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Antimicrobial-resistant (AMR) foodborne bacteria causing bacterial infections pose a 
serious threat to human health. In addition, the ability of some of these bacteria to form 
biofilms increases the threat level as treatment options may become compromised. The 
extent of antibiotic resistance and biofilm formation among foodborne pathogens remain 
uncertain globally due to the lack of systematic reviews. We performed a meta-analysis 
on the global prevalence of foodborne pathogens exhibiting antibiotic resistance and 
biofilm formation using the methodology of a Cochrane review by accessing data from 
the China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science 
databases between 2010 and 2020. A random effects model of dichotomous variables 
consisting of antibiotic class, sample source, and foodborne pathogens was completed 
using data from 332 studies in 36 countries. The results indicated AMR foodborne 
pathogens has become a worrisome global issue. The prevalence of AMR foodborne 
pathogens in food samples was greater than 10% and these foodborne pathogens were 
most resistant to β-lactamase antibiotics with Bacillus cereus being most resistant (94%). 
The prevalence of AMR foodborne pathogens in human clinical specimens was greater 
than 19%, and the resistance of these pathogens to the antibiotic class used in this 
research was high. Independently, the overall biofilm formation rate of foodborne pathogenic 
bacteria was 90% (95% CI, 68%–96%) and a direct linear relationship between biofilm 
formation ability and antibiotic resistance was not established. Future investigations should 
document both AMR and biofilm formation of the foodborne pathogen isolated in samples. 
The additional information could lead to alternative strategies to reduce the burden cause 
by AMR foodborne pathogens.
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INTRODUCTION

Infections caused antibiotic resistant bacteria are attributing to 
serious burdens for society (World Health Organization, 2021a) 
and where there are also threats to food safety and public 
health [Cania et al., 2018; FAO/OIE/WHO (Food and Agriculture 
Organization of the United Nations, World Organisation for 
Animal Health, World Health Organization), 2019]. It is estimated 
that 600 million people (almost 1  in 10) worldwide get sick 
from eating contaminated food and 420,000 die every year 
[World Health Organization (WHO), 2020a]. In the meanwhile, 
foodborne diseases cause huge economic losses in low- and 
middle-income countries, costing up to $110 billion annually 
[World Health Organization (WHO), 2020b]. Foodborne diseases 
are mainly caused by pathogenic microorganisms, such as 
Escherichia coli, Staphylococcus aureus, Campylobacter spp., 
Salmonella spp., and Vibrio parahaemolyticus [Kirk et  al., 2015; 
World Health Organization (WHO), 2020a]. It cannot be ignored 
that the emergence of antibiotic resistance of foodborne pathogens 
has a serious impact on public health (Cania et  al., 2018).

The use of antibiotics in the global food production system 
remains widespread and, concurrently, the development of 
antimicrobial resistance in humans, animals, plants, and the 
environment has accelerated [World Health Organization (WHO), 
2021b]. There is increasing recognition that bacteria in natural 
ecosystems can transmit antibiotic resistance genes to humans and 
where the principal mode of transmission is human ingestion of 
food containing drug-resistant bacterial pathogens (Martínez, 2013; 
Hernando-Amado et al., 2019). In many clinical and food settings, 
foodborne pathogenic bacteria can adhere to biotic or abiotic 
surfaces to form biofilms, which can mitigate the action of antibiotics 
(Coughlan et  al., 2016) and the results in decreased treatment 
efficacy (Guzman-Soto et al., 2021). According to the United States 
National Institutes of Health, biofilms mediate about 65% of human 
infections worldwide, and about 80% of chronic infections can 
be  directly related to the formation of biofilms (Lebeaux et  al., 
2014; Melander and Melander, 2015). Moreover, a lot of research 
indicates that pathogens that produce biofilms are significantly 
more resistant to antibiotics and biocides than planktonic or free-
living bacteria (Gebreyohannes et al., 2019; Karygianni et al., 2020).

Currently, foodborne pathogenic bacteria are monitored, globally, 
for resistance to important classes of antibiotics (Grundmann 
et  al., 2011). And, a large number of studies of about drug 
resistance of foodborne pathogens and the ability to form biofilm 
has been published worldwide (see Supplementary Material). 
However, a systematic study of this data has yet to be  reported. 
The aim of this meta-analysis is to systematically analyze (1) 
the global prevalence of antibiotic resistance and biofilm formation 
among foodborne pathogens and (2) the correlation between 
the antibiotic resistance and biofilm formation.

