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Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), 

a highly contagious and worldwide spread bacterial disease that affects 

honeybee brood. In this study, all complete P. larvae genomes available on the 

NCBI database were analyzed in order to detect presence of prophages using 

the PHASTER software. A total of 55 intact prophages were identified in 11 P. 

larvae genomes (5.0 ± 2.3 per genome) and were further investigated for the 

presence of genes encoding relevant traits related to P. larvae. A closer look 

at the prophage genomes revealed the presence of several putative genes 

such as metabolic and antimicrobial resistance genes, toxins or bacteriocins, 

potentially influencing host performance. Some of the coding DNA sequences 

(CDS) were present in all ERIC-genotypes, while others were only found in a 

specific genotype. While CDS encoding toxins and antitoxins such as HicB and 

MazE were found in prophages of all bacterial genotypes, others, from the 

same category, were provided by prophages particularly to ERIC I (enhancin-

like toxin), ERIC II (antitoxin SocA) and ERIC V strains (subunit of Panton-

Valentine leukocidin system (PVL) LukF-PV). This is the first in-depth analysis 

of P. larvae prophages. It provides better knowledge on their impact in the 

evolution of virulence and fitness of P. larvae, by discovering new features 

assigned by the viruses.
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Introduction

As the more abundant entities on Earth, bacteriophages (or phages), are considered 
prime performers in the dynamics of bacterial populations. Phages are generally categorized 
into two, groups based on their lifecycle: virulent phages (strictly lytic) and temperate 
phages (lysogenic). The first group have an exclusively lytic lifestyle, always resulting in lysis 
of the host cell after infection. In the lysogenic cycle, the phage integrates the host genome 
becoming a prophage and it can remain at this stage for several bacterial generations 
(Fortier and Sekulovic, 2013). If external stimuli occur, causing bacterial stress, prophages 
may be excised from the bacterial chromosome and follow the lytic cycle.
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It is widely recognized that temperate phages, capable of 
interacting with the host genome, are major contributors to the 
diversity and evolution of most bacterial communities in all 
ecosystems. The prophage-host interactions are a result of 
coevolution processes (Koskella and Brockhurst, 2014; Harrison 
and Brockhurst, 2017; Olszak et al., 2017; Khan et al., 2020). On 
sharing genes, prophages play a key role in modulating bacterial 
ability to infect their host, to compete with other bacteria and 
cause disease (virulence), or to adjust metabolism according to 
environmental conditions in order to survive and grow (fitness). 
On preventing superinfection events, prophages support the 
lysogenic state of their hosts and ensure the propagation of their 
progeny (Bobay et al., 2014; Fortier, 2017).

Prophage inputs of new genes into the host can be achieved 
either by its vertical propagation on bacterial lines or by 
transduction (horizontal gene transfer, HGT), i.e., when 
fragments of bacterial DNA are wrongly packed inside phage 
capsids and then propagated among infected bacteria. For 
example, prophages can influence traits such as resistance to 
starvation, biofilm formation, antibiotic tolerance or improved 
toxicity (Fortier and Sekulovic, 2013; Touchon et al., 2017; Costa 
et al., 2018). Several reports have revealed that the presence of 
prophages can increase the virulence and the toxicity of a 
bacterial host in many ways. For example, nonvirulent strains of 
Escherichia coli, Vibrio cholerae, and Clostridium botulinum have 
become virulent by acquiring prophages with toxin genes (Shiga 
toxin, Cholera toxin, and Botulinum toxin, respectively; 
Barksdale and Arden, 1974; O’Brien et  al., 1984; Waldor and 
Mekalanos, 1996). Further, Streptococcus mitis holds adhesion 
factors encoded by tail genes carried by prophages and Salmonella 
enterica gained enzymes such as superoxide dismutase and 
neuraminidase, which improves the antioxidant ability and their 
virulence (Bensing et al., 2001; Figueroa-Bossi et al., 2001; Feiner 
et al., 2015). Prophages can protect the lysogenic bacteria against 
further infections by similar phages and confer an advantage 
against competing non-lysogenic bacteria by hampering or 
delaying their colonization through prophage induction (Brussow 
et al., 2004).

Enzymes such as integrases, recombinases or excisionases 
combine homologous DNA sequences between temperate phage 
and bacteria genome (Lewis, 2001; Feiner et  al., 2015). This 
mechanism can occur randomly in the host genome, a strategy 
used for example by the Mu phage, or at specific and conserved 
locations in the genome, such as for the λ phage (Bondy-Denomy 
and Davidson, 2014; Toussaint and Rice, 2017).

In nature, the continuous presence of a prophage genome in a 
bacteria often leads to degradation of genetic sequences, a 
phenomenon called “phage domestication,” also known as Muller’s 
ratchet (Touchon et al., 2014). The host genome seems to inactivate 
the newly integrated phages and then get rid of undesirable genes 
by means of genetic degradation (point mutations and deletions) on 
genetic regions not under selection (Bobay et  al., 2014). This 
mechanism can justify why most prophage sequences usually found 
in bacterial genomes are incomplete and do not contain essential 

genes for phage-host interaction (e.g., integrases, endolysins) or lack 
genes coding for essential structural proteins (Casjens, 2003; Bobay 
et al., 2014; Czajkowski, 2019). The rates of genetic decay rates seem 
to be dependent on bacterial robustness, but, for example, in E. coli, 
they have been described as slow (Bobay et al., 2014).

Paenibacillus larvae is a spore-forming Gram-positive 
bacterium that causes the most severe bacterial honeybee brood 
disease, American Foulbrood (AFB; Genersch, 2010). AFB is 
associated with great economical losses in apiculture, as current 
legislation does not allow European beekeepers to use antibiotics 
(European Parliament and the Council of the European Union, 
2010) and in many European countries it is mandatory to burn all 
colonies showing disease signs. The severity of AFB varies with the 
P. larvae genotype involved in the infection (Genersch et  al., 
2005). Five different genotypes, ERIC-types (Enterobacterial 
Repetitive Intergenic Consensus), have been identified for P. larvae 
so far: ERIC I and II are frequently found in AFB outbreaks; ERIC 
III and IV have lower epidemiological relevance as they are rarely 
found; ERIC V is a recently isolated and identified genotype 
(Rauch et  al., 2009; Beims et  al., 2020). The pathogenesis of 
P. larvae varies between each genotype and depends on the 
functional toxins genes and secondary metabolites of the 
genotypes (Müller et al., 2015; Ebeling et al., 2016; Genersch, 2017).

Although phages have been proposed to be valuable solutions 
for mitigation of AFB. All 50 P. larvae phages reported to date are 
temperate (Oliveira et al., 2013; Beims et al., 2015, 2020; Carson 
et al., 2015; Tsourkas et al., 2015; Abraham et al., 2016; Merrill 
et al., 2018; Walker et al., 2018; Yost et al., 2018; Ribeiro et al., 
2019), and, to our knowledge, there are no studies analyzing how 
these phage genomes cause impact on the host phenotype.

