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Mercury (Hg) pollution is a serious environmental and public health problem.

Hg has the ability to biomagnify through the trophic chain and generate

various pathologies in humans. The exposure of plants to Hg affects

normal plant growth and its stress levels, producing oxidative cell damage.

Root inoculation with plant growth-promoting bacteria (PGPB) can help

reduce the absorption of Hg, minimizing the harmful effects of this metal

in the plant. This study evaluates the phytoprotective capacity of four

bacterial strains selected for their PGPB capabilities, quantified by the

calculation of the biomercuroremediator suitability index (IIBMR), and their

consortia, in the Lupinus albus var. orden Dorado. The oxidative stress

modulating capacity in the inoculated plant was analyzed by measuring

the activity of the enzymes catalase (CAT), superoxide dismutase (SOD),

ascorbate peroxidase (APX), and glutathione reductase (GR). In turn, the

phytoprotective capacity of these PGPBs against the bioaccumulation of

Hg was studied in plants grown in soils highly contaminated by Hg vs.

soils in the absence of Hg contamination. The results of the oxidative

stress alleviation and Hg bioaccumulation were compared with the biometric

data of Lupinus albus var. orden Dorado previously obtained under the

same soil conditions of Hg concentration. The results show that the

biological behavior of plants (biometrics, bioaccumulation of Hg, and activity

of regulatory enzymes of reactive oxygen species [ROS]) is significantly

improved by the inoculation of strains B1 (Pseudomonas moraviensis) and

B2 (Pseudomonas baetica), as well as their corresponding consortium (CS5).
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In light of the conclusions of this work, the use of these strains, as

well as their consortium, is postulated as good candidates for their

subsequent use in phytostimulation and phytoprotection processes in areas

contaminated with Hg.

KEYWORDS

heavy metal, reactive oxygen species (ROS), catalase (CAT), superoxide dismutase
(SOD), ascorbate peroxidase (APX), glutathione reductase (GR), phytoprotection

Introduction

Heavy metal pollution is an environmental threat that affects
all types of living organisms, including plants, animals, and
humans. Particularly, mercury (Hg) is one of the most polluting
heavy metals. Even at relatively low concentrations, it has the
ability to bioaccumulate and transmit through the food chain
(Bjørklund et al., 2019). The accumulation of Hg can lead
to pathologies that affect the central nervous system, one of
the most important being Minamata syndrome (Gil-Hernández
et al., 2020; Marumoto et al., 2020).

The presence of Hg at low concentrations is widely described
in numerous ecosystems. Exceptionally, environments with
extremely high concentrations of this heavy metal have also
been described, such as those detected in the mining region of
Almadén (>8889 µg/g de Hg) (US Environmental Protection
Agency, 2011). The presence of this heavy metal and other
polluting substances can affect plant development (Kim et al.,
2017; Loix et al., 2017; Sachdev et al., 2021).

One way to evaluate the effects of Hg pollution on plant
development is by studying its response to this abiotic stress.
To do this, plants synthesize antioxidant enzymes that fight
reactive forms of oxygen (ROS). ROS accumulation alters the
metabolic balance and physiology of the plant. The main
types of ROS are hydrogen peroxide (H2O2), hydroxyl radicals
(−HO), oxygen singlet (1O2), and superoxide anion (O−2).
Its cytoplasmic accumulation induces high oxidative stress and
can produce harmful effects on the cell. To mitigate these
effects, detoxifying mechanisms are expressed. However, when
antioxidant processes and detoxification mechanisms are not
able to eliminate excess ROS, oxidative stress harms the plant
(Loix et al., 2017). It is proven that Hg induces oxidative stress
causing lipid peroxidation, enzymatic inactivation, DNA and
membrane damage (Cargnelutti et al., 2006; Tamizselvi and
Napoleon, 2022), inhibits photosynthesis, transpiration, and
nutrient transport in plants (Cargnelutti et al., 2006; Zhou
et al., 2007; Ajitha et al., 2021). Its effects can even lead to
the premature death of the plant (Ercal et al., 2001). The
accumulation of these reactive species in cells can be reduced
by activating different enzyme systems, including catalase
activities (CAT), superoxide dismutase (SOD), ascorbate

peroxidase (APX), and glutathione reductase (GR) (Loix et al.,
2017; Sachdev et al., 2021).