MATERIALS AND METHODS

Search Strategy
A meta-analysis based on PRISMA guidelines (Moher, 2010) 
and Cochrane recommendations (Cumpston et al., 2019) were 

employed to investigate the antibiotic resistance and biofilm 
production of foodborne pathogens. Information from curated 
databases and academic websites, including of PubMed, Web 
of Sciences, and China National Knowledge Infrastructure 
(CNKI) were evaluated for the suitability to the meta-analysis. 
The following keywords: “antibiotic resistance,” “biofilm,” 
“biofilm formation,” “foodborne pathogenic bacteria,” 
“foodborne disease,” and “Food Poisoning” were used to search 
the information sources. In addition, the literature search 
was truncated, for articles published between 1 January 2010 
and 31 December 2020, for six foodborne pathogen bacteria 
(Bacillus cereus, Escherichia coli, Listeria monocytogenes, 
Salmonella spp., Staphylococcus aureus, and Vibrio 
parahaemolyticus) and for ability to form biofilm. We  also 
searched Google Scholar to ensure the comprehensiveness of 
the literature search, inclusive of literature from preprint 
repositories (bioRxiv and medRxiv).

Selection Criteria
Literature was downloaded to EndNoteX9 and an initial screen 
removed duplicate information. Then eligible studies which 
met the following criteria was chosen: (1) pathogenic bacteria 
are common foodborne pathogens; (2) the pathogenic bacteria 
were isolates from food, patients with foodborne illness, or 
food practitioners with no search restrictions placed on human 
race, food type, sample size, and source; and (3) reported 
patterns of resistance of the foodborne pathogen and or the 
ability to form biofilm. Inclusion and exclusion of literature 
from the final analysis were performed, independently, by the 
authors, Qian Tao (TQ) and Qian Wu (WQ) by examining 
the titles, abstracts and full texts of the collected literature 
after the initial screen. This independent filtering of the literature 
minimized selection bias and a final selection was mediated 
through discussion or adjudication.

Data Extraction and Quality Assessment
The authors, TQ and WQ, independently extracted data from 
the final selection by using a standardized format which included: 
the name of the first author, the published year, the period 
of sample collection, location, varieties of food, disease types, 
pathogenic bacteria investigated, number of isolates, method 
of antibiotic susceptibility testing, guideline used to interpret 
antimicrobial sensitivities, reported antibiotic sensitivities, 
number of antibiotic-resistant strains, number of multidrug-
resistant strains, method of biofilm formation testing, biofilm 
types. If the information in a selection was unclear, an attempt 
was made to contact the author to verify the validity of the 
data. Merge tools and adapted version of the Joanna Briggs 
Institute (JBI) critical appraisal checklist (Moola et  al., 2020) 
and the Newcastle-Ottawa quality-assessment scale (Wells, 2014) 
were also used for data assessment.

Data Synthesis and Analysis
Stata (version 16) software was used for the statistical analysis 
of data from human and food studies. We  used a forest plot 
to visualize effect sizes and 95% CI, where the estimated 
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antibiotic resistance rate was a pooled according to the class 
of antibiotics used and type of bacteria. Preliminary analysis 
of data revealed that antibiotic resistance and biofilm formation 
were heterogeneous and a random-effects models was used to 
account for the heterogeneity across all the studies. The I2 
statistic was used to quantify the heterogeneity across studies 
according to the following classes: a low level (less than 25%), 
a moderate level (25%–50%), and a high level (more than 
75%; Higgins et  al., 2003; IntHout et  al., 2016).

Publication bias and subgroup analysis was completed by 
merging sample type and bacterial species. A funnel plot was 
used to show the extent of publication bias and a nonparametric 
scissor-complement analysis of publication bias was performed 
if bias existed. We  conducted subgroup analysis from sample 
type, geographic location, date of sample collection (before 
2010, 2011–2015, and 2016–2020) and susceptibility test.

RESULTS

Study Selection, Characteristics, and 
Quality Assessment
We identified 9,360 articles from electronic databases and 54 
articles from other sources. Duplicate articles were removed, 

and the remaining 8,741 articles were screened for eligibility 
via the title and contents of the abstract (Figure  1). This 
screening further reduced the number of articles to 647, and 
a review of the content excluded another 322 articles. The 
exclusion criteria included five studies, where the text was not 
accessible. Another 33 articles were review type articles, which 
included meta-analyses or letters to the editor and 41 studies 
reported on non-foodborne pathogens. A further 44 studies 
where the isolates were not attributed to food or human source, 
and 64 studies were on pathogenic bacteria which were isolated 
from water or other environmental sources. Finally, 120 studies 
did not contain sufficient and extractable data.