In this study, prophage-like sequences found in all complete 
P. larvae genomes available at GenBank (NCBI) were identified 
and analyzed at the genomic level. The prevalence of such 
sequences in P. larvae genomes and the contribution of the 
prophages for the evolution of P. larvae virulence and fitness are 
herein explored, as far as the five ERIC genotypes are concerned.

Materials and methods

Data collection

All P. larvae genomes deposited on GenBank until April 2020 
(a total of 14 chromosomes and 20 plasmids) were analyzed 
(minimum genome coverage of 50x) and named from H1 to H14 
(Table 1). Prophage regions were named from R1 to Rn, placed 
after the reference of the respective host.

Detection of prophages in Paenibacillus 
larvae strains

Prophage sequences were obtained until April 2020, for each 
of the P. larvae accession numbers, using PHASTER (PHAge 
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TABLE 1 Paenibacillus larvae strains and respective reference name, accession number, genome sequencing method and coverage, genotype classification, GC content, genome size, number of contigs, and 
respective sizes.

Host Strain Reference 
strain

Accession no. Sequencing 
method

Genome 
coverage

ERIC 
genotype

GC% Size 
(Mbp)

No. of 
contigs

Size range 
of contigs 
(Kbp)

Prophages (validated)

Total Intact Defective

3* DSM 25719 DSM 25719 NZ_

ADFW00000000.1

Sanger dideoxy 

sequencing; 454; 

Illumina

94 I 44.1 4.58 8 8.1–3,664 21 8 13

5a MEX14 NZ_LAWY00000000 454 50 I 44.0 4.19 139 0.5–213.6 17 3 14

6 ATCC 9545 ATCC 9545 NZ_CP019687.1 PacBio 147.4 I 44.2 4.29 NA NA 13 5 8

7 ATCC 13537 ATCC 13537 NZ_CP019794.1 PacBio 56.4 IV 44.3 4.41 NA NA 16 3 13

8 CCM 38 CCUG 7429 NZ_CP020327.1 PacBio 150.8 IV 44.3 4.33 NA NA 15 5 10

9* SAG 10367 SAG 10367 NZ_CP020557.1 PacBio 214.2 II 44.1 4.67 NA NA 18 7 11

10 ERIC_I DSM 7030 NZ_CP019651.1 PacBio; Illumina 

HiSeq2500

193 I 44.2 4.29 NA NA 15 5 10

11* ERIC_III LMG 16252 NZ_CP019655.1 PacBio; Illumina 

HiSeq2500

114 III 44.2 4.49 NA NA 18 7 11

12 ERIC_IV LMG 16247 NZ_CP019659.1 PacBio; Illumina 

HiSeq2500

113 IV 44.3 4.27 NA NA 15 3 12

13 DSM 25430; 

ERIC_II

DSM 25430 NZ_CP019652.1 PacBio; Illumina 

HiSeq2500

153 II 45.0 4.02 NA NA 12 1 11

14* ERIC_V DSM 106052 CP019717.1 PacBio; Illumina 

HiSeq2500

257 V 44.1 4.67 NA NA 21 8 13

Average GC 

content

44.3 Total 

validated

181 55 126

Host 

(Excluded)

Strain Reference strain Accession no. Sequencing method Genome 

coverage

ERIC 

genotype

GC% Size (Mbp) No. of 

contigs

Size range 

of contigs 

(Kbp)

Prophages (excluded)

Total Intact Defective

1b BRL-230010 NZ_

AARF00000000.1

454 50 I 44.1 3.98 646 0.25–58.6 23 0 23

2b B-3650 LMG 16245 NZ_

ADZY00000000.3

Sanger; Illumina 1; 100 I 44.1 4.35 353 0.05–331.7 9 0 9

4c DSM 25430 DSM 25430 NC_023134.1 Sanger dideoxy 

sequencing; 454; 

Illumina

64 II 45 4.05 NA NA 8 0 8

The last three columns refer to the number of total, intact and defective prophages present in each strain, after manual validation. *Hosts with genome size >4.49 Mbp and with ≥7 no. of intact prophages. The second table details data from strains excluded from 
the analysis. 
aHost 5 (MEX14) classified as ERIC I without experimental validation; homology and position in the ERIC I branch of phylogenetic tree available on NCBI database.
bThe high number of contigs available restricted an accurate analysis.
cSequence reported by Djukic et al. (2014), identical to the obtained latter (re-sequenced) by Beims et al. (2020). NA, not applicable.
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Search Tool Enhanced Release) webserver1 (Zhou et al., 2011; 
Arndt et al., 2016; Table 1). PHASTER output distinguished intact, 
questionable and incomplete phage genomes, depending on the 
number of coding DNA sequences (CDS) of a region attributable 
to prophages, and on the presence of phage-related genes. Here, 
questionable and incomplete prophages were both denominated 
“defective.” After the identification by PHASTER, prophages were 
manually cured for increased accuracy. In cases where important 
elements for phage infection were missing, such as the 
N-acetylmuramoyl-l-alanine amidase (an endolysin, the most 
conserved gene present in P. larvae phages; Stamereilers et al., 
2018), other genes with lysis function, structural genes (e.g., major 
capsid, tail, tail fiber), holins or DNA packaging genes (small and 
large terminase subunits), these were not considered as 
intact prophages.

Identification of potential virulence 
factors encoded by prophages

BLASTp was used to assess phage coding sequences (CDS) 
functions, using default parameters and against tailed phages (tax 
id: 28883), simultaneously, and Conserved Domains-Search Tool 
(in Pfam database with E-value cut-off of 1 × 10−5; Finn et al., 
2014). Complete genomes were checked for antibiotic resistance 
genes through the Resistance Gene Identifier (RGI) of The 
Comprehensive Antibiotic Resistance Database (CARD), under 
the “perfect, strict and loose hits” criteria2 (Alcock et al., 2020).

To assist with prophage curing and classification, the proteins 
were grouped into seven functional categories: virion structure, 
virion assembly, host lysis, DNA replication/metabolism, gene 
regulation, host virulence/fitness functions and lysogeny/
transduction (Supplementary Tables S1 and S2; Xia and Wolz, 
2014; Stamereilers et al., 2018).

An adapted Cluster of Orthologous Groups (COG) of proteins 
were generated by comparing the protein sequences and grouped 
according to the function. The specific functions of host virulence 
and fitness-related proteins were detailed in new categories, as well 
included the category of unknown functions. It also maintained 
the six previous categories used in prophages proteins classification.

Special attention was given to CDS with functions that could 
somehow have influenced host evolution such as those that allow 
phage lysogeny or transduction and those capable of modulating 
host virulence or fitness.

