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Legionella surveillance plays a significant role not only to prevent the risk of infection

but also to study the ecology of isolates, their characteristics, and how their prevalence

changes in the environment. The difficulty in Legionella isolation, identification, and

typing results in a low notification rate; therefore, human infection is still underestimated.

In addition, during Legionella surveillance, the special attention given to Legionella

pneumophila leads to an underestimation of the prevalence and risk of infection for other

species. This study describes the workflow performed during environmental Legionella

surveillance that resulted in the isolation of two strains, named 8cVS16 and 9fVS26,

associated with the genus Legionella. Traditional and novel approaches such as standard

culture technique, MALDI-TOF MS, gene sequencing, and whole-genome sequencing

(WGS) analysis were combined to demonstrate that isolates belong to a novel species.

The strain characteristics, the differences between macrophage infectivity potential

(mip), RNA polymerase β subunit (rpoB), and reference gene sequences, the average

nucleotide identity (ANI) of 90.4%, and the DNA–DNA digital hybridization (dDDH)

analysis of 43% demonstrate that these isolates belong to a new Legionella species.

The finding suggests that, during the culture technique, special attention should be

paid to the characteristics of the isolates that are less associated with the Legionella

genus in order to investigate the differences found using more sensitive methods.

The characterization of the two newly discovered isolates based on morphological,

biochemical, and microscopic characteristics is currently underway and will be described

in another future study.
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INTRODUCTION

Legionella spp. are gram-negative intracellular pathogenic
bacteria, are ubiquitous in water and soil, and are represented
by more than 66 species, some of which are potentially capable
to cause a severe form of pneumonia, called Legionnaires’

disease (Jomehzadeh et al., 2019; Parte et al., 2020). Legionella
pneumophila (Lp) is the most common infectious agent involved
in Legionnaires’ disease and consists of 15 different serogroups.
Lp serogroup 1 (Lp1), according to epidemiological data, is
mostly associated with human infections (European Centre
for Disease Prevention Control, 2021; Rota et al., 2021).
Nevertheless, other Legionella non-pneumophila species (non-
Lp species) (i.e., L. anisa, L. rubrilucens, or L. longbeachae)
are responsible for human infections that are typically acquired
through inhalation of contamination aerosol (Muder and Yu,
2002; Matsui et al., 2010; Cunha et al., 2016; European Centre
for Disease Prevention Control, 2021; Rota et al., 2021).

Artificial water distribution systems (WDSs) are considered

the sites most associated with Legionella spp. proliferation and
spread (Mercante and Winchell, 2015). The presence of biofilm,
water stagnation due to low water flow, dead branches, or

old pipelines are factors that make the WDS’s facilities (e.g.,
large public or private buildings, companies, hospitals, or health
facilities) a potential risk to the dissemination of Legionella spp.
(Di Pippo et al., 2018; Nisar et al., 2020a,b; Totaro et al., 2020).

The main attention is given to the WDS of hospitals and
healthcare facilities (HCF), where Legionella spp. contamination
is considered a high-risk factor due to the presence of elderly
or immunocompromised patients who are more susceptible to
the infection (Spagnolo et al., 2013). Legionnaires’ disease in
Italy, in 2020, amounted to 34.3 cases per million inhabitants;
therefore, Legionella colonization of hospitals or communities
WDS represents one of the main public health concerns (Kyritsi
et al., 2018; Rota et al., 2021; Brunello et al., 2022).

Starting from the epidemiological data, different countries
have developed specific guidelines and promoted environmental
monitoring programs in order to prevent and control Legionella
infections, following the Water Safety Plan (WSP) approach,
introduced by the World Health Organization (WHO) (World
Health Organization, 2007). Through this approach, an ongoing
Legionella surveillance program is suggested, also in the absence
of cases, to undertake the most appropriate control and
prevention measures.

The recent European Union (EU) Directive 2020/2184
suggests the prevention approach. This directive will be
transposed in all the EU countries by January 2023 (European
Parliament the Council of the European Union, 2020). In
this directive, Legionella has been introduced as a new
microbiological parameter for the evaluation of the drinking-
water quality, highlighting the importance of the environmental
monitoring of the WDS, starting from the water supply until the
consumers’ outlets.