In total, 325 articles were included in the meta-analysis, where 
104 studies reported on antibiotic resistance in patients with 
foodborne illness and 244 studies reported on antibiotic resistance 
or biofilm formation in food. Twelve studies reported consequences 
for both food and patients (Supplementary Table  1), and 11 
studies were double-counted because they reported on the 
result of antibiotic resistance in multiple countries or multiple 
foodborne pathogens. No unpublished literature met the 
inclusion criteria.

The final selection of studies was conducted in 36 different 
countries and from six continents (Figure  2) with the Asian 
(n = 287[82%]) and Africa regions (n = 24[11%]) being 

FIGURE 1 | Study selection.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tao et al. Meta-Analysis of AMR and Biofilm

Frontiers in Microbiology | www.frontiersin.org 4 June 2022 | Volume 13 | Article 906490

FIGURE 2 | Geographical distribution of reported resistance of the pathogens isolated from food or humans.

predominant. The antibiotic resistance or biofilm formation of 
following foodborne pathogens were evaluated: Bacillus cereus 
(n = 9[3%]), Escherichia coli (n = 37[11%]), Listeria monocytogenes 
(n = 19[5%]), Vibrio parahaemolyticus (n = 129[37%]), Salmonella 
(n = 85[24%]), and Staphylococcus aureus (n = 58[17%]). All the 
included studies used a cross-sectional design, and these studies 
were published in journal articles except for one which was 
a dissertation.

The 244 food studies included 34,746 isolates of pathogenic 
bacteria and these strains were isolated from a number of 
food groups, mainly raw meat (raw beef, mutton, chicken, 
duck, and pork), raw milk, aquatic products (fish, shrimp, 
crab, and other seafood), vegetables, and ready-to-eat foods. 
Only 11 studies reported on the formation of foodborne 
pathogenic bacteria biofilms, and the biofilm formation of these 
752 isolates were measured by quantitative microtiter assay. 
The 104 human population studies were concentrated foodborne 
diarrhea patients (n = 93[89%]), food poisoning patients 
(n = 10[10%]), and food practitioners (n = 1[1%]). Further detailed 
of these studies study is shown in the Table  1.

To ensure the reliability of the meta-analysis results, 
we  evaluated the quality of the included literature in terms 
of research purposes, research objects, and research methods, 
etc. Quality assessment results showed that overall was very 
complete, there was a low risk of bias (Supplementary Table 4). 
Both human studies and food studies, which purpose and 

results of the research are clearly described. The sample 
characteristics and select of study subjects may cause bias 
notwithstanding, there are some studies (62% food studies and 
30% human studies) with poor description in this part. A full 
description of the measurement methods and guidelines of 
antimicrobial sensitivities and biofilm formation was provided 
in 96% (n = 234) of the food studies and 90% (n = 94) of the 
human studies.

Prevalence of Antibiotic Resistant 
Foodborne Pathogens
The pooled prevalence of foodborne pathogens resistant to 
classes of tested antibiotics in food and human studies are 
shown in Table 2. The mean prevalence of antimicrobial resistant 
foodborne pathogens isolated in foods was ≥11% and the 
majority of these foodborne pathogens were highly resistant 
to β-lactam antibiotics. The combined or pooled prevalence 
of B. cereus resistant to β-lactams antibiotics from all the food 
studies was 94% (95% CI, 91%–98%), although the presence 
of B. cereus in food was only reported in six studies. The 
prevalence of Escherichia coli which was resistant to all classes 
of antibiotics tested ranged from 56% (95% CI, 45%–67%) to 
25% (95% CI, 15%–34%). Comparatively Salmonella was more 
resistant to chloramphenicol (32, 95% CI, 21%–43%) and 
V. parahaemolyticus was mildly resistant to sulfonamides (14, 
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95% CI, 10%–18%) and tetracyclines (14, 95% CI, 11%–17%). 
The Gram-positive pathogen, L. monocytogenes, was also mildly 
resistant to fluoroquinolones (11%; 95% CI, 6%–16%) and 
sulfonamides (11%; 95% CI, 3%–19%). Lastly S. aureus is 
susceptible to treatment with chloramphenicol (17 9% CI, 
12%–19%) when compared to other antibiotics.

