurrence
network, providing valuable insights for the study of microbial
communities in farmland soil at large spatial scales. Our study
identified that soil pH plays a key role in driving the unique
geographical pattern of the co-occurrence network topology of
soil microbial communities, and microbial taxa are more closely
related in the low pH region than in the high pH region.
The relative abundance of keystone taxa that are important
for ecosystem function and stability is also strongly affected by
pH. These findings suggest a trend toward more integrated and
specialized community functioning at lower pH. Analyzing and
understanding the basis of these trends may ultimately contribute
to a better understanding of the geographic patterns of soil
microbial interactions in farmland ecosystems, and may provide
microbiologists and agronomists with more targeted indicators
to monitor and ultimately improve soil health.
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