The use of plant growth-promoting bacteria (PGPB) in
soils contaminated with Hg has traditionally focused on the
phytoextraction of this metal, as well as on the direct promotion
of plant growth (Gontia-Mishra et al., 2016; Mariano et al.,
2020; González et al., 2021a). These bacteria have also been used
to improve the resistance of plants against different situations
of abiotic stress such as salinity or desiccation (Ansari et al.,
2021; Ha-Tran et al., 2021; Khalilpour et al., 2021; Ali et al.,
2022), as well as the oxidative stress produced by Hg (Cho and
Park, 2000; Cargnelutti et al., 2006; Ajitha et al., 2021; Quiñones
et al., 2021; Çavuşoğlu et al., 2022). To alleviate the harmful
effect of pollutants, plants rely heavily on bacteria present in
their rhizospheres.

The present work studies the effect of the inoculation
of four PGPB strains and their combination in consortia
formed by pairs, on the oxidative stress of Lupinus albus
var. orden Dorado grown in different growing matrixes with
the presence of Hg. Likewise, the phytoprotective effect of
PGPBs that manifest the best results in the reduction of
oxidative stress is studied. As an indicator, we use the
concentration of Hg accumulated in plants. Additionally, we
relate these variables to biometrics and the activity of ROS-
regulating enzymes.

Materials and methods

Bacterial strains and mixtures

The isolates used in this study come from the free soil and
rhizosphere of plants that grow naturally on plot 6 of the mining
district of Almadén in Ciudad Real, Spain (Millán et al., 2007).
The strains were selected based on their Biomercuroremediator
Suitability Index values (BRMSI) (Robas et al., 2021), which
evaluates PGPB activities and their tolerance to Hg. The
tolerance to Hg is assessed using the minimum bactericidal
concentration (MBC) and the PGP activities are as follows:
production of auxin (3-indoleacetic acid: IAA), presence of
the enzyme 1-animociclopropane-1-carboxylate decarboxylase
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(ACCd), production of siderophores (SIDs), and the solubilizing
capacity of phosphates. The BMRSI is calculated using the
following formula, where 1 and 0 for the ACCd and PO4

−3

indicate presence or absence:

BRMSI = [IAA (µg mL−1) + ACCd (1/0) + SID (cm)
+ PO4

−3 (1/0)]+ [MBC Hg (µg mL−1)]

The PGPB capacity in the presence of Hg of the four
bacterial isolates (Table 1) was analyzed by González et al.
(2021b) (BRMSI Supplementary Table 1). The activity of the
four strains was tested, as well as the combination consortium
in pairs (Table 2).

The results of the biometrics of Lupinus albus var. orden
Dorado inoculated with these PGPB and their respective
consortia are shown in Supplementary Table 2. In all the
experiments carried out, “control” means without inoculum.

The four bacteria isolates were subjected to the mutual
compatibility test by cross streak method (Supplementary
Figure 1) in standard method agar plates (SMA, Pronadisa R©,
Madrid, Spain). No inhibition was observed on the cross point
in any of the combinations, which indicate the compatibility
among the isolates.

Tested plants

Lupinus albus var. orden Dorado seeds were used from
the seed bank of the Technological and Scientific Research
Centre of Extremadura.

