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Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of
many plants, including important agricultural and horticultural crops, represent a
monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular
phylogenetic relationships and DNA-based species and genera delimitations were up
to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first
comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy
orthologous sequences extracted from 24 selected powdery mildew genomes and 14
additional genomes from Helotiales, the fungal order that includes the Erysiphaceae.
Representative genomes of all powdery mildew species with publicly available whole-
genome sequencing (WGS) data that were of sufficient quality were included in the
analyses. The 24 powdery mildew genomes included in the analysis represented 17
species belonging to eight out of 19 genera recognized within the Erysiphaceae. The
epiphytic genera, all but one represented by multiple genomes, belonged each to
distinct, well-supported lineages. Three hemiendophytic genera, each represented by
a single genome, together formed the hemiendophytic lineage. Out of the 14 other
taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only
taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in
a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae
and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes.
Further analyses of powdery mildew and Arachnopeziza genomes may discover
signatures of the evolutionary processes that have led to obligate biotrophy from
a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S,
and 28S nrDNA sequences of the same set of powdery mildew specimens and

Frontiers in Microbiology | www.frontiersin.org 1

June 2022 | Volume 13 | Article 903024


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.903024
http://creativecommons.org/licenses/by/4.0/
mailto:Levente.Kiss@usq.edu.au
https://doi.org/10.3389/fmicb.2022.903024
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.903024&domain=pdf&date_stamp=2022-06-09
https://www.frontiersin.org/articles/10.3389/fmicb.2022.903024/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Vaghefi et al.

Genome-Scale Phylogeny of Powdery Mildew Fungi

compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent
to the phylogeny produced using 751 orthologs. This part of the study has revealed
multiple contamination and other quality issues in some powdery mildew genomes. We
recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA
sequences in powdery mildew WGS datasets that are identical to those determined by
Sanger sequencing should be used to assess the quality of assemblies, in addition to
the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.

Keywords: contaminated genomes, contaminating sequences, metagenomes, obligate biotrophs,
phylogenomics, plant-microbe interactions, single-copy orthologs, whole-genome sequencing

INTRODUCTION

Nuclear ribosomal DNA (nrDNA) sequences, above all the
internal transcribed spacer (ITS), the large subunit (LSU or 28S)
and the small subunit (SSU or 18S) nrDNA sequences, have
been at the epicenter of molecular identification and phylogenetic
studies of all groups of fungi since the nascence of this research
field in the late 1980s. According to Web of Science, the paper
reporting the first universal primers to amplify the 18S and the
ITS region of nrDNA in fungi (White et al., 1990) is probably the
most cited publication in mycology, with over 40,000 citations
to date. More than two decades later, a comprehensive, multi-
laboratory comparison of different nuclear and mitochondrial
DNA loci widely used in fungal phylogenetics concluded that
the ntDNA ITS sequences are still the only reliable species DNA
markers that can be used to infer phylogenies across all fungal
groups (Schoch et al,, 2012). In some intensively studied groups
of fungi, multi-locus analyses based on specific sets of loci have
already been established as the frameworks for phylogenetic
analyses and molecular taxonomic studies (e.g., Marin-Felix et al.,
2019; Vaghefi et al., 2020; Poudel et al., 2021); however, in
most fungal groups, nrDNA sequences are still the sole basis for
phylogenetic works (e.g., Crous et al., 2019, 2020, 2021).

An important group of ascomycetous plant pathogens, the
Erysiphaceae, known as the powdery mildew fungi, is a good
example for a large monophyletic lineage within which molecular
phylogenetic relationships as well as DNA-based species and
genera delimitations are mostly based on nrDNA phylogenies.
The Erysiphaceae include more than 900 species belonging to
19 genera. All species are obligate biotrophic plant pathogens,
i.e., they take up nutrients from living host plant tissues only
(Hiickelhoven and Panstruga, 2011) and cannot grow and
produce spores for reproduction without being functionally
connected to the infected and living host plant tissues. Altogether,
powdery mildew fungi can colonize more than 10,000 dicot
and monocot species in different parts of the world (Amano,
1986; Braun and Cook, 2012). Some powdery mildew species
infect only a single host plant species or a few closely related
hosts belonging to the same genus (e.g., Meeboon et al., 2017;
Kiss et al., 2018). Others are known from many, only distantly
related plants (e.g., Meeboon and Takamatsu, 2016; Braun et al,,
2019; Kiss and Vaghefi, 2021; Young and Kiss, 2021). Finally,
some host plants can be infected by more than one powdery
mildew species, which sometimes belong to different genera

(e.g., Takamatsu et al., 2007; Kiss et al., 2008; Desprez-Loustau
et al., 2018; Kelly et al., 2021; Faticov et al., 2022). Some species
have become invasive in different parts of the world (Kiss,
2005; Desprez-Loustau et al., 2010; Kiss et al., 2020). Important
crops, including wheat, barley, grapevine, as well as fruit and
vegetable species, are commonly colonized by diverse powdery
mildew fungi (Glawe, 2008). Despite extensive research on their
pathogenesis, epidemiology and control, these powdery mildew
species remain amongst the economically most important plant
pathogens in agriculture and horticulture worldwide due to the
combined effect of costs of chemical crop protection measures
and yield losses (Calonnec et al., 2004; Fondevilla and Rubiales,
2012; Fuller et al,, 2014; Dunn and Gaynor, 2020). Others are
well-known tree pathogens (Marcais and Desprez-Loustau, 2014;
Demeter et al,, 2021), and some have become model organisms
in plant pathology research (Gadoury et al., 2012; Bindschedler
et al., 2016; Kuhn et al,, 2016) or in the study of wild plant
pathosystems (Susi et al., 2015).

Before the era of DNA-based phylogenies, the generic
phylogenetic concept in the Erysiphaceae was based on
the morphological characteristics of the sexual morphs
(teleomorphs), known as chasmothecia (formerly: cleistothecia;
Braun, 1987, 1995). The complex geometries of the appendage
tips of some chasmothecia have captured the attention and
admiration of early mycologists and microscopists already
in the 19th century (Hirata et al, 2000) and were useful in
grouping powdery mildews in a few genera. Other characteristics
of chasmothecia, such as the number and shape of asci and
ascospores, have also been used to define the genera within the
Erysiphaceae. Species within genera were mainly distinguished
based on their host plants and the morphology of the sexual and
asexual morphs (Braun, 1987, 1995). The early speculations on
the evolution of powdery mildew fungi focused on chasmothecia,
and presumed that species/genera with simple, mycelioid
chasmothecial appendages were ancestral, and those with more
complex appendages have appeared later during the evolution of
the Erysiphaceae (Braun, 1987).

It was, therefore, surprising that the first phylogenetic analyses
of powdery mildews based on nrDNA sequences did not support
the classic, well-established generic concept of the Erysiphaceae
(Takamatsu et al., 1998, 1999; Saenz and Taylor, 1999; Hirata
et al., 2000; Mori et al., 2000a; Matsuda and Takamatsu, 2003). As
one of the very first molecular phylogenetic analyses concluded,
‘appendage morphology does not always accurately reflect the
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phylogeny of the powdery mildews’ (Takamatsu et al., 1999). In
fact, species were clearly grouped according to the morphological
characteristics of their asexual morphs (anamorphs), irrespective
of the morphology of their chasmothecia (Saenz and Taylor,
1999; Takamatsu, 2004). This has been confirmed by all nrDNA
phylogenetic analyses conducted to date (e.g., Marmolejo et al.,
2018; Bradshaw and Tobin, 2020; Kiss et al., 2020). The discovery
that it is, in fact, the conidiogenesis and the morphology of the
asexual morphs that mirror the phylogenetic relationships within
the Erysiphaceae has triggered major changes in the taxonomy
of powdery mildew fungi, especially at the genus level (Braun
et al., 2002; Braun, 2011; Braun and Cook, 2012). The currently
accepted genera are listed in Table 1.