As shown in Table  2, the mean prevalence of antibiotic 
resistant foodborne pathogens isolated from human samples 
was ≥19% and the outlier was the mean prevalence of tetracycline 
resistant V. parahaemolyticus (2%; 95% CI, 0%–4%). In tandem 
to pathogens isolated from food samples, the mean prevalence 
of the pathogen group to β-lactams antibiotics resistance was 
high, with B. cereus at 81% (95% CI, 75%–86%), 
V. parahaemolyticus at 76% (95% CI, 69%–82%) and 
L. monocytogenes at 54% (95% CI, 38%–70%). The pattern of 
resistance to the classes of antibiotics tested for Gram negative 
and Gram-negative pathogens is similar to those isolated from 

the food samples with the exception of L. monocytogenes. The 
Gram-positive bacterium, L. monocytogenes, appears to be highly 
resistant to fluoroquinolones but this information is only based 
on 1 study.

Subgroup Analysis by Food Types
For the food studies, studies with clear classification of food 
samples were included in our subgroup analysis, mainly in 
the following categories: aquatic products, meat, milk, and 
dairy products, RTE-food. Table  3 shows the prevalence of 
foodborne pathogen food isolates resistant to antibiotics in 
different food types. The prevalence of multi-drug resistant 
(MDR) pathogen was ≥36% for all food types, with the highest 
rates in meat (52%; 95% CI, 40–60). Also in all food types, 
pathogens resistant to β-lactams were most common (≥57%). 

TABLE 1 | Included studies characteristics.

Study characteristics
Human studies 

(n = 104)
Food studies  

(n = 244)

Location
Africa 2 (2%) 22 (9%)

Asia 99 (95%) 188 (77%)
Europea 1 (1%) 6 (2%)
North America — 10 (4%)
Oceania — 1 (1%)
South America 2 (2%) 6 (2%)
Period
2000–2010 21 (20%) 51 (21%)
2011–2015 48 (46%) 108 (44%)
2016–2020 35 (34%) 74 (30%)
Method of antimicrobial susceptibility testing
Disk diffusion 46 (44%) 156 (64%)
MIC 44 (42%) 61 (25%)
Vitek 10 (10%) 10 (4%)
Others — 4 (2%)
Not reported 4 (4%) 2 (1%)
Guidelines used to interpret antimicrobial sensitivities
CLSI 85 (82%) 199 (82%)
EUCAST 2 (2%) 1 (1%)
NCCLS 6 (6%) 13 (5%)
Others 1 (1%) 6 (2%)
Not reported 10 (10%) 14 (6%)
Bacteria studied
Bacillus cereus 1 (1%) 8 (3%)
Escherichia coli 11 (10%) 26 (11%)
Listeria monocytogenes 1 (1%) 18 (7%)
Vibrio parahaemolyticus 50 (48%) 79 (32%)
Salmonella 36 (35%) 49 (20%)
Staphylococcus aureus 5 (5%) 53 (22%)
Source of isolate
Aquatic products — 78 (32%)
Meat — 50 (20%)
Milk and dairy products — 12 (5%)
RET-food — 13 (5%)
Others — 80 (33%)
Foodborne diarrhea patients 93 (89%)
Food poisoning samples 10 (10%)
Food handlers 1 (1%)
Biofilm forming ability — 11 (5%)

TABLE 2 | Pooled prevalence of antibiotic resistance from meta-analysis of food 
studies and human studies, by antibiotic category.

Food studies Human studies

Articles (n)
Prevalence 
% (95% CI)

Articles (n)
Prevalence 
% (95% CI)

Gram-negative bacterium
Escherichia coli
Aminoglycosides 11 32 (19–46) 8 25 (19–31)