Growing matrixes

Four types of growing matrixes were used: to free soil from
the mining district of Almadén and sterile vermiculite. The
characteristics of the different growing matrixes are as follows:

• Contaminated soil, high concentration of Hg (“Soil+Hg”),
from “Plot 6” of the mining district of Almadén (Table 3).
• Control soil with low Hg concentration (“Soil −Hg”),

obtained from “Plot 2” of the mining district of Almadén.
The concentration of soluble and interchangeable Hg
in this plot is low enough to be considered negligible
(Table 3).

• Vermiculite without Hg (“Vermiculite −Hg”): vermiculite
is an inert substrate with neutral pH commonly used in
hydroponic crops.
• Vermiculite was added with a solution of 8 mg/kg of HgCl2

(concentration of Hg analogous to that found in the soluble
fraction of the plot “Plot 6”) (“Vermiculite+Hg”).

Seed pre-germination

As a preliminary step, the seeds were soaked in water at
4◦C for 24 h. The surface was sterilized with three washes of
70% ethanol for 30 s (Abdel Latef et al., 2017). Trays were used
with sterile vermiculite and watered with sterile water to field
capacity. The seeds were then sown and kept in darkness for
72 h at 25◦C. Seeds with an emerged radicle of 3 ± 0.2 cm were
selected for the study.

Sowing conditions and inoculation
with the strains and mixtures

Sterile forest trays were used (Plásticos Solanas S.L.,
Zaragoza, España), each of them composed of 12 alveoli of
18 cm in height, with a capacity of 300 cm3, and a light of
5.3 cm× 5.3 cm. Eleven trays were used for each type of growing
matrix. To avoid cross-contamination, four pre-germinated
seeds were sown in each alveolus. In each tray, a single bacterial
strain (or consortium) and/or control was inoculated, in such a
way that 48 seeds were tested for each condition.

A bacterial suspension in 0.45% saline was performed and
the inoculum density was adjusted to 0.5 McFarland. Each seed
was inoculated with 1 ml of the suspension. To the control,
seeds were added to 1 ml of 0.45% saline per seed without
bacterial suspension.

Plant growth conditions

A plant growth chamber (phytotron) equipped with white
and yellow light with a photoperiod of 11 h of light was
used (light intensity: 505 µmol m−2 s−1, temperature stable
at 25 ± 3◦C). Irrigation was carried out every 48 h by
capillarity with sterile water, with an experimental volume of
350 mL/tray (12 alveoli).

TABLE 1 Bacterial isolates according to their BMRSI in the presence of Hg (González et al., 2021b).

Strain HgCl2 tolerance(µg/mL) BMRSI Strain origin 16S rRNA identification

A1 140 6.54 Avena sativa Brevibacterium frigoritolerans

A2 140 7.30 BS Bacillus toyonensis

B1 140 7.20 BS Pseudomonas moraviensis

B2 140 6.92 Avena sativa Pseudomonas baetica
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TABLE 2 Consortia formed to screen the strains in Table 1.

CS1 CS2 CS3 CS4 CS5 CS6

Strains A1+ B1 A1+ A2 A1+ B2 B1+ A2 B1+ B2 A2+ B2

TABLE 3 Hg speciation on study soils (Millán et al., 2007).

Soil Total Hg
(mg/Kg)

Soluble Hg
(mg/Kg)

Exchangeable
Hg (mg/Kg)

Plot 6 (Soil+Hg) 1710 0.609 7.3

Plot 2 (Soil−Hg) 5.03 0.0417 0.285

Harvest

Twenty-one days after seeding, the plants were harvested.
To carry out the enzymatic measurements, six replicas
were used for each treatment. Each replica was formed
by a mixture of two plants (one plant per alveolus) until
reaching 3 g. Four enzymatic measures related to protection
against oxidative stress in plants were performed. The
enzymatic activities tested were superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (APX), and glutathione
reductase (GR).

To study the concentration of accumulated Hg, three
replicates were taken per treatment of each growing matrix.
Each sample consists of 12 plants (three plants per alveolus) up
to 25 g per sample. The analysis was only carried out in those
treatments with greater statistical significance.