The nrDNA phylogenies have also led to the development
of a new hypothesis about the evolution of the distinctive
chasmothecial appendages of powdery mildews, and a better
understanding of their life cycles. This was needed because,
in contrast to the early speculations, all phylogenetic analyses
have shown that species with complex appendages on their
chasmothecia have appeared first, and those with simple,
mycelioid appendages only later during evolution (for reviews,
see Takamatsu, 2013a; Takamatsu, 2018). Most of the latter
species infect herbaceous plants, while species with complex
appendages are pathogens of trees or shrubs, and usually
have more restricted host ranges than herb-pathogenic species
(Mori et al., 2000a; Takamatsu et al., 2000; Takamatsu, 2013b).
To explain these results, Takamatsu (2004) hypothesized that
appendage morphology reflects the adaptation of the respective
powdery mildew species to overwintering on deciduous woody

TABLE 1 | The current classification of the Erysiphaceae.

ERYSIPHACEAE

Tribe Erysipheae

One genus: Erysiphe

Tribe Golovinomyceteae

Subtribe Neoerysiphinae

One genus: Neoerysiphe

Subtribe Golovinomycetinae

One genus: Golovinomyces

Subtribe Arthrocladiellinae

One genus: Arthrocladiella

Tribe Cystotheceae

Subtribe Cystothecinae

Two genera: Cystotheca, Podosphaera
Subtribe Sawadaeinae

One genus: Sawadaea

Tribe Phyllactinieae

Four genera: Leveillula, Phyllactinia, Pleochaeta, Queirozia
Tribe Blumerieae

One genus: Blumeria

Tribe Unnamed

One genus: Microidium

Genera not included in the tribe-level classification:

Brasiliomyces, Bulbomicroidium, Caespitotheca, Parauncinula,
Salmonomyces, Takamatsuella

hosts, mostly in regions with temperate climate. Appendages with
complex geometries play a vital role in securing the attachment
of many chasmothecia to the bark of their deciduous hosts at
the end of the growing season, when those are washed off the
canopy by autumn rains, or detached, e.g., by air movements,
before leaf fall (for a review, see Takamatsu, 2013b). Some of
the chasmothecia that become attached to the woody parts of
their deciduous hosts survive the winter period, and release
ascospores in spring in the close vicinity of the freshly emerged
shoots and leaves, which are then infected by ascospores, re-
starting the infection cycle. This was well documented for
example in Erysiphe necator on grapevine (Pearson and Gadoury,
1987; Gadoury et al., 2012) and E. alphitoides on sessile oak
(Quercus petraea) (Dantec et al., 2015). Takamatsu (2004) has also
hypothesized that simple, mycelioid appendages of chasmothecia
of diverse herb-parasitic powdery mildew fungi may be a
result of convergent evolution that has repeatedly occurred in
different lineages of the Erysiphaceae as an adaptation to their
herbaceous host plants. It appears that evolutionary changes in
the characteristics of the conidiogenesis (e.g., whether conidia
are produced singly or in chains), reflected by the morphology
of the conidiophores, have happened slower than changes in the
morphology of chasmothecia, and nrDNA phylogenies of the
Erysiphaceae are capturing their phenotypic evolution based on
patterns of their conidiogenesis (Takamatsu, 2013b).

DNA regions other than nrDNA loci have also been tested for
their use in delimiting species in some groups of the Erysiphaceae.
The main objectives were to introduce new loci, including
protein-coding regions, in phylogenetic analyses (Inuma et al.,
2007; Liu et al,, 2021); to develop new species-specific DNA
barcodes (Ellingham et al, 2019; Shirouzu et al,, 2020); and
to test the hypothesis of interspecific hybridization in powdery
mildew fungi (Seko et al, 2011). Intraspecific, host-driven
differentiation of some powdery mildew species has also been
tested with new DNA markers, e.g., in Podosphaera xanthii (Vela-
Gorcia et al., 2014) and Erysiphe quercicola (Desprez-Loustau
et al,, 2017). Amongst the non-nrDNA loci, the MCM7 gene
was the most useful in distinguishing closely related powdery
mildew taxa (Ellingham et al., 2019; Shirouzu et al., 2020). This
gene encodes one of the highly conserved mini-chromosome
maintenance proteins (MCMs) that is required for eukaryotic
genome replication (Raja et al., 2011).

Internal transcribed spacer sequences are still the most
commonly used species-level DNA barcodes available for
powdery mildew fungi, despite their limitations. These include
intragenomic variations within some powdery mildew species
(Kovacs et al., 2011) and lack of resolution power to discriminate
between some other species that can be distinguished based on
morphology and host range (Braun et al., 2019; Qiu et al., 2020).
ITS sequences as species barcodes have limitations in other fungal
groups as well (Kiss, 2012; Stadler et al., 2020).

Traditionally, powdery mildew fungi were classified as
members of the monotypic order Erysiphales (i.e., consisting
of a single family, the Erysiphaceae) (Braun and Cook, 2012).
However, comprehensive multi-gene analyses of the class
Leotiomycetes have recently shown that powdery mildew fungi
group together with a few Arachnopeziza species within the order
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Helotiales, and together form the ‘erysiphoid clade’ (Johnston
et al, 2019). A taxonomic consequence of this phylogenetic
analysis is that the family level classification of powdery mildew
fungi, i.e., the status of the Erysiphaceae, remains unchanged, but
the order Erysiphales is not retained and the Erysiphaceae is now
regarded to be part of the Helotiales sensu Johnston et al. (2019).

Another outcome of the multi-gene analyses performed by
Johnston et al. (2019) is that Arachnopeziza spp. were identified
as the closest known saprobic relatives of powdery mildew fungi.
Little is known about Arachnopeziza spp.; it appears that these
fungi are decomposers of diverse organic substrates, such as
decaying wood and leaf debris, mostly in forest ecosystems
(Hirata et al., 2000; Baldrian et al., 2016; Kosonen et al., 2021).
Earlier, when the available nrDNA and other sequences were
much more limited, the Myxotrichaceae, including Oidiodendron,
Byssoascus, and Myxotrichum species were considered as the
closest known saprobic relatives of the Erysiphaceae based on
nrDNA phylogenies and molecular clock calculations (Berbee
and Taylor, 1993, 2001; Sugiyama et al., 1999; Mori et al,
2000b; Takamatsu, 2004). Fungi belonging to the Myxotrichaceae
are also known as decomposers of dead plant materials and
other organic materials. Further phylogenetic analyses indicated
that Chlorociboria and Cyttaria (Wang et al.,, 2006a,b) or the
Myxotrichaceae and Pleuroascus (Peterson and Pfister, 2010) are
the closest known saprobic relatives of powdery mildew fungi.
Deciphering the evolutionary origin of the Erysiphaceae may shed
light on how a fungal lineage has evolved from a saprobic lifestyle
to obligate biotrophy.