Taxonomic classification of prophages

The phage taxonomic family was attributed according to 
the presence of characteristic structural proteins. For the 

1 http://phaster.ca/

2 https://card.mcmaster.ca/analyze/rgi

Siphoviridae family (non-contractile tail phages) a set of four 
proteins close to each other should be  present [major tail 
protein (MTP); two tail assembly proteins (TAP); and tail tape 
measure protein (TMP); Pell et al., 2009; Mahony et al., 2016]. 
The presence of the tail sheath protein (TSP) was enough to 
suggest that prophages belong to the Myoviridae family (phages 
with contractile tail; Pell et al., 2009; Veesler and Cambillau, 
2011; Aksyuk et al., 2012; Mahony et al., 2016), this assumption 
was also strengthened when three other proteins tail tube 
protein (TTP); one tail assembly protein (TAP) and tail tape 
measure protein (TMP), were present close to the TSP and tail 
fiber proteins. Phages lacking the MTP, TMP, TTP or TSP were 
classified as Podoviridae (phages with non-contractile short 
tail; Veesler and Cambillau, 2011; Aksyuk et  al., 2012). To 
support the previous classification, each prophage genome was 
compared with the GenBank database using BLASTn. In 
addition, the PHASTER classification presented the phage with 
the highest number of proteins similar to the one analyzed.

Whole-genome comparison

The phage genome alignments and the phylogenetic tree 
were constructed by the MAFFT algorithm (Katoh and 
Standley, 2013) and Geneious Tree Builder, using the Neighbor-
Joining method with bootstrapping of 100 and Tamura-Nei 
genetic distance model, respectively, present in Geneious R9 
(Biomatters, Newark, NJ, United  States). All the previously 
reported P. larvae phages (n = 50; Supplementary Table S3) and 
all P. larvae intact prophages (n = 55) identified here were 
included in the analysis (Supplementary Table S4). The identity 
matrix of the phylogenetic trees generated was used to infer on 
whole identity. Clusters were defined whenever different 
phages shared at least 60% nucleotide identity and subclusters 
if the identity was higher than 90% (Stamereilers et al., 2018; 
Oliveira et al., 2019). In case of less than 60% identity with any 
other phage, it was treated as a singleton.

Statistical analysis

The statistical analysis of the results was performed using 
GraphPad Prism 7 (GraphPad Software, San Diego, CA, 
United States). Results were compared using one-way ANOVA, 
with Turkey’s multiples comparison statistical test, in the 
prevalence and average of each class (total, intact or defective), 
two-way ANOVA, with Turkey’s multiples comparison statistical 
test, comparisons between both classes of prophages (intact vs. 
defective) and multiple comparisons between the different 
genotypes for each class of prophages (intact vs. defective). For GC 
content comparison between prophages versus host, the unpaired 
Welch’s t-test was used. All tests were performed with a confidence 
level of 95%. Differences were considered statistically significant 
if value of p ≤ 0.05.
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Results

Prevalence of prophage sequences in 
Paenibacillus larvae complete genomes

Despite 14 P. larvae genomes being available in the GenBank 
(NCBI), only 11 were analyzed [Host 1 and 2 were both excluded 
due to genome fragmentation and low-confidence results; Host 4 
and 13 had the same genomic sequence, and therefore, only one 
of them was considered (Host 13, the most recently reported)] 
and in all of them prophage-like elements were identified 
(Table  1; Figure  1A). From a total of 181 prophage-related 
sequences (174 in chromosomes and seven in plasmids), 71 were 
intact (70 in chromosomes and one in a plasmid) and 110 were 
defective prophages (104 in chromosomes and six in plasmids; 
Table 1). However, the manual curing of these sequences only 

confirmed 55 intact prophages (all in chromosomes) and 
consequently included 16 more defective prophages (15  in 
chromosome and one in a plasmid; Figure  1B). All P. larvae 
genomes harbored at least one intact prophage. The average was 
5.0 ± 2.3 prophages per genome (Figure  1C), varying in size 
between 23.6 and 108.1 kbp (Supplementary Table S4). The 
average GC content of prophages and P. larvae genomes was 
43.5% ± 2.6 (Supplementary Table S4) and 44.3% ± 0.3 (Table 1), 
respectively, and the former occupied 5.83% ± 2.45 of the latter, 
[variation between 1.76% (Host 13) and 9.71% (Host 3; 
Supplementary Table S4)].

Overall, the larger the P. larvae genome, the higher the 
number of intact prophages were observed: Host 3, 9, 11 and 14, 
the four largest bacterial genomes (>4.49 Mbp), actually included 
between seven and eight prophages, while Host 5, 6, 7, 8, 10, 12 
and 13, smaller, harbored less than five (Table 1; Figure 2).

A

B C

FIGURE 1

Prophage prevalence in Paenibacillus larvae genomes: (A) Percentage of hosts with ≥ one and ≥ five intact prophages and ≥ one and ≥ eight 
defective prophages. (B) Whisker plots of prophage frequency per bacterial genome (total, defective and intact) before and after manual curing. 
Raw data provided directly from PHASTER, cured data results from manual verification. The horizontal line of each box represents the average 
prophages per genome and the external edges to the minimum/maximum number. (C) Average of total, defective, and intact prophages present 
per host genome. The error bars indicate the SD. Statistically significant, if value of p < 0.05 (*).
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A B C

FIGURE 2

Number of prophages per size of host Paenibacillus larvae genomes: (A) total (B) intact (C) defective.

FIGURE 3

Average number of prophages (intact and defective) present per ERIC genotype (ERIC I-V). The error bars indicate the SD. Statistically significant, if 
value of p < 0.05 (*).

Comparatively intact, the defective prophages were always 
present in higher number (Table 1), and at least eight sequences 
(average of 11.5 ± 1.8) were identified per genome for all the hosts 
analyzed (Figures 1A,C). No differences between the number of 
intact or defective prophages per ERIC genotype (p > 0.05) was 
observed (Figure 3).

This work mainly focused on the analysis of intact prophages, 
considering that these have a more direct impact on the spreading 
of new traits to their hosts by completing their lytic cycle.

Prophage protein library

A total of 3,876 CDS were identified among the 55 intact 
prophage genomes. All CDS were grouped into 36 functional 
categories using COG. Around 43% of the groups encoded 
proteins with unknown function. The frequency of CDS per COG 
is illustrated in Figure 4.

The role of the prophage genes was not experimentally 
confirmed, and therefore, the analysis was conducted relying on 

the homologies provided by their amino acid (aa) sequences, 
using BLASTp. In average, each protein had 194 ± 162 aa. The 
largest, with 1,234 aa, was identified as the tail tape measure 
protein (TMP) and was present in H3_R14, H10_R4 and H10_
R10, and the shortest, 28 aa, a HP present in H6_R8, H10_R4, 
H11_R15 and H12_R13.

About 95% of P. larvae prophage CDS have at least one 
homologous sequence with tailed phages (tax id: 28883; based 
on NCBI non-redundant database). Associated with prophage 
ability to transport and exchange genomic DNA fragments 
between hosts, transposases seemed to be the most frequently 
present enzymes in prophages (found 112 CDS encoding 
them), followed by 39 integrases and 20 recombinases. Together 
with some regulators, these three enzymes represented 5.7% in 
the COG analysis (Figure 4). A set of 68 phage CDS, globally 
related to antimicrobial resistance, toxicity for bacteria/larvae 
[toxin-antitoxin (TA) systems, toxins] or transport of 
substances, metabolism and germination/sporulation events 
were subsequently identified as having potential influence on 
host performance (Table 2; Supplementary Table S5). Due to 

https://doi.org/10.3389/fmicb.2022.903861
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ribeiro et al. 10.3389/fmicb.2022.903861

Frontiers in Microbiology 07 frontiersin.org

the high diversity of host functions associated with virulence 
and fitness, the percentage of each individual trait was low less 
than 2% in the COG analysis. TA systems was the category with 
the highest percentage (1.6%; Figure 4).