Antioxidative defense enzymes

The enzymes were extracted at 4◦C starting from 1 g
of fresh sample per replica, with a mortar and using
50 mg polyvinylpolypyrrolidone (PVPP) and 10 ml of the
following medium: 50 mM of K-phosphate buffer (pH 7.8)
with 0.1 mM EDTA (for SOD, CAT, and APX). The same
medium, supplemented with 10 Mm of β-mercaptoethanol
was used for GR.

Superoxide dismutase activity
The SOD activity was measured based on the ability of

SOD to inhibit the reduction of tetrazoyl nitro-blue (NBT) by
photochemically generated superoxide radicals. A SOD unit is
defined as the amount of enzyme needed to inhibit the NBT
reduction rate by 50% at 25◦C (Burd et al., 2000).

Catalase activity
The method of Aebi (1984) was carried out. H2O2

consumption was monitored for 1 min at 240 nm. This was
carried out by mixing 50 mM potassium phosphate buffer with
10 mM of H2O2 and 100 µL of the extract.

Ascorbate peroxidase activity
The reaction was measured in a total volume of 1 mL that

contains 80 nM of potassium phosphate buffer, 2.5 mM H2O2,
and 1M sodium ascorbate. To determine the oxidation ratio
of ascorbate, H2O2 was added to begin the reaction and the
reduction of absorbances was measured for 1min at 290 nm
(Amako et al., 1994).

Glutathione reductase activity
Glutathione reductase activity was estimated

spectrophotometrically, according to the method of Carlberg
and Mannervik (1985) at 25◦C and 340 nm. The reaction
mixture contained 50 mM of buffer Tris–MgCl2, 3 mM, 1 mM
of GSSG, 50 µl of enzyme, and 0.3 mM NADPH, which were
added to initiate the reaction. The activity was calculated
with the initial rate of the reaction and the molar extinction
coefficient of NADPH (ε340 = 6.22 mM−1 cm−1).

Analysis of Hg content in plant

The root and aerial fraction of each replica was dried in dry
heat furnaces at 60◦C for 24 h. It was sprayed and each fraction
was digested separately in the acidic medium (HNO3/HCl
2/0.5% weight/volume) under pressure for the determination
of trace elements according to the regulations UNE-EN 13805.
The digest was analyzed by mass spectrometry with inductively
coupled plasma (ICP-MS).

By using a calibration curve, a relationship between the
concentration of the pattern (µg L−1 or mg L−1) and signal
(ICP-MS) was established for each of the elements. The value
of the element signal in the 12 samples is interpolated on
the calibration line resulting in the total concentration of the
element in the sample.

The values of the Hg pattern to establish the calibration line
were as follows, expressed in µg/L: 0.00; 0.05; 0.10; 0.50; 1.00;
5.00; 10.00. Expression in mg kg−1 from µg L−1:

Cf
(

µg
Kg

)
= X

(µg
L

)
· D ·

V (mL)

W
(
g
) · 10−3

where Cf (mg kg−1) is the sample metal content, X (µg L−1)
corresponds to the interpolated experimental value or the
experimental value extrapolated from the standard addition,
D is the dilution performed for determination, dilution factor,
V (mL) corresponds to the flask volume, and W(g) to
the sample weight.

Statistical analysis

For statistical analysis, SPSS v.27.0 software was used
(Version 27.0 IBM Corp, Armonk, NY, USA). The Kolmogorov–
Smirnov test was performed to check the normality of all
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variables. Subsequently, an ANOVA of a Kruskal–Wallis factor
was performed. For the statistical analysis of the total Hg
concentration accumulated in the plant, the normality of
the sample data was verified using the Shapiro–Wilk test.
An ANOVA was performed to determine the existence of
significant differences (p-value ≤ 0.05). Next, a post hoc
analysis of less significance differences (LSDs) was performed
with the aim of evaluating whether the differences in Hg
concentration in the plant are significant. “Substrate with
Hg” is considered to be the joint analysis of the data of
vermiculite supplemented with Hg and soil with a high
concentration of Hg. The joint analysis of the data for
vermiculite without Hg and soil without Hg is considered
“substrate without Hg.”