β-Lactams 19 56 (45–67) 10 61 (51–70)
Chloramphenicol 8 25 (15–34) 6 19 (8–30)
Fluoroquinolones 12 37 (22–52) 8 38 (18–58)
Sulfonamides 19 48 (30–65) 9 39 (26–52)
Tetracyclines 21 54 (41–57) 9 49 (43–55)
Salmonella
Aminoglycosides 31 39 (31–47) 17 44 (27–61)
β-Lactams 42 47 (38–55) 33 56 (47–66)
Chloramphenicol 18 32 (21–43) 18 33 (24–42)
Fluoroquinolones 42 44 (30–59) 24 50 (40–60)
Sulfonamides 34 42 (29–54) 26 43 (32–54)
Tetracyclines 30 56 (47–64) 27 45 (35–54)
Vibrio parahaemolyticus
Aminoglycosides 39 45 (36–53) 14 22 (11–33)
β-Lactams 77 77 (71–83) 37 76 (69–82)
Fluoroquinolones 7 13 (7–19) 8 19 (−7–44)
Sulfonamides 36 14 (10–18) 11 25 (−1–52)
Tetracyclines 22 14 (11–17) 6 2 (0–4)
Gram-positive bacterium
Bacillus cereus
β-Lactams 6 94 (91–98) 1 81 (75–86)
Sulfonamides 3 32 (6–58) 1 66 (60–73)
Listeria monocytogenes
Aminoglycosides 6 21 (8–35) — —
β-Lactams 13 45 (27–63) 1 54 (38–70)
Chloramphenicol 8 30 (11–49) - -
Fluoroquinolones 9 11 (6–16) 1 62 (47–78)
Sulfonamides 6 11 (3–19) — —
Tetracyclines 13 22 (15–30) 1 30 (15–44)
Staphylococcus aureus
Aminoglycosides 33 30 (24–36) 2 30 (−12–73)
β-Lactams 45 78 (73–82) 3 68 (32–102)
Chloramphenicol 17 16 (12–19) — —
Fluoroquinolones 27 23 (19–28) 1 36 (8–65)
Sulfonamides 19 31 (19–43) 2 35 (5–66)
Tetracyclines 43 41 (33–48) 4 28 (4–52)
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TABLE 3 | Subgroup analysis of antibiotic resistance by food types.

Aquatic products Meat Milk and dairy products RTE-food

Articles (n)
Prevalence % 

(95% CI)
Articles (n)

Prevalence % 
(95% CI)

Articles (n)
Prevalence % 

(95% CI)
Articles (n)

Prevalence % 
(95% CI)

MDR 9 42 (26–58) 16 52 (40–63) 4 43 (1–84) 8 36 (21–51)
Aminoglycosides 38 43 (34–51) 36 29 (31–47) 7 33 (14–51) 6 35 (24–46)
β-Lactams 65 73 (66–81) 42 62 (52–70) 9 61 (45–77) 10 57 (34–83)
Chloramphenicol — — 19 36 (21–51) 4 21 (17–25) 4 25 (16–34)
Fluoroquinolones 11 13 (8–19) 38 39 (25–53) 5 30 (14–46) 9 25 (16–34)
Sulfonamides 34 14 (11–17) 32 47 (31–63) 7 62 (46–78) 7 43 (10–76)
Tetracyclines 21 22 (9–35) 36 62 (54–70) 9 28 (2–55) 8 43 (24–63)

TABLE 4 | Subgroup analysis of antibiotic resistance by study population.

Diarrhea patients Food poisoning samples Food handlers

Articles (n) Prevalence % (95% CI) Articles (n) Prevalence % (95% CI) Articles (n) Prevalence % (95% CI)

Aminoglycosides 34 32 (23–42) 4 11 (0–21) 1 23 (16–29)
β-Lactams 78 65 (60–71) 6 78 (62–95) 1 65 (57–72)
Chloramphenicol 23 29 (21–37) — — 1 37 (30–45)
Fluoroquinolones 41 42 (30–53) 2 22 (6–39) — —
Sulfonamides 46 39 (27–52) 2 14 (2–26) 1 47 (37–52)
Tetracyclines 42 41 (33–48) 5 21 (3–39) 1 46 (37–52)

In aquatic products, the pooled prevalence of isolates resistant 
to fluoroquinolones and sulfonamides were both around 13%, 
but resistance to β-lactams was over six times higher.

Subgroup Analysis by Study Population
Foodborne pathogens isolated from three groups in human 
studies also had the highest resistance to β-lactams antibiotics 
(Table  4). The mean prevalence of antibiotic resistant 

pathogens among foodborne diarrhea patients were ≥32%, 
with mean prevalence of resistant isolates to sulfonamides 
of 39% (95% CI, 27%–52%) and tetracyclines at 41% (95% 
CI, 33%–48%). In comparison to the other groups, the 
antibiotic resistance rate of food poisoning sample isolates 
were lower, except for resistance to β-Lactams which was 
similar. Only one study (Xu et  al., 2019) delineated the 
antibiotic resistance Salmonella isolates, the predominant 
resistance was to β-lactams (65%), followed by that of 
sulfonamides (47%), tetracyclines (46%).