Although RGI analysis did not indicate any functional 
antimicrobial resistance (AMR) gene, AMR-related sequences, 
such as TetR family transcriptional regulator of a tetracycline 
resistance mechanism, the β-lactamase superfamily domain 
(MBL fold metallo-hydrolase Yycl) that hydrolyses the β-lactam 
antibiotics class B or the β-lactamase inhibitory proteins 
(BLIP), able to inhibit a variety of class A β-lactamases such as 
the penicillin antibiotics were identified. Few CDS seemed to 
be  also involved in the transport of antibiotics out of 
bacterial cells [e.g., multidrug efflux small multidrug resistance 
(SMR) transporter], a mechanism associated with 
antimicrobial resistance.

There were CDS for other types of transporter proteins, either 
generic, such as ATP-binding cassette (ABC), the major facilitator 
superfamily (MFS), efflux, small multidrug resistance (SMR) or 
very specialized ones- aromatic acid exporter and iron–sulfur 
(Fe-S) cluster assembly proteins SufB and NifU.

The analyzed prophages also harbored TA systems. For 
example, for the hicAB system, consisting of the HicA toxin 
and HicB antitoxin, both parts were identified, while for mazEF 
or socAB systems, only the antitoxin part of the TA cassette 
was present.

Prophages further possess CDS that putatively confer 
virulence traits against bee larvae. These include metallopeptidases 
like enhancin, Yersinia outer proteins (Yops) like YopX, a 
N-acetylglucosamine (GlcNAc)-chitin binding protein (GbpA), 
the precursor of a subunit of Panton-Valentine leukocidin system 
(PVL) LukF-PV, a pore -forming epsilon-toxin type B (EtxB), a 
bacteriocin-like closticin and the DNA internalization competence 
protein ComEC/Rec2.

The research found CDS for enzymes that may 
interfere with host metabolism and regulation, such as 
phosphomannomutases, transglycosylases, a pyruvate 
dehydrogenase E1 and the histidine kinase-like protein. 
Finally, our analysis suggested the presence of CDS that can 
be  involved in sporulation and germination, like the outer 
spore coat protein CotE, sporulation protein YhbH, and spore 
protease YyaC.

FIGURE 4

List of categories Cluster of Orthologous Groups (COG). Frequency (%) of prophage-derived CDS with a given function per COG.
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Distribution of proteins related to 
putative host traits according to ERIC 
genotype

Despite the low number of available genomes representing each 
of the P. larvae ERIC genotypes (Table 1), prophages with proteins 
involved in bacterial fitness (metabolic functions, transport of 
nutrients, sporulation and germination) or virulence (like toxins, 
bacteriocins and AMR-related proteins) were identified in all ERIC 
genotypes, and some were exclusive to a given genotype (Table 2). 
For example, in ERIC I strains, 21 unique proteins were observed, 
including transporters (an efflux transporter and the DNA 
internalization protein ComEC/Rec2), a bacteriocin (closticin and 
enhancin-like protein), enzymes (histidine kinase and pyruvate 
dehydrogenase E1) and sporulation or germination-related proteins, 
while in ERIC II strains, the antitoxin SocA, the FtsX-like permease, 
the MazG-like nucleotide pyrophosphohydrolase, the structural 
protein involved in spore formation, CotE, and the DNA mismatch 
repair protein MutS were exclusively present. The proteins identified 
only in ERIC III strains were YncE, related with DNA binding, and 
PgpA, a phosphatidylglycerophosphatase, in ERIC IV were involved 
in iron–sulfur (Fe-S) uptake (SufB) and nitrogen fixation (NifU) and 
in ERIC V were proteins from the aromatic acid exporter family, a 
leukocidin subunit LukF-PV precursor, two other toxins, a 
membrane protein and the chitin-binding protein GbpA.

However, some prophage-derived proteins were found to 
be  shared between genotypes. For example, the pore-forming 
toxin EtxB and the host-nuclease inhibitor protein Gam, were 
identified in ERIC I and V strains. ERIC I, III and IV strains share 
a protein participating in chromosomal partition during cell 
division (segregation and condensation protein B, ScpB), and 
other responsible for the racemization of phenylalanine 
(phenylalanine racemase). Virulence-associated protein E was 
only identified in ERIC I and II strains, while ERIC I, II and V 
share a S8 family serine peptidase and an acetyltransferase. The 
β-lactamase inhibitory protein (BLIP) and a coat protein were 
present in both ERIC III and IV strains. From the transporter 
proteins previously enumerated, the MFS transporter was only 
present in ERIC I and III strains, while the multidrug efflux SMR 
transporter was present in ERIC I, III and IV strains. Proteins such 
as phosphomannomutase, HicB and MazE antitoxins or YopX 
family protein were identified in all ERIC genotypes, while the 
transcriptional regulator of the TetR family, the HicA toxin, the 
transglycosylase and the ImmA/IrrE were present in all except the 
recently reported ERIC V.

Prophage taxonomy

All new phage genomes analyzed encode the TMP, and 
therefore no podoviruses were identified. Table  3 details the 
structural proteins in the base of prophage morphology assumptions 
and subsequent taxonomic classification. Based on the defined 
criteria, 34 of the 55 prophages were assigned as siphoviruses. Of 

these 34, four genomes contain all genes encoding structural 
proteins that distinguish this taxonomic group, 13 did not have one 
of the proteins (TAP or MTP/TTP) and 17 were described as 
Siphoviridae members. The latter, despite not having both TAP and 
MTP/TTP also miss the exclusive protein TSP of the Myoviridae 
family. This classification, supported by BLASTn and PHASTER 
analysis, revealed high homology (E-value = 0; Coverage between 
29% and 94%, Identity >88.03%) with other previously reported 
P. larvae Siphoviridae phages (Stamereilers et al., 2018).

The remaining 21 prophage genomes, when containing genes 
encoding the TSP were considered to belong to the Myoviridae 
family. Genome comparison revealed that, while 15 prophages 
were genetically close to members from the same family, 
(Brevibacillus laterosporus phages Jimmer1, Jimmer2 and Abouo; 
Sheflo et al., 2013), the remaining six shared identity (84%–100%, 
with a coverage between 12% and 94%) with previously described 
siphoviruses, such as phage Lily.

Whole-genome comparison of intact 
prophages

A previous analysis, grouped P. larvae phages into four clusters 
(Fern, Halcyone, Harrison and Vegas) and two singletons (Lily and 
API480; Ribeiro et  al., 2019). The re-alignment included these 
newly identified intact prophages revealed 12 singletons (here S1 to 
S12) and 22 clusters (here C1 to C22), the latter divided into 51 
subclusters (from A to AY; Figure 5; Supplementary Table S6).