A part of the comprehensive phylogenetic analyses performed
by Johnston et al. (2019) used over 3,000 concatenated
orthologous single-copy genes extracted from the genomes of 49
strains belonging to the Leotiomycetes. Their analysis showed that
Oidiodendron maius, representing the Myxotrichaceae, was not
a close relative of the ‘erysiphoid clade’ consisting of powdery
mildew fungi and Arachnopeziza. This was also revealed by other
analyses of the same study (Johnston et al., 2019) based on 15
genes commonly used in recent fungal phylogenies. Another
genome-scale study revealed the phylogeny of the entire phylum
Ascomycota, using 815 single-copy orthologs from genomes of
1,107 ascomycetes (Shen et al., 2020). That study did not include
Arachnopeziza genomes but confirmed that O. maius is not
closely related to powdery mildew fungi.

So far, only one study has reconstructed evolutionary
relationships within the Erysiphaceae based on genome-scale
data (Frantzeskakis et al., 2019a). The aim of that analysis
was to test the relationship between Parauncinula polyspora,
an early-diverged powdery mildew fungus with a surprisingly
small genome, and other, well-known powdery mildews based on
non-nrDNA loci. The analysis used 1,964 single-copy orthologs
identified in the genomes of seven powdery mildew and nine
other fungi belonging to the Leotiomycetes. Arachnopeziza
genomes were not included in that study (Frantzeskakis et al.,
2019a).

Clearly, further comprehensive genome-scale phylogenies are
needed to learn more about the evolution of powdery mildews
and to reveal their closest saprobic relatives. Comparative
genomics analyses have already contributed to a better

understanding of the interactions between some powdery
mildew fungi and their plant hosts, including rapid evolution
of the host range patterns (Spanu et al., 2010; Wicker et al.,
2013; Frantzeskakis et al., 2018, 2019b; Wu et al., 2018; Barsoum
et al., 2019; Miiller et al., 2019), but comprehensive analyses
of host-parasite interactions in many species and genera of the
Erysiphaceae have not been performed yet. Phylogenetic analyses
of nrDNA loci have already revealed many aspects of their
evolution that are consistent with morphological characteristics
of different groups, and their host-pathogen interaction patterns
(Takamatsu, 2013a,b). Multi-gene studies may be useful to enrich
results based solely on nrDNA analyses, above all to disentangle
complexes of closely allied species that cannot be properly
resolved in phylogenetic analyses based on ITS sequences only,
such as the Erysiphe aquilegiae complex (Shin et al, 2019;
Bradshaw et al, 2020), and to identify the closest saprobic
relatives of the Erysiphaceae.

More and more genome assemblies are reported for different
powdery mildew species (e.g., Kusch et al., 2020, 2022a; Kim et al.,
2021; Polonio et al.,, 2021), and these data offer new avenues
to understand the powdery mildew lifestyle. However, most
powdery mildew genomes published so far are highly fragmented
(Bindschedler et al., 2016; Barsoum et al., 2019) as these are
generally large, gene-poor, and contain a high proportion of
repetitive elements compared to other ascomycetes (Spanu et al.,
2010; Wicker et al., 2013; Frantzeskakis et al., 2018). These quality
issues sometimes limit the use of powdery mildew genomes in
further studies. The main goals of this study were to (i) perform
genome-scale phylogenetic analyses using single-copy orthologs
identified in the genomes of as many powdery mildew fungi
and presumed saprobic relatives as possible; (ii) compare the
results to nrDNA phylogenies of the same isolates; (iii) reveal
quality issues associated with the use of the currently available
powdery mildew whole-genome sequencing (WGS) datasets in
phylogenetic studies; and (iv) update the taxonomy of the
genome-sequenced powdery mildew species where needed.

MATERIALS AND METHODS

Genome-Scale Phylogenetic Analyses

To obtain a comprehensive set of genomes representative of
powdery mildews sequenced to date, the European Nucleotide
Archive (ENA), Joint Genome Institute (JGI), and National
Center for Biotechnology Information (NCBI) were searched
using the search term Erysiphaceae in January 2022. For
Blumeria graminis, the most studied powdery mildew species
infecting several cereal and wild grass species, and Erysiphe
necator, the causal agent of grape powdery mildew, multiple
genomes are available in public repositories; therefore, only
four to five representative genomes were retrieved. For all
other powdery mildew species that had a sequenced genome,
all available genomes were obtained from the databases listed
above, except for E. alphitoides specimen MS-42D (Dutech et al,,
2020), for which only the raw data are available in ENA, and
the genome was retrieved from http://arachne.pierroton.inra.fr/
AlphiGeno/ (Table 2).
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TABLE 2 | List of powdery mildew genomes assessed for completeness through identification of Benchmarking Universal Single-Copy Orthologs (BUSCO) using

BUSCO v.5.2.2 (Siméo et al., 2015) and Leotiomycetes dataset Odb10.

Powdery mildew species Isolate/specimen ID Reference? BUSCO results?
Genome completeness cs CcD F M
(%)
Blumeria hordei (formerly AB Hacquard et al., 2013 84.7 2,728 11 193 302
B. graminis f. sp. hordei)
DH14 Frantzeskakis et al., 2018 94.7 3,042 21 74 97
K1 Hacquard et al., 2013 94.3 3,023 25 77 109
RACE1 Frantzeskakis et al., 2018 94.6 3,041 21 73 99
B. graminis f. sp. triticale THUN-12 Muller et al., 2021 94.8 3,043 22 69 100
B. graminis f. sp. tritici 70 Wicker et al., 2013 94.0 3,035 7 85 107
94202 Wicker et al., 2013 93.3 3,007 10 103 114
96224 Wicker et al., 2013; Mller et al., 94.5 3,038 18 70 108
2019
Jiw2 Wicker et al., 2013 91.9 2,963 9 124 138
Erysiphe alphitoides MS-42D Dutech et al., 2020 95.4 2,322 762 60 90
E. necator C Jones et al., 2014 93.4 3,017 2 80 135
el1-101 Jones et al., 2014 93.3 3,015 2 83 134
Lodi Jones et al., 2014 93.2 3,014 1 82 137
Ranch9 Jones et al., 2014 93.0 3,009 2 84 139
E. neolycopersici (formerly UMSG2 Wu et al., 2018 93.0 3,000 6 90 138
QOidium neolycopersici)
E. pisi Palampur-1 Unpublished JGI 92.4 2,939 47 107 141
- Unpublished, NCBI Acc. 56.2 1,818 1 550 865
GCA_000208805.1
- Unpublished, NCBI Acc. 63.8 2,064 1 464 705
GCA_000214055.1
Erysiphe pulchra TENN-F-071826 Wadl et al., 2019 91.7 2,950 17 130 137
E. quercicola (formerly HO-73 Liang et al., 2018 92.8 2,990 10 100 134
QOidium heveae)
Golovinomyces ucsc1 Wu et al., 2018 91.1 2,926 18 76 214
cichoracearum
UMSG3 Wu et al., 2018 91.3 2,932 20 76 206
G. magnicellulatus FPH2017-1 Farinas et al., 2019 92.2 2,692 290 71 181
G. orontii MGH1 Unpublished, JGI Genome MGH1 89.9 648 2,261 103 222
v4.0
Leveillula taurica HNHM-MYC-006405 Kusch et al., 2020 82.4 2,661 3 83 487
Parauncinula polyspora - Frantzeskakis et al., 2019a 93.0 2,991 15 27 201
Phyllactinia moricola HMJAU-PM91933 Kusch et al., 2022b 71.3 2,306 0 236 692
Pleochaeta shiraiana HAL3440 F Kusch et al., 2022b 76.6 2,465 12 93 664
Podosphaera cerasi MH Unpublished, NCBI Acc. 91.9 2,962 9 87 176
GCA_018398735.1
P, leucotricha PuE-3 Ganan et al., 2020 91.6 2,952 9 99 174
P, xanthii 2086 Polonio et al., 2021 90.9 2,899 41 67 227
Wanju2017 Kim et al., 2021 91.6 2,811 151 66 206