Moreover, to achieve control of Legionella proliferation,
the national and international directives point out several
disinfection strategies, based on chemical disinfectants (i.e.,
chlorine dioxide, monochloramines, and hydrogen peroxide)

and physical treatments [i.e., ultraviolet (UV) light and hot
temperature treatments]. All of them have shown some
advantages and disadvantages (Mcdonnell and Russell, 1999;
Richardson et al., 2007; Lin et al., 2011; Mancini et al., 2015;
Girolamini et al., 2019). However, some authors have shown
how these treatments, especially the use of chemical disinfectants,
could select resistant strains and introduce some changes in
the bacterial genome. Therefore, the use of diagnostic methods
able to follow the ecological and adaptive isolates changes
should be the main objective to arise also during Legionella
environmental surveillance (Jakubek et al., 2013; Girolamini
et al., 2021b). Certainly, this aspect is strictly correlated with the
sensitivity and specificity of detection and identification methods
already available and in use. In recent times, the most common
methods for Legionella isolation and identification in routinely
environmental surveillance remain the culture technique and
the latex agglutination test, despite the molecular approach as
sequence-based typing (SBT) and subgrouping scheme based on
monoclonal antibodies (MABs) for Lp (Helbig et al., 1997, 2002;
Gaia et al., 2005; Ratzow et al., 2007) and macrophage infectivity
potentiator (mip) for non-Lp species (Ratcliff et al., 1998; Ko
et al., 2002; Pascale et al., 2021) are consolidated. Despite several
approaches that have been developed through time, most of them
are applied only when clusters or outbreaks occur and are carried
out only by specialized or national reference laboratories.

The limits of all the methods, previously cited, are
summarized as follows: (i) long incubation time of culture
technique (at least 10 days); (ii) the agglutination test that
is not able to recognize all Legionella species, showing also
mis-identification or false-negative results; (iii) MABs, that can
type only Lp and in particular for subtyping of Lp1, available
to the national reference laboratories; (iv) SBT technique and
gene sequencing that permits compare only some gene or short
fragments of gene size (Helbig et al., 2002; Gaia et al., 2005; Orsini
et al., 2011; Lück et al., 2013; Walker and McDermott, 2021).

Consequently, only in recent years with the data returned
by whole-genome sequencing (WGS), it has been possible
to obtain the most complete genome information, improving
isolate typing as well as functional and drug susceptibility
response. Moreover, the WGS analysis has opened new
scenarios for the reconstruction of infection spread, establishing
a correct relationship between environmental and clinical
strains during the epidemiological investigation (Quainoo
et al., 2017). However, even with its great usefulness, it
is not routinely used to support environmental surveillance.
Despite the high operational costs, the WGS pipelines could
potentially reduce overall costs for the hospitals as well as
in all facilities’ practices through savings of indirect costs
(Quainoo et al., 2017).

In the context of Legionella environmental monitoring, the
primary goal is to improve WSPs, quantify the risk level, and
identify isolates. Moreover, also during routine environmental
surveillance, it is possible to isolate and characterize novel new
Legionella species, suggesting how the water microflora is subject
to continuous changes during the time and in response to the
treatment (physical, chemical, and functional) undertaken (Li
et al., 2017).
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In this study, we described the workflow applied during
Legionella environmental surveillance conducted for 10 years
in an HCF that led to the isolation of a novel Legionella
species. The knowledge acquired during the surveillance period
regarding the WDS, the disinfection treatment, and the level of
contamination were associated with traditional techniques (i.e.,
culture and latex agglutination test) as well as the innovative
matrix-assisted laser desorption ionization–time-of-flight mass
spectrometry (MALDI-TOF MS) technique, gene sequencing,
and WGS analysis. All results obtained confirm the presence in
HCF of two isolates not previously detected.