A principal component analysis (PCA) was performed
starting with the 3D projection of the load factors. Next, an
analysis was elaborated with the biometric data (Supplementary
Table 2; González et al., 2021a), the concentration of Hg in the
plant, and the results of the ROS enzymatic activity. All the
statistical differences refer to the comparison of the variables
that the plants manifest according to their inocula against their
respective non-inoculated controls.

Results

Antioxidative defense enzymes analysis

Kruskal–Wallis ANOVA revealed that plants grown
with the different inocula in the substrates without Hg
showed no significant differences in the enzyme activity
produced in response to oxidative stress. In contrast, in plants
inoculated with strains B1 (Pseudomonas moraviensis) and
B2 (Pseudomonas baetica), as well as their respective CS5
consortium, the differences in the activity of the four enzymes
were significantly lower (p-value ≤ 0.001) when they were
grown in soils with high levels of Hg.

Figure 1 shows the Kruskal–Wallis analysis and the
comparison of means of the enzymes CAT (Figure 1A),
SOD (Figure 1B), APX (Figure 1C), and GR (Figure 1D).
Figures 1A–D shows the behavior of the activity of ROS-
regulating enzymes of strains B1, B2, and their respective
consortium (CS5). The CS6 consortium (formed by strains A2
and B2) is able to induce a significant reduction in the activity
of the SOD enzyme by jointly analyzing substrates with high Hg
concentration (Figure 1B).

Figure 2 shows the results of the enzymatic activities of
plants subjected to different bacterial inoculums, comparing the
behavior in the presence of Hg vs. the absence of Hg. We can
observe that the reduction of the activity of the four enzymes in
plants inoculated with strains B1 and B2 in soils with Hg reduces
their activity to levels similar to those observed in plants grown
in substrates in the absence of Hg.

Analysis of Hg content in plant

In order to understand the bioaccumulation of Hg, we
proceeded to analyze the samples of plants grown in soils with
Hg whose inoculation induced a significantly lower enzymatic
activity. Likewise, the data of plants inoculated with the same
PGPB and grown in soils in the absence of Hg are collected
comparatively (Table 4). The ability of Lupinus albus to
bioaccumulate Hg is observed mainly at the root. In plants
inoculated with B1 and the CS5 consortium (B1 + B2), a
significant difference in the concentration of Hg in the whole
plant (total, aerial, and root) is detected with respect to the
control. In the aerial part of the plants subjected to the three
treatments, a significant difference in the concentration of Hg
with respect to the control in soils with a high concentration of
Hg is also observed.

Principal component analysis

In order to discriminate the overall behavior of the plants
tested on different growing matrixes with their respective
inoculum, a PCA was carried out. Figure 3 shows the 2D
graphs of the load factors on a rotated space of PCA1 vs.
PCA2 (Figure 3A), and PCA1 vs. PCA3 (Figure 3B). The
variables are segregated into three groups according to their
biological behavior, namely, enzymatic activity, biometrics, and
bioaccumulation of Hg. Table 5 shows that the accumulation
of three factors explains the model with accumulative variance
greater than 87%.

Figure 4 shows the 2D projected PCA model. It can be
observed how the inoculum of bacteria B1 and B2 individually
is segregated from the rest of the treatments. This separation
corresponds to a greater effect on the decrease in enzymatic
activity (ROS), as well as an increase in biometric factors. The
main factor in the abscissa axis that determines the behavior
of the plant turns out to be the concentration of Hg in the
soil. Likewise, the main segregation factor in the ordinate axis
is the treatment with an individual inoculum of PGPB B1 and
B2. The phytoprotective and plant growth-promoting effects are
significantly favorable in plants grown in soils with Hg when
inoculated with strains B1 and B2 independently.