Genomes of the isolates/specimens that were selected for the genome-scale phylogenetic analysis are indicated in bold.
2\Where a reference for a genome assembly was not available, the genome accession number in National Centre for Biotechnology Information (NCBI) or Joint Genome

Institute (JGI) is provided.

bBenchmarking Universal Single-Copy Orthologs.
CS, complete and single copy BUSCOs; CD, complete and duplicated BUSCOs; F, fragmented BUSCOs; M, missing BUSCOs.

To assess the quality of the accessed genome assemblies,
we used the Benchmarking Universal Single-Copy Orthologs
(BUSCO) v.2.5.5 (Simdo et al, 2015) and the Leotiomycetes
0odb10 database, which includes a total of 3,234 single-copy
BUSCOs. Where multiple genomes were available for a species,

and to remove low-quality genomes and minimize missing
data, only genomes with highest completeness were retained for
the phylogenetic analyses. The final dataset for genome-scale
phylogenetic analyses included 24 powdery mildew genomes
(Table 2). A set of genomes selected to represent close

Frontiers in Microbiology | www.frontiersin.org

June 2022 | Volume 13 | Article 903024


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Vaghefi et al.

Genome-Scale Phylogeny of Powdery Mildew Fungi

relatives of powdery mildew fungi within the Leotiomycetes
were also included in the genome-scale analysis (Table 3); these
were selected based on previous phylum-level and class-level
phylogenies (Johnston et al., 2019).

We used single-copy orthologous amino acid sequences
obtained using BUSCO for phylogenomic inference. First,
extracted protein sequences for all genomes were analyzed
using OrthoFinder v.2.5.1 (Emms and Kelly, 2019) to identify
single-copy orthologs shared across all genomes. OrthoFinder
assigned a total of 113,072 proteins (99.9% of total) to 3,427
orthogroups and identified 751 orthogroups that existed in
all target genomes in single copies. Amino acid sequences
were aligned separately using MAFFT v.7.453 (Katoh and
Standley, 2013) with the BLOSUM62 matrix of substitutions.
Ambiguously aligned regions were removed using Gblocks v.
0.91b (Castresana, 2000; Talavera and Castresana, 2007) using
default settings. A maximum likelihood (ML) phylogenetic tree
based on the concatenated alignment of amino acid sequences
was generated with 1,000 bootstrap replicates using RAXML-NG
v.1.0.1 (Kozlov et al., 2019), under the JTT-+I+G4-+F amino acid
substitution model identified by ModelTest-NG v.0.1.6 (Darriba
et al., 2020). Sclerotinia trifoliorum strain SwB9 was used as the
outgroup (Kusch et al., 2022b).

Nuclear Ribosomal DNA Sequences
From Whole-Genome Sequencing

Datasets Versus Sanger Sequencing

We aimed to produce a separate phylogeny based on nrDNA
sequences of the same set of powdery mildew specimens to
compare with the phylogeny based on the single-copy orthologs.
For this, we searched the NCBI GenBank database for 5.8S, 18S,
and 28S nrDNA sequences of each powdery mildew specimen
included in our genome-scale study (Table 4). Out of the 24
specimens included in the genome-scale analyses, only 10 had
their nrDNA loci sequenced by Sanger sequencing, and only one
of them, originally recognized as Oidium heveae HO-73, had all
the three loci sequenced prior to this study (Table 4). (HO-73
should be identified as an isolate of E. quercicola based on Wu
et al., 2019; see below.) Subsequently, we attempted to extract
the missing nrDNA loci from the published genome assemblies
for inclusion in the nrDNA phylogenetic analysis. For this, we
converted the genome assemblies of target species to BLAST
databases in Geneious Prime' (Kearse et al., 2012) and used 5.8S,
18S, and 28S sequences of reference specimens (Kiss et al., 2020)
as queries in BLAST searches against the genomes to retrieve the
respective sequences from each of the assemblies. The extracted
nrDNA fragments were used in BLAST searches against the NCBI
nrDNA database to ensure these belonged to the target powdery
mildew species and are suitable for the phylogenetic analysis.
Where nrDNA sequences of specimens were available in the
NCBI GenBank database, we aligned these against the sequences
obtained from the genomes for comparison (Table 5). To avoid
misidentification of sequences as nrDNA, the Megablast function
was used, and contigs/scaffolds were only reported to contain

Thttp://www.geneious.com

nrDNA sequence fragments if these had a query coverage of 100%
and BLAST hit length of at least 300 bp. The identified fragments
were subsequently used in BLAST searches against the NCBI
nrDNA database to ensure these belonged to the nrDNA region.

In addition, we amplified and sequenced the 18S and
28S regions in Leveillula taurica HNHM-MYC-006405 and
Pleochaeta shiraiana HAL3440 E as well as the 18S, 28S and ITS
regions of the P. polyspora specimen studied by Frantzeskakis
et al. (2019a), according to the protocol described by Kiss et al.
(2020). The newly obtained nrDNA sequences were deposited in
GenBank (Table 4).

Nuclear Ribosomal DNA Phylogenetic
Analysis

The 5.8S, 18S, and 28S sequences extracted from genome
assemblies, retrieved from NCBI GenBank or determined in this
work (Table 4), were included in the nrDNA analysis. When one
or more of these loci were not available in either of the respective
genomes or as separate GenBank entries for the respective
specimens, and we did not have access to herbarium specimens
or DNA from the respective specimens to amplify and sequence
the loci, these were coded as missing. All powdery mildew
specimens included in the genome-scale phylogenetic analysis
were also used in the nrDNA-based phylogenetic analysis, except
for Golovinomyces magnicellulatus FPH2017-1 as the nrDNA loci
were missing from its genomes and were not available as separate
entries in GenBank.

Sequences available for each region were aligned using
MAFFT v.7.450 (Katoh and Standley, 2013) as implemented
in Geneious Prime. Alignments were manually trimmed and
concatenated into a supermatrix, with missing data represented
as gaps. A Maximum Likelihood analysis of the concatenated
alignment was run using RAXML v.8 (Stamatakis, 2018) in
Geneious Prime with 1,000 bootstrap replicates based on the
GTR substitution model with gamma-distribution rate variation
for individual partitions. Parauncinula polyspora was used as the
outgroup based on Kusch et al. (2022a).