MATERIALS AND METHODS

Characteristics of Healthcare Facility’s
Water Distribution System
The HCF involved in this study is a long-term care facility, built-
in 2011, and made up of 78 dislocated inpatient rooms on three
floors for a total of 120 beds.

The Legionella environmental surveillance program was
started in 2012 with an elaboration of a Legionella risk assessment
plan according to the Italian and Regional Guidelines (Italian
National Institute of Health, 2015; Emilia-Romagna Region,
2017). Briefly, the Legionella monitoring was carried out two
times a year, usually in the spring/summer and fall/winter.
The Legionella concentration above the risk level as suggested
by guidelines requires further sampling of positive samples

(Italian National Institute of Health, 2015; Emilia-Romagna
Region, 2017).

The WDS consists of cold water derived from municipal
water, heated by two water heaters in parallel, one of them
connected to the solar panel. The temperature of hot water at
the supply outlets was about 50◦C. The hot water system is
treated with hydrogen peroxide and silver salt-based disinfectant
(H2O2/Ag

+). The continuous disinfection treatment provides a
residual concentration to the distal outlets around 20 mg/L. The
WDS schematic (Figure 1) was developed with Solid Edge 2022
V222.00.02.03 (Siemens Digital Industry Software Inc.).

Sample Collection
According to the Legionella risk assessment plan, hot- and cold-
water samples were collected every 6 months. The sampling
points were chosen in accordance with Italian Guidelines (Italian
National Institute of Health, 2015), considering the building
size, the number of inpatient rooms, the risk level of patients,
and workers’ exposure to bacteria, other than the facility’s
epidemiological data. All of these data are reported in the
LegionellaWSP developed since 2012.

Staring from the technical room, and following the hot and
cold WDS, for each floor, four samples were chosen as follows:
three hot water samples in the vicinity of, mid-way to, and away
from the technical room, and one cold-water sample away from
the water supply point.

A total of 30 sampling points were identified between the
technical room (water supply point, hot water output, hot water
return line, and hot water storage tanks) and HCF inpatient

FIGURE 1 | Representation of the HCF water distribution system: 1: cold-water supply; 2: solar panel; 3: solar heater water tank; 4: gas water heater; 5: heater water

tank; 6: hot water output; 7: water distal outlets; 8: hot water return line.
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rooms (including showers, sinks, and toilet showerheads) and
staff facilities. The criterion of rotation between inpatient rooms
was applied.

Two liters of hot or cold water for each sample was collected
in post-flushing modality (2min), following the Italian National
Unification and European Committee (UNI EN) International
Standard Organization (ISO) 19458:2006 (EN ISO 19458:2006
Water quality - Sampling for microbiological analysis, 2006).
During sampling, temperature and disinfectant residue values
were measured and reported in distal outlets. The analysis was
carried out on the same day of sampling.

Microbiological Analysis and Isolates
Characterization
The Legionella isolation was performed using a standard culture
technique in accordance with ISO 11731:2017 (International
Organization for Standardization, 2017). Briefly, for the
enumeration of Legionella, different aliquots of the sample (from
200 to 100 µl), which comes from filtered water (untreated),
heat- and acid-treated, were seeded on glycine–polymyxin
B–vancomycin–cycloheximide (GVPC) selective agar (Thermo
Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK) and
incubated at 35 ± 2◦C with 2.5% of CO2. The culture required a
minimum of 10 for up to 15 days. Every 2 days, the plates were
examined and the presumptive colonies were enumerated and
sub-cultured on buffered charcoal yeast extract (BCYE) agar with
and without L-cysteine (Cys+) and L-cysteine (Cys–) (Thermo
Fisher Scientific, Diagnostic, Ltd., Basingstoke, UK). The
Legionella colonies, growth only on BCYE Cys+, were identified
using the Legionella latex agglutination test kit differentiating
between Lp1, and Lp serogroups 2–14 (Lp2-14) and seven species
of non-Lp species (Thermo Fisher Scientific, Ltd. Basingstoke,
UK), based on manufacturing instructions.