Subgroup Analysis by Region, Time Period, and 
Susceptibility Test
Table  5 shows the regional distribution of reported resistance 
profile of the pathogens isolated from food or humans and 
where the majority of the studies were concentrated in Asia 
(>75%). In South America, the pooled prevalence of antibiotic 
resistant pathogens was as high as 97% (food) and 90% (humans). 
In contrast, the prevalence of antibiotic resistant pathogens 
isolated from human samples was only 48% (95% CI, 40–55) 
in Europe. Overall, there was a decrease in the prevalence 
pathogens resistance of food isolate decreased from75% (95% 
CI, 65–85) before 2010 to 72% (95% CI, 66–79) during in 
2011–2015, then increased to 80% (95% CI, 77–84) between 
in 2016–2020. The pathogens resistance of human isolate had 
changed with the time of collection, and which had the same 
resistance trend with food isolate. In general, we  found that 
a trend of antimicrobial resistance of foodborne pathogens 
firstly decreasing and then increasing during 2000–2020. 
Subgroup analysis by susceptibility test group showed higher 

TABLE 5 | Subgroup analysis of antibiotic resistance by region, time period and 
susceptibility test.

Food studies Human studies

Articles (n)
Prevalence %  

(95% CI)
Articles (n)

Prevalence %  
(95% CI)

Region
Africa 19 80 (75–86) 2 92 (82–102)

Asia 149 77 (73–81) 93 82 (80–84)
Europe 6 78 (68–89) 1 48 (40–55)
North America 10 76 (66–87) — —
Oceania 1 85 (74–95) — —
South America 6 97 (95–99) 2 90 (80–100)
Period
Before 2010 40 75 (65–85) 19 80 (75–84)
2011–2015 75 72 (66–79) 38 79 (75–83)
2016–2020 51 80 (77–84) 30 82 (78–86)
Susceptibility test
Disk diffusion 36 82 (79–85) 112 78 (75–81)
MIC 39 77 (72–82) 47 69 (59–79)
Vitek 9 88 (83–93) 9 90 (85–95)
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rates of antibiotic resistance tested with Vitek (automatic drug 
sensitivity analyzer) compared to used disk diffusion and 
minimum inhibitory concentration (MIC).

Prevalence of Biofilm Formation in 
Foodborne Pathogens
According to meta-analysis of biofilm formation rate in foodborne 
pathogen retrieved from food samples that shown in Figure  3, 
the combined rate of biofilm formation was 90% (95% CI, 
81–100). Considerable heterogeneity was detected between the 
studies, with I2  = 98.5%, Q (10) = 151.11, p < 0.001, which most 
likely due to the inclusion of multiple species of bacteria. Among 
them, Staphylococcus aureus was the most prone to produce 
biofilms, all the Staphylococcus aureus isolates from food in 
the four studies can form biofilm. It is worth mentioning that 
Ou et  al. (2020) investigated the antimicrobial resistance and 
biofilm formation of staphylococcus aureus in food, and reported 
64.8% of 165 antibiotic resistant strains had strong biofilm 
formation ability, study describes the significant correlation 
between antibiotic resistance and biofilm formation.

Publication Bias
The Begg’s test for funnel plot of the resistance rate of pathogenic 
bacteria in food and human studies shows that both were 
exist visual asymmetry evidence, therefore a trim and fill 
procedure was executed. Funnel plot were produced for of 

biofilm formation rate of foodborne pathogen retrieved from 
food samples too, which no evidence of publication bias. Funnel 
plot shown in Appendix, Supplementary Material.

DISCUSSION

Prevalence of Antibiotic Resistance of 
Foodborne Pathogens
This meta-analysis showed that foodborne pathogens present 
high levels of antibiotic resistance, both in food samples and 
clinical specimens. Worldwide, rates of resistance to β-lactams 
were the highest, irrespective of types of foodborne pathogens. 
Analogously, a meta-analysis by Jia et  al. (Kai et  al., 2020) 
retrieved resistance data of Staphylococcus aureus isolates from 
retail foods, between 2007 and 2017 from70, The main finding 
was that resistance by S. aureus found in retail foods to seven 
types of antibiotics ranged from 8% to 87% with the most 
serious resistance being to beta-lactam antibiotics.