Nomenclature of the

Genome-Sequenced Powdery Mildew
Species

Some of the published powdery mildew genome assemblies
are available in GenBank under species names that need to
be updated. The taxonomy of the genus Blumeria has recently
changed (Liu et al., 2021); we followed the new nomenclature and
renamed the powdery mildew isolates from barley as B. hordei
in this work. The species first described as Oidium neolycopersici
from tomato (Kiss et al., 2001) was re-classified as Pseudoidium
neolycopersici (Braun and Cook, 2012) and recently as Erysiphe
neolycopersici (Hsiao et al., 2022). Therefore, the latter name was
used here as a synonym of O. neolycopersici. Powdery mildew
on rubber tree (Hevea brasiliensis) has long been attributed to
Oidium heveae; however, Wu et al. (2019) revealed that the
causal agent of this disease is Erysiphe quercicola, a species
known to infect diverse host plant species. As the ITS sequence
of the genome-sequenced isolate known as O. heveae HO-73,
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TABLE 3 | List of non-powdery mildew Leotiomycete genomes included in the genome-scale phylogenetic analysis.

Species Strain Accession number Database References
Amorphotheca resinae ATCC 22711 GCA_003019875.1 NCBI Martino et al., 2018
Amorphotheca resinae KUC3009 GCA_018167515.1 NCBI Oh et al., 2021
Arachnopeziza araneosa ICMP 21731 GCA_003988855.1 NCBI Unpublished
Ascocoryne sarcoides NRRL 50072 GCA_000328965.1 NCBI Gianoulis et al., 2012
Chlorociboria aeruginascens DSM 107184 GCA_002276475.2 NCBI Buttner et al., 2019
Glarea lozoyensis ATCC 20868 GCA_000409485.1 NCBI Chen et al., 2013
Marssonina brunnea f. sp. multigermtubi MB_m1 GCA_000298775.1 NCBI Zhu et al., 2012
Neobulgaria alba ICMP 18395 GCA_003988965.1 NCBI Unpublished
Oidiodendron maius Zn GCA_000827325.1 NCBI Kohler et al., 2015
Phialocephala scopiformis CBS 120377 GCF_001500285.1 NCBI Walker et al., 2016
Phialocephala subalpine UAMH 11012 GCA_900073065.1 NCBI Schlegel et al., 2016
Rhynchosporium commune UK7 GCA_900074885.1 NCBI Penselin et al., 2016
Rhynchosporium secalis 02CH4-6a.1 GCA_900074895.1 NCBI Penselin et al., 2016
Sclerotinia trifoliorum SwB9 GCA_905066765.1 NCBI Kusch et al., 2022a

available in GenBank under acc. no. KJ868176, is identical to
several ITS sequences of E. quercicola analyzed by Wu et al.
(2019), we propose to use the binomial E. quercicola for isolate
HO-73, especially because of confusions concerning the precise
identification of powdery mildew anamorphs listed as O. heveae
in different works (Braun and Cook, 2012; Wu et al., 2019).

RESULTS

Genome-Scale Phylogenetic Analysis

After assessment of publicly available powdery mildew genome
assemblies, representative genomes of all powdery mildew species
with published WGS data were included in the genome-scale
phylogenetic analysis (Table 4) except for Golovinomyces orontii
MGHI1 (Micali et al, 2008) as its genome showed a high
number of duplicated BUSCOs (2,261) and only 648 single-
copy BUSCOs (Table 2). Therefore, the analysis was undertaken
based on 751 single-copy orthologous sequences from 38 selected
Leotiomycete genomes (24 powdery mildew genomes and 14
additional genomes from Helotiales) (Tables 3, 4). The final
alignment included a total of 197,082 sites, with 0.74% gaps
and 30.73% invariant sites. In the resulting phylogeny, the
Erysiphaceae formed a monophyletic group with maximum
bootstrap support as expected. Arachnopeziza araneosa was
identified as the closest saprobic relative of powdery mildew fungi
(Figure 1), which is in agreement with the analysis of Johnston
et al. (2019). Alignments and trees produced in this study are
available in the Supplementary Material.

The 24 powdery mildew genomes included in the analysis
represented eight genera out of 19 recognized within the
Erysiphaceae (Table 1). The epiphytic genera Erysiphe,
Golovinomyces, Blumeria, and Podosphaera, all represented
by multiple genomes, belonged each to distinct clades with 100%
bootstrap support (Figure 1). Within Erysiphe, E. alphitoides,
E. quercicola, and E. pulchra representing sect. Microsphaera
(Takamatsu et al., 2015a), together with E. pisi belonging to sect.
Erysiphe, formed a lineage with maximum bootstrap support.

Erysiphe necator, a representative of sect. Uncinula within the
genus (Takamatsu et al, 2015b), belonged to another lineage.
Within Podosphaera, P. leucotricha and P. cerasi, representing
sect. Podosphaera of the genus, formed a fully supported clade,
while P. xanthii, a representative of sect. Sphaerotheca, belonged
to another clade. Similar to a previous study (Frantzeskakis et al.,
2019a), the analysis identified Parauncinula polyspora, another
epiphytic powdery mildew species, as belonging to an early
diverged lineage of the Erysiphaceae. Three genera, Leveillula,
Phyllactinia, and Pleochaeta, each represented by a single
genome, formed a distinct lineage known as the hemiendophytic
lineage within the Erysiphaceae (Takamatsu, 2013a,b; Kusch
et al., 2022a).

Out of those 14 other taxa from the Helotiales included
in this analysis, Arachnopeziza araneosa was the only one
that belonged to the large monophyletic clade including all
the 24 genome-sequenced powdery mildew fungi (Figure 1).
The close phylogenetic relationship between the Erysiphaceae
and Arachnopeziza has already been shown by Johnston et al.
(2019) based on the analysis of the class Leotiomycetes that
included three powdery mildew species and was built on a partly
overlapping set of a total of 3,156 single-copy orthologs.

Nuclear Ribosomal DNA Phylogeny

All powdery mildew specimens included in the genome-scale
phylogenetic analysis were also used in the nrDNA analysis,
except for G. magnicellulatus FPH2017-1 as the 5.8S, 185,
and 28S nrDNA sequences were missing from its published
genome. These sequences were not available for this specimen
as separate entries in GenBank either and we had no access
to any materials of the G. magnicellulatus isolate FPH2017-
1 to determine the missing nrDNA sequences in this study.
Therefore, the nrDNA analysis consisted of 23 taxa and a
total of 2,666 sites (5.8S: 153 bp, 18S: 1,695 bp, and 28S:
818 bp), 34.8% of which were variable. Whenever possible, the
5.8S, 18S, and/or 28S nrDNA sequences extracted from the
respective genomic databases were used in the analysis. When
some of those sequences were not found in the respective WGS
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TABLE 4 | List of powdery mildew specimens included in the genome-scale and nuclear ribosomal (n'fDNA) phylogenetic analyses.