MALDI-TOF MS Analysis
The isolates grown on BCYE Cys+, which returned positive
or negative results for the Legionella agglutination test, were
also analyzed by the MALDI Biotyper system (Bruker Daltonik
GmbH, Bremen, Germany) as previously described (Pascale
et al., 2020). Briefly, a fresh colony (24–48 h of incubation) was
directly spotted in duplicate onto a MALDI Biotyper target plate,
overlaid with 1 µl of the MALDI Biotyper matrix solution,
and left to air dry before the next step. Spectra acquisition
and processing were performed using the Microflex LT mass
spectrometer (2,000–20,000 Da, linear positive mode) and the
MALDI Biotyper Compass 4.1 software, whose library (version
BDAL 7854) included the spectra of 39 Legionella strains.

The data were interpreted in accordance with the
manufacturer’s instructions. Briefly, when the instrument
returned a log score ≥2.0 (“high confidence level”), the isolates
were identified at the species level, while the genus was assigned
for scores between 1.7 and 1.99 (“low confidence level”). In the
presence of a score between 0.00 and 1.69, the isolates were
considered as “not identified.”

A dendrogram based on hierarchical clustering analysis
(HCA) of MALDI Biotyper spectra was developed using the

MALDI Biotyper Compass Explorer software to generate a tree-
like structure able to link the Legionella strains to each other using
a linkage algorithm.

Sequencing of mip and rpoB Genes for
Legionella Identification
InstaGene Matrix (Bio-Rad, Hercules, CA, USA) was used
for DNA extraction that was quantified by Qubit fluorometer
(Thermo Fisher Scientific, Paisley, UK).

mip and rpoB genes were used to perform the identification of
the isolates according to Ratcliff et al. (1998), Ko et al. (2002),
and Pascale et al. (2021). PCR products were visualized by
electrophoresis on 2% agarose gel. BigDye kit was used for the
sequencing reaction, and the sequences were analyzed on ABI
PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). Raw sequencing data were assembled using CLCMain
Workbench 7.6.4 software (QIAGEN, Redwood City, CA, USA).
Furthermore, the mip and rpoB gene sequence comparison was
performed using the Basic Local Alignment Search Tool (BLAST)
search on the database of the National Center for Biotechnology
Information (NCBI) and the database developed by the European
Working Group for Legionella Infections [(EWGLI), renamed in
ESCMID Study Group for Legionella Infections (ESGLI) from
2011]. The identification at the species level, considering themip
gene, was performed on the basis of an identity score between 98
and 100% compared to the sequences in the database (Fry et al.,
2007) and considering the intervals variation of interspecies and
intraspecies previously described by Ratcliff et al. (1998).

As reported in Ko et al. (2002), Adékambi et al. (2009),
and Pascale et al. (2021) regarding the rpoB gene sequence,
the threshold used for the identification was fixed at a 95%
similarity percentage.

FIGURE 2 | Blue-white autofluorescence of the non-Lp isolates grown on

BCYE Cys+, found in 2015 and 2016, under Woods lamp (365 nm).
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FIGURE 3 | Dendrogram developed by HCA for 8cVS16 and 9fVS26 and related Legionella reference strains.

Phylogenetic and Allelic Diversity Analysis
To estimate the relationship between the isolates found and the
strictly related Legionella species, a multiple sequence alignment
(MSA) and a concatenated phylogenetic tree were developed
on the mip and rpoB gene sequences. Manual editing was
performed on the sequences, if required, trimming them to
the same length as the reference sequence. The tree was
built using software implemented in Geneious Prime’s genome
browser (Geneious Prime 2022.0.2; http://www.geneious.com)
maintaining the default settings (Kearse et al., 2012). Through
the MUSCLE algorithm, the nucleotide sequences were aligned
(Edgar, 2004). FastTree (Price et al., 2010), a tool to deduce
the approximate maximum likelihood of phylogenetic trees, was
used to pass the resulting MSA. Jukes–Cantor was used, by
FastTree, as a genetic distance model, and the Shimodaira–
Hasegawa test was utilized to estimate the reliability of each split
in the tree (default parameters) (Guindon et al., 2010). As in a
cladogram, the lengths of the branches have been converted to be
equal. Branch labels display the substitutions by the site.