Discussion

In the present study, four strains have been used whose PGP
activities were tested in media with the presence of Hg vs. the
absence of Hg. In the same way, their respective consortia were
tested in pairs (González et al., 2021b).

The plant model of (Lupinus albus), as well as other legumes
(Harzalli Jebara et al., 2017), has phytoextractor capacity
(Zornoza et al., 2010; Rocio et al., 2013; Quiñones et al., 2021).
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FIGURE 1

Kruskal–Wallis ANOVA results for enzyme activity: CAT (A), SOD (B), APX (C), and GR (D). Data clusters for statistical treatment: “General”:
dataset for plants grown in all growing matrixes; “Substrates +Hg”: dataset for plants in Hg supplemented vermiculite (“Vermiculite +Hg”) and
soil with high Hg concentration (“Soil +Hg”); “Vermiculite +Hg”: dataset for plants in supplemented vermiculite; “Soil +Hg”: dataset of plants in
soil with Hg high concentration. The bars indicate the standard error. Asterisks indicate the level of significance compared to control;
∗p-value ≤ 0.05, ∗∗p-value ≤ 0.003, and ∗∗∗p-value ≤ 0.001.
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FIGURE 2

Comparison of the results of the enzymatic activity of CAT (A), SOD (B), APX (C), and GR (D) in plants grown in the substrate without Hg
(smooth) vs. with a high concentration of Hg (double scratching). The bars indicate the standard deviation.

In addition, its ability to absorb and resist the presence of heavy
metals, such as Hg, is known. As well as its tolerance to high soil
salinity (Rodriguez et al., 2007).

To evaluate the phytoprotective capacity of the strains
against Hg, the plants were grown in two different substrates
(free soil and vermiculite). Similarly, two types of soil were used
to establish the comparison of the presence of Hg vs. the absence
of Hg, both from the mining district of Almadén: soil with a
high concentration of Hg (soil +Hg), and a control soil with
a minimum concentration of Hg (soil −Hg). Vermiculite is a
suitable substrate for the study of bacterial inocula in plants

TABLE 4 Comparison of the concentration of Hg in the plants tested
in soils with high concentration of Hg.

Treatment Total (µg/g) Aerial (µg/g) Root (µg/g)

CONTROL− 0.00± 0.01 0.00± 0.01 0.00± 0.01

B1− 0.00± 0.01 0.00± 0.01 0.00± 0.01

B2− 0.00± 0.01 0.00± 0.01 0.00± 0.01

CS5− 0.00± 0.01 0.00± 0.01 0.00± 0.01

CONTROL+ 10.23± 0.03 0.22± 0.02 10.01± 0.14

B1+ 9.52± 0.08* 0.16± 0.02* 9.36± 0.14*

B2+ 10.23± 0.03 0.15± 0.01* 10.07± 0.12

CS5+ 7.88± 0.06* 0.13± 0.03* 7.75± 0.13*

*Indicates significant differences with respect to their respective controls
(p-value ≤ 0.001).

(Rodríguez et al., 2006; González et al., 2021a; Yuan et al., 2022)
and avoids the shielding effect that a complex matrix, such as
soil, can produce.

Hg induces physiological and metabolic alterations in plants,
such as ROS and decreased plant growth (Çavuşoğlu et al.,
2022). This article analyzes the negative influence of Hg on
these variables (Figure 2). Likewise, it is known that the use of
PGPB minimizes these effects (Pirzadah et al., 2018), stimulating
different defense mechanisms (Loix et al., 2017).