Powdery mildew Isolate/specimen GenBank assembly Database? nrDNA accession no.
species ID accession
28S 5.8S 18S
Blumeria hordei DH14 GCA_900239735.1 NCBI OENG01000016.1° OENG01000016.1° OENGO01000016.1°
(formerly B. graminis f.
sp. hordei)
RACET GCA_900237765.1 NCBI UNSH01000070.1¢ UNSH01000070.1¢ UNSH01000070.1¢
B. graminis f. sp. THUN-12 GCA_905067625.1 NCBI CAJHIT010000009.19 CAJHIT010000009.19 CAJHIT010000009.19
triticale
B. graminis f. sp. tritici 70 GCA_000441875.1 NCBI ASJIN01035784.1 ASJIN01035784.1 ASJIN01035784.1
96224 GCA _900519115.1 NCBI LR026992.1¢ LR026992.1¢ LR026992.1¢
Erysiphe alphitoides MS_42D - Ny Contig 84 Contig 84 Contig 84
E. necator C GCA_000798715.1 NCBI JNVN01000032" JNVN01000032" JNVN01000032"
e1-101 GCA_000798795.1 NCBI JOKO01000133 JOKO01000133 JOKO01000133
Lodi GCA_000798775.1 NCBI JNUUO01000055 JNUUO1000055 JNUUO1000055
E. neolycopersici UMSG2 GCA_003610855.1 NCBI nd./ KX776199 KX776199
(formerly Oidium
neolycopersici)
E. pisi Palampur-1 - JGI scaffold_125 scaffold_125 scaffold_125
E. pulchra TENN-F-071826  GCA_002918395.1 NCBI PEDP01018202.1¥ MH766898 nd./
E. quercicola (formerly HO-73 GCA_003957845.1 NCBI KJ8681759 KJ8681769 KP1715129
Oidium heveae)
Golovinomyces UCSC1 GCA_003611215.1 NCBI nd./ AF031282 AF031282
cichoracearum
UMSG3 GCA_003611195.1 NCBI n.d. KR611314 KR611314
G. magnicellulatus FPH2017-1 GCA_006912115.1 NCBI n.d. n.d. n.d.
Leveillula taurica HNHM-MYC- PRJEB36538 ENA OM906815* MT125856 OM906851*
006405
Parauncinula polyspora — PRJEB29715 ENA OM906816* OM906197* OM906852*
Phyllactinia moricola HMJAU-PM91933 GCA_019455665.1 NCBI MZ540403 MZ541088 JAHYSQ010042711.14™
Pleochaeta shiraiana ~ HAL3440 F GCA_019455505.1 NCBI OM906817* MZ661116 OM906853*
Podosphaera cerasi  MH GCA_018398735.1 NCBI JAGTUB010000840.1" JAGTUB010000840.1" JAGTUB010000840.1"
Po. leucotricha PUuE-3 GCA_013170925.1 NCBI nd./ MT180425 n.d.
Po. xanthii 2086 GCA_014884795.1 NCBI MK225554 JACSEY010000300 MK225523
Wanju2017 GCA_010015925.1 NCBI JAAAXZ010001060 JAAAXZ010001060 JAAAXZ010001060

If available as a result of Sanger sequencing, 28S, 5.8S and 18S nrDNA sequences were obtained from the NCBI GenBank nucleotide database (accession numbers
shown in bold). Some loci were determined by Sanger sequencing in this work (indicated by asterisk, *). If nrDNA sequences of some specimens were not available in
the nucleotide database of GenBank, and could not be determined in this study, sequences of the corresponding regions were extracted from the published genomes
(contig/scaffold numbers harboring the respective nrDNA regions underlined).

4ENA, European Nucleotide Archive; JGI, Joint Genome Institute; and NCBI, National Centre for Biotechnology Information.

bidentical copies of nrDNA sequences were also detected in contig OENG01000318.1.

CIdentical copies of nrDNA sequences were also detected in contigs UNSHO1000068.1 and UNSHO1000069.1.

didentical copies of nfDNA sequences were also detected in contigs CAJHITO10000019.1, CAJHITO10000020.1, CAJHITO10000022.1, CAJHITO10000023.1,
CAJHIT010000025.1, and CAJHITO10000030.1.

®ldentical copies of nrDNA sequences were also detected in contig LR026995.1.

fGenome of Erysiphe alphitoides specimen MS-42D is available from http.//arachne.pierroton.inra.fr/AlphiGeno/.

9Contigs QVIKO1005055.1, QVIKO1001208.1, QVIKO1002109.1, and QVIKO1007960.1 in the E. quercicola genome included nrDNA sequences, which were not included
in the nrDNA analysis, as these were identical or highly similar to multiple other fungi and plant species.

hnrDNA sequences extracted from this contig showed high similarity to those of Erysiphe species, however, the 5.8S sequence was only partial, with 45 bp missing
in the middle. Additional nrDNA sequences were detected in Contig JNVNO1005878.1 in E. necator genome (GCA_000798715.1), which were identical to the nrDNA
sequences of multiple Penicillium spp.

'n.d., not detected; the sequence of the corresponding region was not found in NCBI GenBank database or the published genome.

IScaffold_34 also includes copies of nrDNA sequences that are identical or highly similar to those in Scaffold_125.

KThis contig showed high similarity to 28S sequence of Erysiphe pulchra reference sequences on GenBank. Additional nrDNA sequences were detected in Contig
PEDP01005487.1, which were identical to the nrDNA sequences of Cladosporium spp. Also, contig PEDP01002611.1 harbors partial 18S (609 bp) and 28S (1,291 bp)
sequences identical and highly similar (99.8%) to those of Neohydatothrips annulipes.

IContigs VCMJ01009734 and VCMJ01035023 in G. magnicellulatus genome harbor nrDNA sequences, which were not included in the analysis, as these showed high
similarity to nrDNA sequences from Pseudozyma, Moesziomyces, and Acremonium spp.

MThis contig included a very small fragment of 18S sequence (135 bp).

NContig JAGTUB010000459.1 in Po. cerasi genome harbored nrDNA sequences identical to Aureobasidium pullulans and other ascomycetes.
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TABLE 5 | Comparison of 28S, ITS and 18S sequences extracted from whole genome sequencing (WGS) datasets (genome assembly accession numbers shown in Table 4) to sequences determined by Sanger
sequencing available at NCBI GenBank database.

Powdery mildew species Isolate/ Sanger sequencing (GenBank WGS (Contigs/scaffolds containing Number of nucleotide position
specimen ID accession numbers)? nrDNA sequence fragments)? differences®/alignment length
28S ITS 188 28S ITS 188 28S ITS 18S
Erysiphe quercicola HO-73 KJ868175 KJ868176 KP171512 QVIKO10007 QVIKO1007 QVIKO10012 0/328 - -
(formerly Oidium heveae) 45149 960.1¢ 08.1f
and QVIKO10012 and QVIKO10021 - - -
08.1 09.19
and QVIKO10050 and QVIKO10112 - - -
55.17 5517
E. neolycopersici UMSG2 n.a. KX776199 KX776199 n.d/ n.d. n.d. - - -
E. pulchra TENN-F-071826 n.a. MH766898 n.a. n.d. PEDP01005487.1% n.d. - - -
G. cichoracearum UCSC1 n.a. AF031282 AF031282 n.d. n.d. n.d. - - -
UMSG3 n.a. KR611314 KR611314 n.d. n.d. n.d. - - -
Leveillula taurica HNHM-MYC- OM906815  MT125856 OM906851 scaffold_175 scaffold_04895™ scaffold_04895™ - 41/585  894/1,797
006405 59
and scaffold_17559 / - - -
Parauncinula polyspora - OM906816  OM906197 OM906852 NODE_26095" NODE_26095" NODE_26095" 3/813 0/566 0/423
Phyllactinia moricola HMJAU-PM91933 MZ540403 MZ541088 n.a. JAHY JAHYSQO010042711.1 n.d. o/721 0/563 -
SQ010042711.1
Pleochaeta shiraiana HAL3440 F OM906817  MZ661116 OM906853 JAHY JAHYSP010014424.1  JAHYSP010014424.1 07241 0/445 0/1,736
SP010014424.1
and - - 32/427
JAHYSP010004388.1°
Podosphaera leucotricha  PUuE-3 n.a. MT180425 n.a. n.d. n.d. n.d. - - -
Po. xanthii 2086 MK225554 n.a. MK225523 JACSEY010000300.1 n.d. JACSEY010000300.1 28/3,019 - 4/899

an.a., not available.

bThe nrDNA sequences obtained from NCBI GenBank database were used as BLAST queries to extract similar sequences from the corresponding genomes in Geneious Prime using Megablast. Contigs/scaffolds were
only reported to contain nrtDNA sequence fragments if they had a query coverage of 100% or BLAST hit length of at least 300 bp.