Identification of Legionella by
Whole-Genome Sequencing (WGS)
One hundred nanograms of DNA was used to prepare the
library for the next-generation sequencing (NGS) carried out
by Illumina Nextera XT DNA Library Preparation kit (Illumina,
New England Biolabs, Ipswich, MA, USA). The Illumina NextSeq

500 platform (2 × 250 paired-end reads) was used to perform
the sequencing.

Raw reads were assembled using TORMES v.1.2.0 (Quijada
et al., 2019), an automated pipeline for whole bacterial genome
analysis, using the default parameters. TORMES performed a
sequence quality filtering (PRINSEQ v. 0.20.4) and a de novo
genome assembly (SPAdes v. 13.4.1) (Bankevich et al., 2012).
The generated contigs were passed to CSAR v1.1.1 (Chen et al.,
2018), a scaffolding tool able to order and orient the contigs of
the given draft genome based on one or more reference genomes
of a related organism. Legionella sp. PC1000 (NZ_CP059400.1)
was selected as a reference sequence, based on the output of
KmerFinder (Hasman et al., 2014; Larsen et al., 2014; Clausen
et al., 2018) that predicts prokaryotic species based on the
number of overlapping k-mers, i.e., 16-mers, between the query
genome and genomes in a reference database (NCBI). A further
refinement was carried out by remapping the reads on the
CSAR scaffolds, using the Geneious Prime 2022.0.2 software
(http://www.geneious.com) (Kearse et al., 2012). Benchmarking
Universal Single-Copy Orthologs (BUSCO) v.5.0.0 (Seppey and
Manni, 2019) was performed to evaluate the completeness of
the two genome assemblies. The final draft genomes were
submitted to the GenBank requiring the annotation by the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP v.4.3)
(Tatusova et al., 2016).

The OrthoANI package (Yoon et al., 2017) was used to
measure the intra- and inter-species genome similarities by
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FIGURE 4 | Phylogenetic tree of the two strains (8cVS16 and 9fVS26) and closely related Legionella species based on concatenation of two genes (mip and rpoB).

Branch lengths are transformed to be equal like a cladogram. Branch labels display the substitutions per site.

average nucleotide identity (ANI) among the assembled draft
genomes. Further, FastANI (Jain et al., 2018) through DFAST
(Tanizawa et al., 2018) was performed against 13000 prokaryotic
reference genomes from NCBI to assess the taxonomic identity.
It was also measured based on BLAST+ (ANIb) and MUMmer
(ANIm) using JSpeciesWS (Richter et al., 2016).

The relatedness of our strains to Legionella-known type
strains was further analyzed by applying a digital DNA–DNA
hybridization (dDDH) to the closest related strain based on
the previous ANI outcome. The method was implemented via
the Genome-to-Genome Distance Calculator 2.1 (GGDC) web
service (http://ggdc.dsmz.de), retaining default parameters, using
BLAST+ (Camacho et al., 2009) as a local alignment tool. The
GGDC uses a Genome Blast Distance Phylogeny (GBDP) to
infer genome-to-genome distances between pairs of entirely or
partially sequenced genomes. Below the similarity threshold of
the in silico DDH (70%) and the ANI analysis (95%), two strains
are considered distinct species (Meier-Kolthoff et al., 2013; Kim
et al., 2014).

RESULTS

Legionella spp. Isolation and Features
Starting from 2012, the Legionella environmental monitoring
returned mostly negative results (<50 colony formant unit

(cfu)/L). Only two samples were positive for Legionella
in March 2015 and 2016 with a concentration of 200
and 250 cfu/L, respectively. The samples were collected
from the shower and toilet showerhead in two different
inpatient rooms, both located on the ground floor. The
water temperature measured was 45.8 and 44.0◦C, with a
disinfectant residue of 20 mg/L. Regarding the colonies’
morphology, they are small (about 3mm), gray-white, with a
round shape, and well compact. Concerning the identification,
both isolates grew well on BCYE Cys+ and showed a quick
positive reaction to the latex agglutination test for non-
Lp species.