Overall, human isolates of Salmonella and Listeria 
monocytogenes are significantly more resistant to various 
antibiotics than food isolates. According to the Microbiological 
Risk Assessment 2020 report, Salmonellosis is one of the most 
common zoonotic diseases; the number of listeriosis had 
increased compared to before [EFSA (European Food Safety 
Authority), 2020], which might be  related to the increased 
antibiotic resistance of pathogenic bacteria. Our research found 

FIGURE 3 | Forest plot of the meta-analysis of biofilm formation rate in foodborne pathogen retrieved from food samples. Study 1: Lapierre et al. (2020). Study 2: 
Lopez-Leon et al. (2016). Study 3: Rodríguez-Lázaro et al. (2018). Study 4: Beshiru and Igbinosa (2018). Study 5: Beshiru et al. (2018). Study 6: Chen and Xie 
(2019). Study 7: Maia et al. (2020). Study 8: Ou et al. (2020). Study 9: Puah et al. (2018). Study 10: Wang et al. (2020). Study 11: Kim et al. (2018).
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a resistance rate increase of 41%–52% in the proportion of 
isolates that were Listeria monocytogenes resistant to 
fluoroquinolones in human studies compared with food studies. 
By contrast, for the other pathogens, there is no absolute 
difference in antibiotic resistance between humans and food 
isolates. For example, for Escherichia coli, food isolates are 
more resistant to β-lactams and fluoroquinolones than human 
isolates, which had an opposite of resistance to the other four 
types of antibiotics.

In the subgroup analysis by food types, foodborne pathogenic 
bacteria in meat were significantly more resistant to antibiotics 
than other food isolates, which might be related to the amount 
of antibiotics used. In farming, antibiotic use in food animal 
production accounts for two-thirds of the overall antibiotic 
usage (Done et al., 2015). Meat contamination is mainly caused 
by Escherichia coli, Salmonella, and Staphylococcus aureus 
(Adesokan et al., 2020), our reported pooled multi-drug resistance 
rate of foodborne pathogens in meat was 52%, which was 
similar to the reported antimicrobial resistance in zoonotic 
and indicator bacteria from food by EFSA (European Food 
Safety Authority) and ECDC (European Centre for Disease 
Prevention and Control) (2021). Meanwhile, we  find that the 
resistance of pathogenic bacteria in meat to antibiotics were, 
in increasing order of resistance, aminoglycosides, 
chloramphenicol, fluoroquinolones, sulfonamides, β-lactams, 
and tetracyclines. To 62% resistance to tetracyclines and β-lactams 
was observed.

In the subgroup analysis by study population, we  found 
that pathogenic bacteria isolated from food handlers and 
foodborne diarrhea patients have similar drug resistance. The 
antibiotic resistance of pathogenic bacteria in food handlers 
was significantly stronger than that in food poisoning samples, 
except for resistance to β-lactams. Because of direct or indirect 
contact with food, food handlers are likely to transmit drug-
resistant foodborne pathogens to consumers through food. 
Franck et  al. (2014) found that in the 191 foodborne disease 
outbreaks in Denmark between 2005 and 2011, food handlers 
played an indispensable role. There have also been 43 cases 
of infections caused by Salmonella carried by food handlers 
in the United  States (Kimura et  al., 2005).

In general, the antibiotic resistance rates of foodborne 
pathogens from six continents were at high levels, regardless 
of the source or food samples isolated from clinical specimens. 
A notable finding was the difference in the summary analysis 
value of antibiotic resistance rate of foodborne pathogens 
between regions, which was significantly higher in Africa and 
South America compared to others. While most countries in 
South America and Africa are low-income and middle-income 
countries, antibiotic consumption was greater than in high-
income countries (Klein et  al., 2020). Heavy use of antibiotics 
will make the enhanced bacterial resistance (Oliveira et  al., 
2021), in the European Union and the United States, according 
to reports, agriculture accounts for more than 75% of the 
annual antibiotic use; between 2011 and 2014, the use of 
antibiotics in 24 European Union countries fell by 12% [OECD 
(Organization for Economic Cooperation and Development), 
2016]. By time period, in our subgroup analysis, antibiotic 

resistance of foodborne pathogens also declined during 2011–
2015. In general, we detected that the resistance rate foodborne 
pathogens in food samples and human specimens had increased.