This comparison changes the identity between phage genomes 
adjusts two of the previously reported groups (Ribeiro et al., 2019). 
The introduction of prophages H3_R4 and H10_R4 resulted in a 
division of the Vegas cluster into two new clusters, C11 (including 
H3_R4 and H10_R4) and C12. Besides, comparatively to 
Harrison, C10 has one more phage, H6_R3. The remaining new 
clusters or singletons do not introduce changes to the previously 
reported by Ribeiro et  al. (2019): C9, C19, S1 and S10 fully 
correspond to Fern, Halcyone, API480 and Lily, respectively.

In most cases, the same cluster comprised prophages from 
different hosts. The exceptions were C3, C15 and C16, where 
prophages H11_R10 and H11_R12, H14_R7 and H14_R8 and 
H9_R14 and H9_R15 share the Host 11 (with 83.8% identity), 14 
(with 71.4% identity) and 9 (with 61.4% identity), respectively 
(Figure 5; Supplementary Table S6). Similar phages were found in 
different hosts, as for example, H11_R15 and H12_R13 (cluster 
C1–C), H11_R8 and H12_R8 (cluster C20–AU) or H11_R14 and 
H8_R7 (cluster C7–J).

Discussion

Temperate phages can remain in a dormant state within their 
host without triggering the lytic cycle, while at the same time 
having a considerable impact on the host genome variability and 
evolution, modulating the host fitness and virulence (Brussow 
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TABLE 2 Coding DNA sequences (CDS) identified in prophages potentially influencing host virulence or fitness.

ERIC I ERIC II ERIC III ERIC IV ERIC V
CDS Host 3 Host 5 Host 6 Host 10 Host 9 Host 13 Host 11 Host 7 Host 8 Host 12 Host 14
TetR family transcriptional regulator (TetR/AcrR)

β-Lactamase superfamily domain [metal β-lactamases (MBL) fold metallo-hydrolase Yycl]

β-Lactamase inhibitory proteins (BLIP)

ATP-binding cassette (ABC) group

Aromatic acid exporter family protein *

Major facilitator superfamily (MFS) transporter

Multidrug efflux small multidrug resistance (SMR) transporter

Efflux transporter-like protein *

Iron–sulfur (Fe-S) cluster assembly protein SufB * *

NifU family iron–sulfur (Fe-S) cluster assembly protein—SUF system * *

Metal β-lactamases (MBL) fold metallo-hydrolase

Phosphomannomutase

Transglycosylase

Toxin HicA

Antitoxin HicB

Antitoxin MazE

Antitoxin SocA *

AbrB/MazE/SpoVT family DNA-binding domain-containing protein

Bacterial toxin 44 *

Toxin

Toxin-like protein *

Bacteriocin biosynthesis protein *

Epsilon-toxin type B (EtxB)

Leukocidin LukF-PV precursor = leukotoxin

Closticin *

DNA internalization-related competence protein ComEC/Rec2 * *

Segregation and condensation protein B (ScpB)

YopX family protein

Enhancin / phosphohydrolase *

Virulence-associated protein E

ImmA/IrrE family metallo-endopeptidase

Esterase family protein *

S8 family serine peptidase

Histidine kinase-like protein *

(Continued)
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ERIC I ERIC II ERIC III ERIC IV ERIC V
CDS Host 3 Host 5 Host 6 Host 10 Host 9 Host 13 Host 11 Host 7 Host 8 Host 12 Host 14

Pyruvate dehydrogenase E1 component subunit alpha *

Metallopeptidase

FtsX-like permease family protein *

GlcNAc-chitin binding protein (GbpA) *

Dipeptidyl aminopeptidase/acylaminoacyl-peptidase

GTP pyrophosphokinase-like protein *

Host-nuclease inhibitor protein Gam (Gam)

MazG-like nucleotide pyrophosphohydrolase *

VRR-NUC domain-containing protein

YifB family Mg chelatase-like AAA ATPase * * *

YncE family protein *

YxeA family protein

Coat protein

Iron-containing alcohol dehydrogenase *

Ketopantoate hydroxymethyltransferase

Membrane protein *

Outer spore coat protein (CotE) *

Spore protease YyaC * * * *

Sporulation protein YhbH *

Stress protein * * * *

DNA mismatch repair protein MutS *

ERF superfamily protein

Acetyltransferase

dCMP deaminase family protein * *

Murein transglycosylase-like protein *

NTP-binding protein *

Peptidase domain *

Phenylalanine racemase

Phosphatidylglycerophosphatase A (PgpA) *

Phosphatidylserine decarboxylase *

STAS-like domain-containing protein *

Thiamin pyrophosphokinase *

Thioredoxin reductase *

YqaE/Pmp3 family membrane protein

The gray color identifies the corresponding CDS in the respective ERIC genotype. *CDS only found in this genotype.

TABLE 2 | Continued
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TABLE 3 Taxonomic classification of prophages based on structural proteins present (Y: protein present).

Prophage TSP MTP/TTP TAP TAP TMP Family Most common 
phage (PHASTER)

BLASTn parameters

Homolog 
phage

Coverage 
(%)

Identity 
(%)