In addition, when exposed under a Woods lamp (long-
wavelength UV light at 365 nm), they showed blue-white
autofluorescence (Figure 2).

In particular, for further analysis, the strain isolated in 2015
was called 8cVS16, and the second one isolated in 2016 was
named 9fVS26.

Considering that no other samples evaluated in the same
year and during the subsequent monitoring yielded positive
results for Legionella, the contamination found may be
considered point-source contamination. Instead, the two
strains were no longer detected in the water distribution
system until December 2021, which was when the last
sampling occurred.
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TABLE 1 | Genome statistics data from NCBI and BUSCO quality analysis.

Attribute Data for strain

8cVS16 9fVS26

No. of raw reads 1,787,078 1,952,986

Avg read length (bp) 256 259

Coverage (×) 115 127

Total Length (bp) 3,906,083 3,906,100

No. of contigs 7 10

GC Content (%) 38.2 38.2

N50 (bp) 855,940 858,038

No. of coding sequences 3,362 3,360

No. of rRNAs 6 6

No. of tRNAs 42 42

BUSCO results [% (no. of genes)] Data for strain:

8cVS16 9fVS26

Complete 95.2 (118) 95.2 (118)

Single-copy complete 95.2 (118) 95.2 (118)

Duplicated complete 0.0 (0) 0.0 (0)

Fragmented 0.8 (1) 0.8 (1)

Missing 4.0 (5) 4.0 (5)

Total no. of BUSCO genes 124 124

MALDI-TOF MS Results
The MALDI Biotyper system identified both strains with a low
confidence score (yellow color) as Legionella anisa. In particular,
the score returned for 8cVS16 was 1.76 and for 9fVS26 was 1.78.

The dendrogram based on HCA, elaborated on the most
closed Legionella species present in the instrument database,
displays the 8cVS16 and 9fVS16 strains closed to each other and
regrouped in one clade. This clade was well-separated by the
two strictly related clades, represented by L. anisa and Legionella
bozemanii reference strains (Figure 3). Therefore, the strains
appeared very close to L. anisa, confirming the results returned
by MALDI Biotyper software.

mip and rpoB Results
BLAST research on NCBI and the ESGLI database returned the
best match for both strains L. anisa, reference strain ATCC
35292 (GenBank accession number GCA_900639785.1), with
similarities of 96.7 and 92.4% formip and rpoB, respectively.

Phylogenetic Analysis Results
The concatenated tree elaborated from mip and rpoB sequence
genes (Figure 4) revealed the presence of two main clades, each
containing four different subclades and each representing several
Legionella species. Interestingly, the 8cVS16 and 9fVS26 strains
were collocated into a monophyletic group comprising L. anisa,
Legionella tucsonensis, and L. bozemanii strains. Moreover, it was
particularly evident that they were strictly related to each other,
forming a short branch representing a sister clade with the L.
anisa ATCC 35292.

WGS Analysis Results
All the results obtained by the WGS analysis are summarized in
Table 1. Briefly, the overall lengths of the genomes for 8cVS16
and 9fVS26, respectively, were 3,906,083 and 3,906,1003 bp, with
a GC content of 38.2% for both.

In particular, BUSCO analysis, performed to evaluate the
completeness of the two genome assemblies, indicates that the
two genomes are near-complete, with a percentage of 95.2%.

Through the NCBI PGAP annotation required by GenBank
to submit the draft genome, the following accession numbers
were given: SRR17223244 and JAJTND000000000 for 8cVS16
and SRR17223245 and JAJSPM000000000 for 9fVS26.

Comparison, obtained from the OrthoANI package used
to measure the intra- and inter-species genome similarities,
returned the following values: 99.98% between 8cVS16 and
9fVS26, confirming that the two strains belong to the same
species and are identical to each other.

The taxonomic identity, obtained by FastANI, returned an
identity percentage of the closest strain for both 8cVS16 and
9fVS26. This strain was L. anisa strain WA-316-C3 (ATCC
35292) (GCA_900639785.1) with 90.74% ANI.