Antioxidative defense enzymes

Oxidative stress caused by Hg has been studied in different
plant models (Cho and Park, 2000; Cargnelutti et al., 2006;
Çavuşoğlu et al., 2022), observing how this heavy metal increases
stress and ROS accumulation. The production of CAT, SOD,
APX, and GR enzymes catalyze the degradation of H202, HO−,
1O2, and O−2. Therefore, enzymatic activity is interpreted as a
protective response against ROS, whose function is induced by
the effect of Hg. The increase in CAT and SOD has been studied
as a marker of oxidative stress against heavy metals in plants
without a bacterial inoculum (Macar et al., 2020; Çavuşoğlu
et al., 2022). In the present study, it was observed that the activity
of these enzymes is significantly higher in plants grown with Hg
vs. without Hg (Figure 2). This effect has also been observed by
other authors when confronting plants with other metals, such
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FIGURE 3

2D representation of the physiological and biometric variables of the plants according to the load factors of the PCA. (A) PCA1 vs. PCA2;
(B) PCA1 vs. PCA3.

as cadmium (Cd) or lead (Pb) (Aras, 2012; Azimychetabi et al.,
2021). Likewise, this effect has been observed in the enzymes
APX and GR when facing different plant species with heavy
metals (Hashem et al., 2016; Liu et al., 2018; Azimychetabi et al.,
2021). Similarly, Pirzadah et al. (2018) investigate the effect of
Hg on oxidative stress in plants not inoculated with PGPB,
finding similar results to those described in the present work.

TABLE 5 Three main components that describe the model.

Component Total % variance % acumulated

1 5.666 40.471 40.471

2 4.206 30.045 70.516

3 2.337 16.696 87.212

The effect that PGPB inoculation induces the decrease
of ROS is known (Heidari and Golpayegani, 2012; Morcillo
and Manzanera, 2021) in substrates contaminated by different
heavy metals: Hg (Pirzadah et al., 2018), Pb (Abdelkrim et al.,
2018), Cu (Fatnassi et al., 2015), Zn (Islam et al., 2014), and
Cd (Azimychetabi et al., 2021; Renu et al., 2022). The PGPB
species commonly used are those belonging to the genus Bacillus
(Vardharajula et al., 2011; Moreno-Galván et al., 2020) and
Pseudomonas (Sandhya et al., 2010). In the present study, the
strains that produce a greater reduction in enzymatic activity
in plants grown in the presence of Hg are B1 (Pseudomonas
baetica) and B2 (Pseudomonas moraviensis) (Figures 1A–D)
used both individually and in the consortium.

In the results obtained, a significant reduction in the
levels of CAT (Figure 1A) and APX (Figure 1C) enzyme
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FIGURE 4

2D projection of the main components: (A) PCA1 vs. PCA2 and (B) PCA1 vs. PCA3 of the biological treatment (B1, B2, and CS5). The “+” sign on
the treatment refers to “soil with a high concentration of Hg”; the “–” sign above the treatment refers to “soil without Hg.”
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activities was observed. This reduction is strongly correlated
with the enzymatic activity of SOD (Supplementary Table 3).
The SOD enzyme catalyzes singlet oxygen into a less reactive
form of oxygen (H2O2). However, H2O2 is also toxic at high
concentrations and must be eliminated by conversion to H2O.
CAT catalyzes the decomposition of H2O2 to H2O and O2.
Similarly, the enzyme APX breaks down the H2O2 in H2O by
the reducing power of ascorbic acid. Plants possess enzymes
such as CAT and APX that help maintain intracellular levels of
H2O2 (Gill and Tuteja, 2010). For this reason, the correlation
observed between the activity of SOD enzymes against CAT
and APX in plants grown in the presence of Hg acquires
biological meaning and is interpreted as metabolically related
phytoprotection mechanisms. The inoculum of the B1 and
B2 strains induce a better response of the plant subjected to
oxidative stress.