E-value

H3_R2 Y Siphoviridaea Vegas (P. larvae) Dragolir 67 99,92 0

H3_R3 Y# Y Y Y Siphoviridae Tripp (P. larvae) Heath 38 90,61 0

H3_R5 Y# Y Y Y Siphoviridae Fern (P. larvae) Jacopo 87 99,15 0

H3_R6 Y Y Y Siphoviridae Tripp (P. larvae) Tripp 75 99,45 0

H3_R11 Y Y# Y Y Myoviridae Lily (P. larvae) Lily 41 84,28 0

H3_R14 Y# Y Y Siphoiridae Vegas (P. larvae) Hayley 72 99,98 0

H3_R15 Y Y* Y HP Y Myoviridae* Jimmer1 (B. laterosporus) Yerffej 11 99,37 0

H3_R18 Y# Y Siphoviridaea Vegas (P. larvae) Vegas 29 99,47 0

H5_R2 Y Y* Y HP Y Myoviridae Harrison (P. larvae) Harrison 25 99,97 0

H5_R6 Y# Y Siphoviridaea Vegas (P. larvae) Hayley 32 99,47 0

H5_R13 Y# Y Y Y Siphoviridae Fern (P. larvae) Leyra 38 97,91 0

H6_R1 Y# Y Siphoviridaea Vegas (P. larvae) Vegas 29 99,47 0

H6_R3 Y# Y Y Siphoviridae Harrison (P. larvae) Paisley 96 99,98 0

H6_R6 Y Y Y Siphoviridae Tripp (P. larvae) Heath 61 90,57 0

H6_R7 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Harrison 9 96,25 0

H6_R8 Y# Y Y Siphoviridae Vegas (P. larvae) Hayley 72 99,98 0

H7_R1 Y Y Siphoviridaea Tripp (P. larvae) Scottie 94 99,91 0

H7_R6 Y# Y Siphoviridaea Vegas (P. larvae) Dragolir 36 96,08 0

H7_R10 Y# Y Y Y Siphoviridae Rani (P. larvae) Diva 18 84,37 0

H8_R2 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Harrison 11 94,73 0

H8_R6 Y Y* Y HP Y Myoviridae* Abouo (B. laterosporus) Dragolir 22 93,18 0

H8_R7 Y Y# Y Y Myoviridae Lily (P. larvae) Lily 79 91,09 0

H8_R8 Y# Y Siphoviridaea Vegas (P. larvae) Dragolir 36 96,09 0

H8_R12 Y Y Siphoviridaea Tripp (P. larvae) Scottie 94 99,97 0

H9_R3 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Wanderer 11 89,43 0

H9_R4 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Paisley 9 86,88 0

H9_R5 Y# Y Y Siphoviridae Vegas (P. larvae) Diane 41 92,1 0

H9_R8 Y Y Y Siphoviridae Tripp (P. larvae) C7Cdelta 66 91,32 0

H9_R10 Y Y Y Siphoviridae Tripp (P. larvae) Ley 55 89,51 0

H9_R14 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Sitara 15 86,09 0

H9_R15 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Leyra 7 97,86 0

H10_R4 Y# Y Y Siphoviridae Vegas (P. larvae) Vadim 99 99,95 0

H10_R5 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Yerffej 11 99,37 0

H10_R7 Y Y Y Siphoviridae Tripp (P. larvae) Heath 74 90,61 0

H10_R10 Y# Y Y Siphoviridae Harrison (P. larvae) Paisley 96 99,99 0

H10_R12 Y# Y Siphoviridaea Vegas (P. larvae) Hayley 34 99,46 0

H11_R3 Y# Y Y Siphoviridae Fern (P. larvae) Likha 18 85,1 0

H11_R8 Y Y Siphoviridaea Tripp (P. larvae) Scottie 94 99,98 0

H11_R10 Y Y* Y Y Myoviridae* Jimmer1 (B. laterosporus) Harrison 9 94,91 0

H11_R12 Y Y* Y Y Myoviridae* Abouo (B. laterosporus) Harrison 11 94,73 0

H11_R13 Y Y* Y HP Y Myoviridae* Abouo (B. laterosporus) Dragolir 23 93,18 0

H11_R14 Y Y# Y Y Myoviridae Lily (P. larvae) Lily 79 91,09 0

H11_R15 Y# Y Siphoviridaea Vegas (P. larvae) Dragolir 36 96,08 0

H12_R3 Y# Y Y Siphoviridae Fern (P. larvae) Yerffej 19 84,49 0

H12_R8 Y Y Siphoviridaea Tripp (P. larvae) Scottie 94 99,98 0

H12_R13 Y# Y Siphoviridaea Vegas (P. larvae) Dragolir 36 96,09 0

H13_R11 Y Y Siphoviridaea Tripp (P. larvae) Scottie 60 88,03 0

H14_R2 Y Y Siphoviridaea Tripp (P. larvae) Tripp 52 89,95 0

(Continued)
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et al., 2004; Harrison and Brockhurst, 2017). To our knowledge, 
there has been no attempts to explore the role of temperate phages 
in the ecology and evolution of P. larvae despite studies reporting 
a total of 51 P. larvae prophages in the last 8 years (Oliveira et al., 
2013; Beims et al., 2015, 2020; Carson et al., 2015; Tsourkas et al., 
2015; Abraham et al., 2016; Merrill et al., 2018; Walker et al., 2018; 
Yost et al., 2018; Ribeiro et al., 2019; Bozdeveci et al., 2021).

Here, 11 complete genomes of P. larvae previously isolated 
from AFB outbreaks (Heyndrickx et al., 1996; Alippi et al., 2002; 
Genersch et al., 2005; Djukic et al., 2014; Peréz de la Rosa et al., 
2015; Beims et al., 2020) were analyzed to identify the presence of 
intact prophages. In total, 55 full-length P. larvae phage genomes 
were identified and analyzed in silico and their potential to 
influence forthcoming generations by providing new features 
was investigated.

Prophages were identified in the P. larvae genomes using both 
the software PHASTER and by manual curing. The manual curing 
indicated an incorrect estimate of prophages (both intact and 
defective) in the software analyses (Table 1). Despite PHASTER is 
a commonly used software for prophage prediction, some 
inaccuracies, are being described (Arndt et al., 2019).

Surprisingly, the set of P. larvae plasmids identified did not 
hold any intact prophage, contrarily to what has been reported for 
other species, such as Acinetobacter baumannii (Costa et al., 2018). 
Only defective prophages were found in the P. larvae plasmids 
(Supplementary Table S2). A similar phenomenon was observed 
in Clostridium difficile DLL3026 plasmids, with some defective 
prophages encoding structural and integrase genes (Amy 
et al., 2018).

There was no apparent association between ERIC genotype 
and the number of prophages per genome. On average, each 
P. larvae strain harbored five intact prophages. The presence of 
multiple intact prophages in a single strain (poly-lysogenic strains) 
has been reported for both Gram-positive and Gram-negative 
bacteria (Touchon et al., 2016; Garriss and Henriques-Normark, 
2020). In Gram-positive bacteria, up to five prophages have been 
observed in a single C. difficile genome (Fortier, 2018), around two 
prophages per genome have been reported for Bacillus 

thuringiensis (Fu et al., 2019) and Lactococcus lactis (Ruiz-cruz 
et al., 2020), and in S. aureus four prophages have been observed 
(Bae et  al., 2006). In Gram-negative bacteria, more than two 
prophages per genome have been reported for Citrobacter 
rodentium and Klebsiella pneumoniae (Magaziner et  al., 2019; 
Bleriot et al., 2020) and for enterotoxigenic E. coli more than eight 
prophages per genome (Wang et  al., 2020). Because of the 
superinfection exclusion mechanism that prevents infection by 
similar phages, a poly-lysogenic strain may become less susceptible 
to accepting new prophages (Touchon et al., 2016).

As expected, the presented data suggest a positive correlation 
between the number of integrated prophages and the size of the 
genome of bacteria. If on the one hand, the presence of so many 
intact prophages increases the length of the host genome, on the 
other hand, larger genomes provide higher stability to hold 
prophages (Touchon et al., 2016; Costa et al., 2018). From an 
evolutionary point of view, it is possible that hosts harboring 
more prophages do not benefit from the integration of new 
prophages and consequently will not accept genes providing 
novel advantageous functions.

The comparison between the whole genomes of the newly 
identified and the previously described P. larvae phages (Oliveira 
et al., 2013; Beims et al., 2015, 2020; Carson et al., 2015; Tsourkas 
et al., 2015; Abraham et al., 2016; Merrill et al., 2018; Walker et al., 
2018; Yost et al., 2018; Ribeiro et al., 2019) proposes changes in 
some of the existent clusters (Vegas and Harrison; Ribeiro et al., 
2019) and introduces new ones (more 18 clusters and 10 
singletons). Before this study, four clusters (Fern, Harrison, Vegas, 
Halcyone) and two singletons, (API480 and Lily) had been 
reported (Ribeiro et al., 2019) and recently, Bozdeveci et al. (2021) 
introduced a new phage similar to API480, proposing a new 
cluster. This new data brings new insights into the diversity of 
P. larvae phages and supports the importance of a permanent feed 
and update of the available phage genomic data.