The analysis, performed by JSpeciesWS, confirmed the
FastANI results with the following values: both 8cVS16 and
9fVS26 ANIb 90.08% compared with L. anisa WA-316-C3
(ATCC 35292), and ANIm 91.55% with L. anisa WA-316-C3
(ATCC 35292) for both 8cVS16 and 9fVS26 strains.

The analysis of our strains’ relatedness to known types of
strains using a digital DNA-DNA hybridization (dDDH) yielded
the following results: a DDH value (generalized linear model
(GLM)-based) of 43% for both 8cVS16 and 9fVS26 and a
probability that DDH > 70% (i.e., same species) of 5.44% (via
logistic regression).

Our results showed anANI value of 90.74% and a dDDH value
of 43%.

DISCUSSION

The discovery and identification of novel bacterial species
are events of great relevance, especially when they occur
during routine environmental surveillance programs. The
identification of novel species is much more frequent in the
clinical setting, thanks to the most advanced phenotypic and
genotypic technologies. In contrast, laboratories involved in
environmental surveillance routinely use only the standard
culture method, so detection of a potentially novel species
relies heavily on the researcher’s and technician’s experience.
The results obtained in this study prove that it is possible
to detect isolates, which are difficult to identify or could
be misclassified with standard methods, by applying more
sensitive techniques such as genotyping and WGS, even
during routine environmental monitoring, carried out in self-
surveillance.

Commonly, also in the widely studied and known WDS, the
selective stress induced by changes in water characteristics (e.g.,
pressure, temperature, inorganic, and organic compounds), as
well as the continuous disinfection treatments, may occur during
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the selection of a novel species, which is never identified before
(Mcdonnell and Russell, 1999; Girolamini et al., 2021a, 2022).

The HCF monitored, from 2012, did not show Legionella
contamination, except for 2 years (2015 and 2016). During our
surveillance, only one sample per year was found positive, with
non-Lp species concentration over the level of risk fixed to <100
cfu/L. A continuous disinfection treatment (hydrogen peroxide
and silver salt) was installed at the time of facility opening,
considering the size of the facility and the characteristics of the
patients (e.g., elderly, with chronic and immunocompromised
diseases). According to other studies, the continuous dosage of
this disinfectant can control Legionella proliferation, although,
from HCS opening, Legionella was never detected (Lin et al.,
2011). Therefore, we cannot know whether Legionella was always
absent due to the presence of disinfectant, or whether the WDS
characteristics and the fact that the structure was newly built,
contributed to creating a “Legionella free” environment. The
presence of punctual contamination in two outlets, during 10
years of monitoring, both on flexible shower tubes, which are
poorly used, due to the presence of non-self-sufficient patients,
suggests that probably these pipelines constituted a niche with
a biofilm, were able to protect, and would promote Legionella
survival (Storey et al., 2004; Kaplan, 2010; Mahapatra et al.,
2015). Moreover, in these types of outlets, as in the showerhead
tubes, it is difficult to undertake cleaning and maintenance
practices due to the small size of pipelines. The substitution of the
showerhead flexible tubes, performed after the communication
of Legionella presence, could explain the absence of Legionella
detection to date.

It is not a matter to be neglected, as already demonstrated,
that the continuous supply of chemical substances in WDS
could promote disinfection resistance of bacterial species and the
selection of novel ones (Mcdonnell and Russell, 1999; Girolamini
et al., 2021a, 2022). We have already demonstrated in other
facilities how the disinfectant based on peroxide hydrogen and
silver salt in the same environment produces a different action
on Legionella, promoting L. anisa’s resistance despite the high
efficiency on Lp1 (Farhat et al., 2012; Girolamini et al., 2019,
2021b).

The culture technique, which is essential for the isolation, is
not effective in correctly recognizing these novel isolates when
combined with the common and rapid identification methods
(e.g., agglutination test). Our results clearly showed that the
two isolates presented features similar to well-known non-Lp
species (e.g., L. anisa, L. bozemanii, and Legionella gormanii)
and showed a positive agglutination reaction to multiple species
latex reagents. Moreover, considering also the MALDI-TOF MS
results, they could be misclassified as L. anisa.