SNumber of nucleotide positions with variable characters, i.e., positions with single nucleotide polymorphisms or indels, between nrDNA sequences from WGS versus Sanger sequencing. This information is provided
only when the detected contig was identified as nrDNA fragments belonging to powdery mildew species. Dashes (') indicate that comparisons were meaningless, due to lack of data or because the nrDNA sequences
did not come from the respective powdery mildew isolate.

9A 328 bp sequence extracted from this contig was identical to the 28S sequence of Oidium heveae (E. quercicola) (KJ868175).

€A 369 bp fragment from this contig was identical to the ITS region of Curvularia spp.

"Two fragments of 666 bp and 353 bp from this contig were highly similar (~98%) and identical to 28S and 18S sequences of multiple plant species.

9A 500 bp fragment from this contig showed high similarity (>99%) to species belonging to the class Arachnida.

hA 490 bp fragment from this contig showed high similarity (99.8%) to Cladosporium spp.

IThis contig is 320 bp and identical to 18S sequence of multiple Cladosporium spp.

In.d., not detected; the sequence of the corresponding region was not detected in the published genome.

kA 611 bp fragment from this contig is identical to the ITS sequence of multiple Cladosporium spp.

ITwo 786 bp and 1,747 bp fragments from this contig were identical and highly similar (99.7%) to 28S and 18S sequences of multiple Penicillium spp.

MThis contig harbored 18S and ITS sequences with similarity to Leveillula spp., however, large areas of dissimilarity were also identified (Figure 3).

"The Parauncinula polyspora contig NODE_26095, which harbors the nrDNA region (Frantzeskakis et al., 2019a), was missing from the genome that was retrieved from ENA and was obtained from Lamprinos
Frantzeskakis (personal communication).

OThis contig also included a partial 18S sequence with only 94% similarity to the 18S sequence of Pleochaeta shiraiana HAL3440 F.
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FIGURE 1 | Phylogeny of powdery mildew species and closely related Leotiomycetes based on 751 orthologous protein sequences. Maximum likelihood phylogeny
was inferred from a concatenated alignment of amino acid sequences using RAXML-NG v.1.0.1 (Kozlov et al., 2019) under the JTT+l+G4+F substitution model.
Taxon labels include species names followed by the specimen/strain accession numbers, except for Parauncinula polyspora, for which a herbarium specimen is not
available (Frantzeskakis et al., 2019a). Bootstrap support values greater than 70% are shown at the edges. The tree is rooted to Sclerotinia trifoliorum strain SwB9
(Kusch et al., 2022b). The scale bar represents nucleotide substitutions per site.

contigs/scaffolds, sequences from the same specimens/isolates
were retrieved from GenBank or PCR-amplified and determined
in this study or coded as missing. The nrDNA phylogeny
(Figure 2) was largely congruent to the phylogeny produced
based on 751 orthologous proteins (Figure 1).

Quality of Nuclear Ribosomal DNA
Sequences Extracted From
Whole-Genome Sequencing Data Versus

Sanger Sequencing
Extracting the nrDNA sequences from published powdery
mildew genomes resulted in detection of contaminating

DNA in multiple genomes (Table 4). For example, multiple
nrDNA sequences were detected in the genome of E. necator
C genome (GCA_000798715.1), which were identical to
those of Penicillium spp. strains. Likewise, additional nrDNA
sequences were detected in E. pulchra TENN-F-071826
(GCA_002918395.1) and E. quercicola (formerly O. heveae)
HO-73 (GCA_003957845.1) genomes, which were highly similar
to the nrDNA sequences of Cladosporium spp. and various
plant species, respectively. Although no nrDNA sequences with
any similarity to powdery mildew species could be retrieved
from the genome of G. magnicellulatus (GCA_006912115.1),
two contigs (VCMJ01009734 and VCM]J01035023) were
found to carry nrDNA sequences with high similarity to
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FIGURE 2 | Maximum likelihood phylogeny based on the concatenated sequences of the 5.8S, 18S, and 28S regions of the nuclear ribosomal DNA of
representative powdery mildew taxa. Bootstrap values greater than 70% are shown above or below the branches. The tree is rooted to Parauncinula polyspora
specimen sequenced by Frantzeskakis et al. (2019a). Taxon labels include species names followed by the specimen accession numbers, except for Parauncinula
polyspora, for which a herbarium specimen is not available (Frantzeskakis et al., 2019a). The letters on the right side of the tree indicate source of the 28S, 5.8S, and
18S nrDNA sequences as G (extracted from the genome) or S (produced through Sanger sequencing or obtained from NCBI GenBank database). Dashes indicate
missing loci. The scale bar represents nucleotide substitutions per site.

nrDNA sequences of Pseudozyma spp., Moesziomyces spp., and
Acremonium spp. (Table 4).

The presence of multiple dissimilar copies of nrDNA
sequences in some powdery mildew assemblies prompted us to
identify powdery mildew nrDNA sequences within the analyzed
genomes and compare those to the 18S, 28S and ITS sequences
of the same specimens if they were available in NCBI GenBank
database. In some powdery mildew genome assemblies, nrDNA
sequences obtained from Sanger sequencing and WGS data were
identical (for example Phyllactinia moricola HMJAU-PM91933
and Pleochaeta shiraiana HAL3440 F; Table 5). In others, some
or all the available nrDNA sequences differed in a few, or many,
nucleotide positions when extracted from WGS contigs and
compared to the results of Sanger sequencing (Table 5). As an
example, Figure 3 reveals the variation of nrDNA sequences

obtained by the two methods in Leveillula taurica HNHM-MYC-
006405.

DISCUSSION

The nuclear ribosomal DNA region is an essential component
of the genomes of all prokaryotes and eukaryotes as the
genes included in this region encode ribosomal RNA (rRNA)
molecules. These molecules are integral parts of cytoplasmic
ribosomes, the major protein synthesis machinery of all
living cells. All eukaryotic genomes contain multiple, tandemly
repeated copies of a cluster consisting of 18S, 5.8S, and 28S
rRNA genes, and the ITS1 and ITS2 regions flanking the 5.8S
rRNA gene. This unit is sometimes designated as the 45S
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nrDNA cluster (Rosato et al., 2016) and it is first transcribed
into a single precursor RNA, which is then further processed
to produce the 18S, 5.8S and 28S rRNA molecules (Eickbush
and Eickbush, 2007). The nuclear ribosomal 5S gene, which is
another multi-copy nrDNA unit in all eukaryotic genomes, is
transcribed independently of the 45S nrDNA cluster (Naidoo
etal,, 2013) and it may be localized in another part of the genome
(Miiller et al., 2019).