Glutathione reductase is involved in the reduction of
glutathione disulfide (GSSG) to glutathione (GSH) with
NADPH expenditure. GSH plays a very important role in
the redox regulation of the cell cycle and in the defense
mechanisms against oxidative stress (Sánchez-Fernández et al.,
1997). The increase in GR in substrates with Hg (Figure 1D)
corroborates what we have found and is consistent with what
has been described by other authors, indicating that how Hg
increases oxidative stress in the plant (Pirzadah et al., 2018).
We also observed how strains B1, B2, and their CS5 consortium
(Figure 1D) show significantly lower enzymatic activity of this
enzyme in plants grown in soil with Hg.

Analysis of Hg content in plant and
principal component analysis

Plants of different species have been shown to accumulate
Hg in different tissues, but the mechanism of absorption is
unknown. To date, no membrane transporters involved in Hg
root absorption have been identified. Due to the similarities
between Cd and Hg, transmembrane Cd conveyors may be used
(Lombi et al., 2001) for Hg input (Tiodar et al., 2021). The
bioaccumulation of Hg in Elodea nuttallii has been analyzed, and
it has been concluded that Cu transporters could be involved
in the process (Regier et al., 2013). Lupinus albus is a known
plant species accumulating Hg (Zornoza et al., 2010; Rocio et al.,
2013; González et al., 2021a; Quiñones et al., 2021). Numerous
metal carrier homologues have been identified in Lupinus roots
(Tian et al., 2009). Whether these transporters could play a
similar role in Hg absorption remains to be demonstrated.
Quiñones et al. (2013, 2021) have used this plant species to
demonstrate its ability to accumulate significant amounts of Hg
in roots and nodules. This fact can induce a reduction in biomass
production. This fact coincides with what has been observed in
the present work. Nevertheless, plants inoculated with B1 and
B2 are able to increase plant growth, even in substrates with high

concentration of Hg. Likewise, there is evidence that inoculation
with B1 and CS5 protects the plant against the contaminant,
observing tissue concentrations of Hg significantly lower than
the control (Table 4). These variables of root bioaccumulation
of Hg and biometrics (total weight of the plant and root weight)
present a positive correlation (Figure 3). In this same sense, the
PCA segregates the behavior of plants treated with B1 and B2 in
the presence of Hg. This fact leads us to think that the biological
treatment with these strains in soils with a high concentration
of Hg determines both the improvement of biometric variables,
the reduction of the concentration of Hg in the plant, as well
as the reduction of the activity of the enzymes that regulate the
concentration of ROS.

The results of the present study show the capacity of
phytoprotection against the accumulation of Hg and reduction
of oxidative stress in L. albus var. orden Dorado of the strains
B1 (Pseudomonas moraviensis) and B2 (Pseudomonas baetica),
as well as of their respective CS5 consortium. For this reason,
the convenience of using these strains for further use in
phytostimulation and phytoprotection in soils contaminated
with Hg is postulated.

Conclusion

It can be extracted as a conclusion that the biological
behavior of plants [biometrics, bioaccumulation of Hg and
activity of catalase enzymes (CAT), superoxide dismutase
(SOD), ascorbate peroxidase (APX), glutathione reductase
(GR)] is significantly improved by inoculation with strains B1
(Pseudomonas moraviensis) and B2 (Pseudomonas baetica), as
well as their corresponding consortium (CS5). In a particular
way we can conclude as follows:

First, the bacteria B1 and CS5 exert a phytoprotective effect
showing significantly lower systemic Hg concentration values
and, especially, at the root. The B2 strain significantly reduces
the bioabsorption of Hg in the aerial part of the plant.

Second, B1 and B2 significantly promote the plant growth
of Lupinus albus growth. Its consortium (CS5) reduces
oxidative stress, especially when the plant grows in highly
contaminated soils with Hg.

In the light of the conclusions of this work, the use of strains
B1 (Pseudomonas moraviensis) and B2 (Pseudomonas baetica) is
postulated, as well as their consortium (CS5) as good candidates
for their subsequent use phytostimulation and phytoprotection
in areas contaminated with Hg.
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