In particular, the agglutination test has shown a positive result
for non-Lp species antibodies and the phenotypic-proteomics
analysis, provided by MALDI-TOF Biotyper, has identified the
two strains as L. anisa with a low-confidential interval (yellow
score), although the software can properly identify this species
by assigning a green score, since the presence of its spectra in
the instrument database. The results obtained were in accordance
with the previous study (Moliner et al., 2010; Gaia et al., 2011;
Svarrer and Uldum, 2012; Pascale et al., 2020), confirming the

ability of MALDI-TOF MS to classify all the Legionella species
contained in the database. The low confidence score returned for
our isolates could be explained by the differences that 8cVS16
and 9fVS26 spectra showed with the L. anisa reference spectra
contained in the instrument database. So, we can suppose that
the differences at the genomic level were also reflected at the
ribosomal protein level, which is the target of MALDI-TOF MS
technique. These differences found at the proteomics level appear
more evident in the dendrogram returned by HCA, where it is
possible to observe how 8cVS16 and 9fVS26 form a separate clade
with respect to the two main clades represented by L. anisa and
L. bozemanii.

Starting from these considerations, the sequencing
of Legionella characteristics genes is essential to obtain
discrimination at interspecies and intraspecies levels.

Regarding the genomic analysis, mip and rpoB gene
sequencing confirmed the previous results. The two isolates were
associated with L. anisa, showing an identity percentage of 96.7
and 92.4%, for mip and rpoB, respectively, below the established
threshold (Ratcliff et al., 1998; Ko et al., 2002; Adékambi et al.,
2009; Pascale et al., 2021). The phylogenetic tree well-points out
these differences, showing how the two isolates, despite their
proximity to the L. anisa clade, represent a single subclade that
needs to be further investigated.

The discrepancies found in sequences identity percentage
have led us to investigate in more depth by applying the
WGS technique. The genomes of 8cVS16 and 9fVS26 were
then compared with the closest genome returned by FASTANI
belonging to L. anisa (ATCC 35292). Although the whole-
genome sequences for both isolates were almost completed, with
a coverage of 95.2%, the ANI analysis returned a result of 90.74%
and the dDDH analysis reported a value of 43% compared
to the L. anisa ATCC 35292. Considering that the percentage
obtained was under the established similarity thresholds (95 and
70%, respectively) (Meier-Kolthoff et al., 2013; Kim et al., 2014),
we can consider the two isolates found belonging to a novel
Legionella species.

More detailed studies on (i) morphology, including flagellar
structures, (ii) Legionella growth tests at various temperatures
and on culture media, (iii) biochemical, and (iv) antibiotic
susceptibility tests will be the next steps in obtaining isolates
characterization, resulting in the deposit of the type strain in
culture collections and the most complete description of the
novel species.

This study can be considered as a support tool for
all laboratories that, during the phases of environmental
surveillance, may find isolates with similar characteristics to
the best-known species but with discrepancies in results.
These laboratories are encouraged not to stop at the common
identification tests but to continue the investigations in order to
discover novel isolates and understand the dynamics that led to
their development. The results of this study should not surprise
us should we consider that the environment is undergoing
profound changes (e.g., global warming), which can lead to an
increase in temperature in both natural and artificial reservoirs.
Moreover, the increasingly widespread use of disinfectants as a
preventive strategy, other than changes in water characteristics
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and pipeline materials, leads to a strong impact on the selection
of bacteria and the resistance development.

Therefore, acquiring extensive knowledge of these reservoirs
and the events that can promote changes in the ecological niche
of bacteria can help to prevent their spread in the man-made
environment and contain the occurrence of cases, clusters, or
outbreaks. In this context, environmental surveillance is critical,
as is a proper risk assessment plan that takes into account changes
in Legionella contamination over time. The latter will primarily
focus on correct isolate identification and characterisation, as
well as novel approaches able to recognise non-Lp species
with unknown rates of infection and pathogenicity other than
antibiotic resistance.
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