In the studies included, most of the studies applied the 
antibiotic susceptibility testing methods (disk diffusion and 
MIC) recommended by the Clinical and Laboratory Standards 
Institute (CLSI Clinical and Laboratory Standards Institute, 
2019). Our meta-analysis shows that foodborne pathogens 
measured with Vitek had a higher resistance rate, which might 
be  related to the higher sensitivity of the automatic drug 
sensitivity analyzer (Nakasone et  al., 2007). In fact, sensitivity 
testing methods will not have a substantially impact on bacterial 
resistance. The resistance of foodborne pathogens bacteria 
depends on several factors, such as type of bacteria, the type 
of food and disease, the source of the sample, and other 
related factors.

Prevalence of Biofilm Formation of 
Foodborne Pathogens
We described the biofilm formation rate of foodborne pathogen, 
and most foodborne pathogens have the ability to form biofilms 
in the food studies included. Due to lack of relevant research, 
we  did not find evidence of biofilm formation of foodborne 
pathogens isolated from humans.

The mechanisms by which biofilms promote resistance of 
bacteria to antimicrobials is very complicated. A series of 
molecular mechanisms occur can conduce to the stability of 
the biofilm microbial community (Hall and Mah, 2017). These 
occur in the main in the following three ways. First, interaction 
between biofilm matrix components and antibiotics; there are 
factors in the biofilm that can reduce the penetration rate of 
antibiotics (Boudjemaa et al., 2016; Singh et al., 2016). Second, 
bacteria in biofilms evade external stimuli by reducing their 
growth rate (Walters et  al., 2003; Borriello et  al., 2004). Third, 
the role of specific genetic determinants of antibiotic resistance 
in biofilms, such as efflux pumps (Van Acker and Coenye, 
2016), quorum sensing (Chua et  al., 2016), colony variants 
(Proctor et  al., 2006), et  al. The results of our meta-analysis 
show that 90% of the 752 foodborne pathogens can form 
biofilms, this provides the possibility of enhancing their resistance. 
However, due to the limitations of existing research, we cannot 
provide evidence of a direct linear relationship between biofilm 
formation ability and antibiotic resistance.

Strengths and Limitations
To our knowledge, this study is the first comprehensive 
meta-analysis of global prevalence of antibiotic resistance 
and biofilm formation in foodborne pathogens. We  were 
able to include 11 studies (Supplementary Table  3) with 
assess the biofilm formation of foodborne pathogens in food, 
and the relationship between the ability of biofilm formation 
and antibiotic resistance was discussed. One of our main 
advantages is that strict compliance with PRISMA guidelines 
(Moher, 2010), we have adopted strict standards and limited 
to research that analyzed the resistance of foodborne pathogen 
in food and humans, the reservoirs of pathogenic bacteria, 
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and the main vehicle of antibiotic resistance transmitted 
through the food chain.

Our meta-analysis has some limitations. First, there was 
significant heterogeneity among the included studies in the 
analysis. As we undertook a bundled meta-analysis (Tang et al., 
2017), it is reasonable that no relevant reduction of heterogeneity 
was detected when we conducted subgroup analysis from sample 
type, region, date of sample collection and susceptibility test. 
Furthermore, another potential source of heterogeneity may 
be related to antibiotic consumption patterns in various regions. 
Second, because of we  limited by study quality, there was 
potential data reporting bias in this meta-analysis. Studies 
which met the inclusion criteria and which reported the 
prevalence of antibiotic resistance of foodborne pathogens 
isolated from food handlers was scarce and is, as a consequence, 
poorly represented.

CONCLUSION

In conclusions, this study provides a comprehensive overview 
of global antibiotic resistance of foodborne pathogen in food 
and humans, which shows worrying levels of resistance in some 
parts of the world, where one possible explanation is large and 
irregular use of antibiotics. Following preliminary pooling of 
data relating to biofilm formation of pathogenic bacteria, our 
analysis shows that foodborne pathogens have a high tendency 
to form biofilms. It is less clear that a direct linear relationship 
exists between the ability to form biofilms and antibiotic resistance. 
It is recommended that future research should thoroughly explore 
the relationship between the ability of biofilm formation and 
the antibiotic resistance of foodborne pathogens and provide a 
new theoretical basis for the discovery of the mechanism of 
foodborne pathogens’ antibiotic resistance. Therefore, frequent 
monitoring of types, antibiotic resistance and biofilm characteristics 
of foodborne pathogens in clinical and environmental is urgently 

needed to raise our awareness of antibiotic resistance and its 
spread, and prompt the development of effective strategies to 
improve food safety and prevent foodborne illness infection.
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