Besides genomics, the present analysis also contributes to 
widening the taxonomic diversity of P. larvae phages. So far, most 
of the reported phages are siphoviruses (Oliveira et  al., 2013; 
Stamereilers et al., 2018; Beims et al., 2020), with the exception of 

Prophage TSP MTP/TTP TAP TAP TMP Family Most common 
phage (PHASTER)

BLASTn parameters

Homolog 
phage

Coverage 
(%)

Identity 
(%)

E-value

H14_R3 Y Y# Y Y Myoviridae Lily (P. larvae) phiERICV 94 100 0

H14_R7 Y Y* Y HP Y Myoviridae* Jimmer2 (B. laterosporus) Sitara 11 87,86 0

H14_R8 Y Y* Y HP Y Myoviridae* Jimmer2 (B. laterosporus) Paisley 17 86,26 0

H14_R9 Y Y Siphoviridaea Tripp (P. larvae) Heath 67 89,07 0

H14_R10 Y Y* Y HP Y Myoviridae* Jimmer1 (B. laterosporus) phiERICV 7 94,99 0

H14_R14 Y Y Siphoviridaea Tripp (P. larvae) Heath 76 89,11 0

H14_R15 Y Y* Y HP Y Myoviridae Harrison (P. larvae) phiERICV 12 95,37 0

TSP, tail sheath protein; MTP, major tail tube protein; TTP, tail tube protein; TAP, tail assembly protein; TMP, tail tape measure protein; Y#, one of both proteins present; Y*, only TTP 
present; HP, hypothetical protein; Siphoviridaea—prophages from this family based on phage homology of BLASTn; Siphoviridae—prophages with the four typical proteins; Siphoviridae—
three of the four typical proteins. Myoviridae*—prophages homologous to Brevibacillus laterosporus phages; Myoviridae—prophages homologous to other siphovirus phages.

TABLE 3 | Continued
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two podoviruses (Ribeiro et al., 2019; Bozdeveci et al., 2021). The 
present analysis suggests the inclusion of at least 15 myoviruses in 
the collection. Furthermore, this suggests a discussion on the 
classification of phage Lily and homologous as myoviruses. 
Concerning Lily phage, it is of note that, besides being reported as 
a member of the Siphoviridae family, Lilly encodes proteins 
typically found in myoviruses such as TSP, TMP and one TAP 
(gp15), the tail tube protein (gp14), tail fiber proteins (Stamereilers 
et al., 2018) and lacks the MTP gene. This might introduce some 
ambiguity in comparisons with such phage.

Our prophage analysis further disclosed a set of proteins that 
can putatively influence host fitness and pathogenesis. Despite the 
lower incidence of CDS originating these categories (Figure 4), they 
seem to be  the most impacting on the host phenotypic 
transformation. For example, the small multidrug resistance (SMR) 
transporter, found in three of the analyzed prophages, seems to 
provide the cell the ability to escape antibiotics by transporting drugs 
out of the cell. Partial sequences of AMR (e.g., genes encoding 
inhibitory proteins of the β-lactam antibiotics class A and B) or CDS 
with regulatory functions concerning the tetracycline resistance 

FIGURE 5

Phylogenetic analysis of Paenibacillus larvae phages. Whole genomes based on shared CDS content (nucleotide), obtained with Geneious. 
Database: Paenibacillus larvae reported phages (n = 50) and intact Paenibacillus larvae prophages (n = 55), identified here. Clusters have ≥60% of 
shared CDS and were highlighted by colored rectangles.
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mechanism were apparently observed, but contrarily what has 
already been reported for other bacteria (Stanczak-Mrozek et al., 
2017; Wachino et al., 2019), none of the analyzed prophages are able 
to provide the host a functional AMR. They might be a result of 
previous attempts to use antibiotics to control AFB in hives 
(Nakajima et al., 1997; Reybroeck et al., 2012).

Our analysis also suggests the presence of proteins involved in 
the transport of either generic [ATP-binding cassette (ABC), MFS 
transporter, efflux transporter] or specific (aromatic acid exporter, 
Fe-S cluster transporter) substances. The bioavailability of iron has 
been shown to be recognizably vital for P. larvae growth (Hertlein 
et al., 2014). This makes the identification of proteins involved in 
iron uptake (SufB and NifU protein) in two prophages particularly 
interesting, as they may provide the host with important fitness 
advantages. Although the YncE protein is of unknown function it 
has been assumed in the past that was related to iron metabolism 
(McHugh et al., 2003), but a more recent characterization showed 
that it is associated with DNA-binding activities (Kagawa 
et al., 2011).

Prophage genomes also harbor proteins with homology to 
others associated with P. larvae metabolism and regulation. 
Usually, the histidine kinase enzyme plays role in signal 
transduction across the cellular membrane by phosphotransfer 
and phosphatase activity. Here, a histidine kinase-like protein was 
identified in one prophage, and perhaps this could induce the host 
to phosphorylate the response regulator agrC associated with a 
common quorum sensing system, something that was previously 
reported in a C. difficile prophage (Hargreaves et  al., 2014a,b; 
Taylor et  al., 2019). The presence of ComEC/Rec2, a protein 
enabling DNA internalization was identified in two prophages and 
can confer the ability for uptake of exogenous DNA from the 
environment, promoting the HGT (Solomon and Grossman, 
1996). The enzyme phosphomannomutase was identified in 
several of the analyzed prophages. This enzyme may play a role in 
several functions involving biofilm formation (biosynthesis of 
bacterial exopolysaccharides), protection against environmental 
factors and the actions of antibiotics (Regni et al., 2002).

Although it has been reported that prophages may strongly 
impact bacterial virulence by providing new toxins through 
lysogenic conversion, as described for botulism toxin in 
C. botulinum, Shiga toxin in E. coli or Cholera toxin in V. cholerae 
(Barksdale and Arden, 1974; O’Brien et al., 1984; Waldor and 
Mekalanos, 1996; Feiner et al., 2015), the present suggests that 
some toxins encoded by P. larvae prophages may only influence 
the strain itself through the presence of TA systems rather than 
affecting bee larvae. The activity of TA systems usually leads to the 
inhibition of cell growth by interfering with several cellular 
processes. Biologically, their functions are generally associated 
with growth control, defense against phages, biofilm formation, 
persistence, programmed cell death and general stress response 
(Unterholzner et al., 2013; Wen et al., 2014). In the present study, 
either toxin HicA or antitoxin HicB of the hicAB cassette were 
identified in several prophages. Its biological role in P. larvae still 
needs further elucidation, but the hicAB cassette significantly 

influences the mRNA translation process in other bacteria with 
proposed functions including persister cell formation and 
involvement in extra cytoplasmic stress responses (Butt et  al., 
2014; Li et al., 2016; Thomet et al., 2019). The presence of hicAB 
in bacterial genomes has also been associated with HGT (Butt 
et  al., 2014; Li et  al., 2016; Thomet et  al., 2019). In several 
prophages, CDS for the antitoxin protein of a TA system were 
identified, namely the antitoxin part of MazEF and SocAB. MazE 
antitoxin is the inhibitor of MazF toxin that cleaves mRNA 
resulting in cellular growth arrest (Simanshu et al., 2013). SocA 
antitoxin acts as a proteolytic adapter promoting the disruption of 
SocB inhibiting DNA replication (Aakre et  al., 2013). It can 
be speculated that phages harbor these antitoxins as a defense 
mechanism, in order to avoid host self-regulation by degradation, 
not as an added value to their lysogens.