Multiple copies of both the 45S and the 5S nrDNA units
are mostly needed in those stages of the cell cycles when the
demand for protein synthesis is high. In fungi, a comprehensive
genome-based analysis revealed that the copy number of the 45S
nrDNA cluster varied considerably across phylogenetic lineages,
ranging from an estimated 14 to 1,442 copies, with a mean value
of 113 copies in the 91 taxa examined (Lofgren et al, 2019).
Within the Erysiphaceae, B. graminis is the only species with an
estimated copy number of the nrDNA units: Miiller et al. (2019)
detected approximately 800 copies of the 455 nrDNA cluster on
chromosome 9 of B. graminis, and approximately 1,300 copies of
the 55 nrDNA unit on chromosome 5.

There is usually low or no intragenomic variation amongst
sequences of the nrDNA units, which has been attributed to
the concerted evolution of these loci (Eickbush and Eickbush,
2007; Naidoo et al, 2013). In fungi, the 18S and 28S rRNA
genes, and especially the ITS region that includes the 5.8S rRNA
gene, have long been the most important and best-known DNA
regions during phylogenetic and identification works (Schoch
et al., 2012). In the present study it was, therefore, surprising
to note how difficult is to work with the nrDNA region in
some powdery mildew genomes. Some publicly available genome
assemblies did not contain all rRNA genes of the nrDNA region
(Figure 2 and Table 4). In two WGS assemblies, the 28S,
ITS, and/or 18S nrDNA sequences differed in many nucleotide
positions from those determined by Sanger sequencing in the
same specimens (Figure 3 and Table 5). These differences
may have been the result of mis-assembly issues that are
common with short-read WGS. Conversely, all nrDNA loci
were always reliably amplified through specific PCRs, and their
sequences were accurately determined by Sanger sequencing in
the Erysiphaceae (e.g., Marmolejo et al., 2018; Bradshaw and
Tobin, 2020; Kiss et al., 2020). Therefore, we suggest that the
presence of 28S, ITS, and 18S rDNA sequences in powdery
mildew (and other) WGS datasets that are identical to those
resulted from Sanger sequencing of the respective loci should

be used to assess the quality of assemblies, in addition to the
commonly used BUSCO values.

Our study has also revealed that a number of published
powdery mildew genome assemblies are contaminated with
nrDNA sequences from non-target organisms. Misclassification
of sequences in reference databases and contamination of public
genome assemblies with sequences from other organisms is a
common problem that has been the subject of many studies
(Kryukov and Imanishi, 2016; Breitwieser et al., 2019; Lupo
et al,, 2021). Our analyses indicated that contaminant sequences
are common in some of the draft powdery mildew genomes,
which are, in fact, metagenomes. This is partly linked to the
obligate biotrophic nature of powdery mildews, i.e., the fact
that isolates cannot be grown in the absence of their host
plants. DNA has to be extracted from powdery mildew samples
that almost inevitably contain host plant DNA and also DNA
from multiple non-target organisms (predominantly microbes)
that are associated with powdery mildew colonies (Panstruga
and Kuhn, 2019). Contamination in genome assemblies can
complicate downstream analyses and lead to misleading results;
therefore, it is necessary to implement multiple methods and
algorithms to assess and exclude contaminant sequences from
draft powdery mildew and other genomes before making these
public (Cornet et al., 2018; Kahlke and Ralph, 2018; Low et al,,
2019; Wood et al., 2019; Kusch et al., 2020, 2022a).

Genome assemblies of other obligate biotrophic plant
pathogens may also be contaminated with DNA regions
coming from non-target organisms. For example, Zaccaron and
Stergiopoulos (2021) have recently pointed out that the genome
assembly of the oomycete Albugo laibachii infecting the leaves
of experimental Arabidopsis thaliana plants (Kemen et al., 2011)
contains the ITS region and many GC-rich regions of a powdery
mildew fungus (Golovinomyces sp.), which may have infected the
sampled leaves in addition to A. laibachii without being noticed.

The debate related to specimen-based versus environmental
DNA (eDNA)-only research in biology, and particularly in fungal
biology, is ongoing, especially in biodiversity and taxonomy
studies (e.g., Truong et al., 2017; Liicking and Hawksworth,
2018). DNA samples of powdery mildew fungi used for WGS
can be considered as eDNA because they are not extracted from
pure cultures of the target isolates, as explained above. There is
no consensus amongst diverse laboratories engaged in powdery
mildew WGS to deposit herbarium specimens and/or other
samples, such as DNA samples, of the powdery mildew-infected
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plant materials used for WGS in internationally recognized
herbaria, fungaria or other fungal collections. This is the reason
for the missing specimen or voucher accession numbers for some
of the powdery mildew materials that were included in WGS
projects and used in this study. Deposition of such materials
in internationally accessible collections should be required by
research journals before the publication of WGS results. The
collections would preserve the specimens and other samples and
would make them available for further studies similar to fungal
biodiversity and taxonomy studies (Verkley et al., 2015).

This work included all powdery mildew species with
publicly available genomes that were suitable for a genome-
scale phylogenetic analysis using single-copy proteins. In total,
24 powdery mildew genome assemblies were used in the
phylogenetic analyses, which represented eight out of the 19
genera that are currently recognized within the Erysiphaceae.
Our analysis built on 751 single-copy orthologs resulted in
a phylogeny that is largely congruent to nrDNA sequences-
based phylogeny of the same set of specimens. These results
indicated that phylogenetic analyses of nrDNA sequences are
sufficient to delimit genera within the Erysiphaceae, which are
also defined based on morphological characteristics (Braun and
Cook, 2012; Marmolejo et al, 2018; Kiss et al., 2020). To
test this presumption, further phylogenomic analyses should be
conducted when genome assemblies become available for those
powdery mildew genera that currently lack WGS data.

One of the main goals of this work was to reveal the
closest known saprobic relatives of powdery mildew fungi.
Recently, new genome assemblies were published for a number
of taxa belonging to the order Helotiales (Table 3), which
has enabled a more extensive taxon sampling and higher
resolution of phylogenomic analyses within those fungal groups
that were considered earlier as close saprobic relatives of the
Erysiphaceae. Our genome-scale phylogenetic analysis identified
the Arachnopezizaceae as a putative sister group of powdery
mildew fungi. According to our study, the Mpyxotrichaceae
(including Oidiodendron), which were previously considered as
the closest saprobic relatives of powdery mildew fungi (Peterson
and Pfister, 2010; Takamatsu, 2013a, 2018), and Chlorociboria,
another genus considered earlier as a close relative of the
Erysiphaceae (Wang et al., 2006a,b), were only distantly related
to powdery mildew fungi. Our results supported the finding
of a comprehensive genome-scale analysis of 49 Leotiomycetes
genomes that included the genomes of three powdery mildew
species, and a genome of an Arachnopeziza, a Chlorociboria, and
an Oidiodendron strain, and that grouped the three powdery
mildew fungi and Arachnopeziza together in the newly defined
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