In addition to TA systems, toxins that could affecting the bee 
larvae were also found in our analysis in prophages, which may can 
impact P. larvae virulence. The EtxB is a toxin that cause 
enterotoxemia in ruminants and hemolysis in human cell lines (Xin 
and Wang, 2019) and the sub-unit LukF-PV of the PVL toxin is 
responsible for the polymerization F component interspersing with 
S component LukS-PV to form a pore in the target host cell (Spaan 
et al., 2017), both are pore-forming toxins that among other features 
are involved in tissue necrosis. The first, the EtxB toxin, has 
previously been associated with Clostridium perfringens (Popoff, 
2011; Xin and Wang, 2019) and the latter, the PVL toxin, has been 
found in prophages in lysogenic S. aureus strains (Diene et al., 2017; 
Coombs et al., 2020). These genes might have been transferred from 
such bacteria to P. larvae by HGT, hypothesis supported by Djukic 
et al. (2014) and based on the observation of other toxins shares 
similarities in the different species (Ebeling et al., 2021).

Other prophage CDS seem to influence and increase of AFB 
severity because might be involved in functions with some effect on 
larvae tissues. A P. larvae infection starts with the bacteria 
proliferating in the larval gut before it breaches the epithelial layer 
and invades the hemocoel (Yue et al., 2008). The epithelial layer is 
lined with a peritrophic membrane consisting of chitins and 
glycoproteins (Konno and Mitsuhashi, 2019). The degradation of 
the peritrophic membrane has been shown to be a crucial part of 
the AFB pathogenesis as it allows direct contact with the epithelial 
layer and the degraded chitin may serve as a carbon source for 
P. larvae (Garcia-Gonzalez and Genersch, 2013; Garcia-Gonzalez 
et  al., 2014; Ebeling et  al., 2016). In this study, CDS for chitin-
binding proteins and other proteins that may be involved in the 
degradation of the peritrophic membrane were identified. One of 
the prophages, may encode the epithelial and chitin-binding protein 
GbpA, previously identified in V. cholerae, as mediator of bacterial 
adhesion to human intestinal cells (Kirn et al., 2005). If we assume 
an analogy with bees, this might confer an advantage P. larvae, 
increase virulence of the host strain by improving bacterial 
colonization in the larval intestine. In another prophage, enhancin-
homologous proteins, belonging to the metallopeptidase family, 
were observed. Originally described for viruses, enhancin is known 
to promote infections by degrading the peritrophic membrane of 
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the insect gut. However, enhancin-like proteins has also been found 
in bacteria, including P. larvae (Slavicek, 2012; Djukic et al., 2014) 
or Melissococcus plutonius (Nakamura et al., 2021). In the latter, the 
causative agent of the honeybee brood disease European Foulbrood 
(EFB), it is also involved in the degradation of the peritrophic 
membrane (Nakamura et al., 2021). Another group of proteins from 
this study belong to the YopX family. Usually associated with 
pathogenicity, by acting as chaperones for other proteins, they also 
modulate host cell signaling responses through the type III secretion 
system (TTSS). Such proteins have also been reported for 
Staphylococcus epidermidis (Gutiérrez et al., 2012) and S. aureus 
prophages (Diene et  al., 2017), and for Lactobacillus plantarum 
virulent phages (Kyrkou et al., 2019).

The association between intact prophage CDS and a specific 
ERIC genotype was evaluated, even recognizing the low number of 
fully sequenced P. larvae genomes in GenBank some conjectures 
have been formulated regarding their connection with ERIC-
genotypes. ERIC I-type strains were the less virulent strains to larvae 
(Rauch et al., 2009) but also with more genomes available, hold more 
phage-origin exclusive CDS involved in metabolism (e.g., histidine 
kinase-like protein, pyruvate dehydrogenase E1, dCMP deaminase 
family protein, efflux transporter, etc.) than virulence [enhancin and 
closticin (an antibacterial peptide that inhibits the growth of other 
bacteria); Kemperman et al., 2003; Table 2; Supplementary Table S5]. 
The higher frequency of these prophage CDS might be related to the 
high prevalence of this genotype in AFB outbreaks (Tsourkas, 2020), 
increasing the opportunity for prophage exchange and acquisition 
of new genes by HGT. The analysis also revealed that CDS exclusively 
identified in prophages from ERIC II–V should be able to affect the 
fitness and virulence. ERIC II strains had proteins with the function 
of sporulation, membrane transporters, DNA replication and DNA 
mismatch repair, ERIC III through PgpA participates into the 
glycerophospholipid metabolism and ERIC IV had proteins related 
to iron uptake. Prophages from the ERIC V strain, known as a fast 
larvae killer (Beims et al., 2020), potentially contribute to such trait, 
encoding virulence genes like leukocidin subunit LukF-PV 
and GbpA.

Overall, despite the identification of exclusive CDS of all ERIC 
genotypes, it is not clear whether the CDS involved in virulence 
are influencing the course of the larval infection. Nevertheless, one 
exception that seems evident is the presence of toxins in the ERIC 
V strain analyzed. The remaining exclusive CDS seem to be related 
with fitness or contributing to P. larvae competition with 
other bacteria.

Yost et al. (2016) earlier suggested that phages displayed host 
preference for the ERIC group from which they were isolated, and 
therefore, the possibility of prophages to influence a given 
genotype was explored, even recognizing the low number of fully 
sequenced P. larvae genomes in GenBank.

Prophages seem to be stable, specific, and important for their 
ERIC-genotype strains, which allows to infer that the infection of 
different ERIC-type strains by the same phage is unlikely. This 
behavior will prevent the occurrence of HGT among the different 
virulent genotypes.

Within the same host, prophages usually share few similarities, 
as observed in B. thuringiensis (Fu et  al., 2019). However, as 
expected and previously observed in staphylococci phage analyses 
(Oliveira et al., 2019), the intact prophages have high identity 
within the same cluster, being all morphologically similar. 
Furthermore, each cluster harbor intact prophages from the same 
ERIC or from the closest ERIC genotypes (ERIC I and II or ERIC 
III and IV strains; Papić et  al., 2021). This supports the 
predisposition of prophages to infect P. larvae from the same ERIC 
genotype from which they were previously isolated, as previously 
suggested (Yost et al., 2016).

Conclusion

Overall, this study identified new intact prophages present in 
all P. larvae strains sequenced so far and explored their genomes 
concerning the potential impact on host strains. Despite some 
limitations of the in silico tools to predict and re-size prophages 
and the low representativeness on P. larvae strains diversity, 
we  introduced important knowledge to the study of P. larvae 
phages by increasing the number of prophage genomes available 
and annotated.

Moreover, even if phage CDS function was not experimentally 
confirmed, their diversity in P. larvae genomes gave relevant 
insights on the role of prophages in such pathogen, as relevant 
matches were found in the database.
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