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Geobacter sulfurreducens is a widely applied microorganism for the reduction of toxic
metal salts, as an electron source for bioelectrochemical devices, and as a reagent
for the synthesis of nanoparticles. In order to understand the influence of metal salts,
and of electron transporting, multiheme c-cytochromes on the electron flux during
respiration of G. sulfurreducens, the reduction kinetic of Fe3+, Co3+, V5+, Cr6+, and
Mn7+ containing complexes were measured. Starting from the resting phase, each
G. sulfurreducens cell produced an electron flux of 3.7 × 105 electrons per second
during the respiration process. Reduction rates were within ± 30% the same for the 6
different metal salts, and reaction kinetics were of zero order. Decrease of c-cytochrome
concentrations by downregulation and mutation demonstrated that c-cytochromes
stabilized respiration rates by variation of their redox states. Increasing Fe2+/heme levels
increased electron flux rates, and induced respiration flexibility. The kinetic effects parallel
electrochemical results of G. sulfurreducens biofilms on electrodes, and might help to
optimize bioelectrochemical devices.

Keywords: reaction kinetic, c-cytochrome, Geobacter sulfurreducens, remediation, bioelectrochemistry

INTRODUCTION

Geobacter sulfurreducens has found important applications in remediation of oxidizing and toxic
metal salts (Lovley et al., 2011; Pushkar et al., 2021), as an electron source of microbial fuel cells
(Bond and Lovley, 2003; Slate et al., 2019), as well as a reagent for the synthesis of nanoparticles
(Lloyd et al., 2011; Khan et al., 2020; Egan-Morriss et al., 2022). This microorganism, first
discovered and isolated by Lovley et al. (1987) and Caccavo et al. (1994) relies on different
extracellular minerals (Lovley and Phillips, 1988; Shi et al., 2016) and metal salts as electron
acceptors (Ding et al., 2008; Lloyd et al., 2011; Lovley et al., 2011; Levar et al., 2014). Respiration
experiments on insoluble minerals, and electrochemical studies on solid electrodes have shown
that the electron donor NADH in the cytoplasm and the extracellular electron acceptors are
separated from each other by the periplasm, delimited, respectively, by the inner and by the outer
cell membranes. Electron transport occurs via multi-heme-bearing cytochromes (Ueki, 2021),
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some of which are soluble in the periplasm (Ppc), while others
are attached to the inner (Imc) or the outer cell membrane
(Omc). Cytochromes of G. sulfurreducens, which are involved
in the respiration process, exist in many varieties and contain
on average 7.5 iron-hemes (Ueki, 2021), and the total number
of iron-hemes per cell is about 107 (Esteve-Núñez et al., 2008).
Electron transfer through the periplasm is mainly based on
triheme cytochromes (Ppc), some of them as protein clusters
(Santos et al., 2015). During the stationary phase of the bacteria,
all iron/hemes are in the Fe2+ state. They become rapidly
oxidized to Fe3+/hemes (Chabert et al., 2020) upon addition
of metal salts with appropriate redox potentials (Santos et al.,
2015; Levar et al., 2017). Fe3+/hemes then oxidize NADH via
the menaquinol/menaquinone pool, and the resulting proton
gradient catalyzes ATP synthesis. In a recent study on the
formation of Ag nanoparticles (AgNPs) by G. sulfurreducens
respiration with water soluble AgNO3, we have demonstrated
that Ag+ ions are bound by outer membrane cytochromes with
high complexation constants (Chabert et al., 2020). Subsequent
electron transfer in the Ag+/Omc complexes triggered a fast
electron flux through G. sulfurreducens, leading to AgNPs at
the outer cell membrane (Figure 1). The constant electron
flux rate of 3·105 e−·s−1 per cell was independent of the
Ag+ ion concentration, and agreed well with electrochemical
measurements on single cells of G. sulfurreducens (Jiang et al.,
2013), as well as Shewanella oneidensis (Gross and El-Naggar,
2015). We have now measured reduction rates, and kinetic orders
of additional water-soluble metal salts by G. sulfurreducens.
[Fe(edta)]−, [Fe(CN)6]3−, Co[(bpy)2CO3]+, [VO2(edta)]3−,
CrO4

2−, and MnO4
− ions were chosen as oxidants, because their

concentrations, and the redox changes of c-cytochromes could be
exactly determined during the fast respiration processes by time
resolved experiments. G. sulfurreducens cells in the resting and
the exponential growth phases were used. Their c-cytochrome
concentrations were changed by downregulation and mutation.

MATERIALS AND METHODS

Preparation of Geobacter sulfurreducens
Solutions
G. sulfurreducens (DSM-12127) was received from the Leibniz
Institute DSMZ. Preparation of standard G. sulfurreducens
solutions in growth medium A: 5 ml of the purchased
bacteria solution were solved in 50 ml of growth medium A
(Supplementary Figure 1), which contained in the first growth
round 10 mM KCl and 100 µM FeSO4. After 5 days of growing,
5 ml of this bacterial solution was added into 50 ml of a growth
medium A that contained 2 µM KCI and 25 µM FeSO4. This
growing procedure with 25 µM FeSO4 took about 3–5 days
until the fumarate was consumed, and was repeated 4 times.
Inductively coupled plasma optical emission spectroscopy (ICP-
OES) showed that after this growth process, the bacterial solution
of G. sulfurreducens contained≤ 10 µM iron ion concentrations.
These standard solutions in medium A without fumarate, which
contained G. sulfurreducens in the resting state (lag phase)
and acetate as carbon source (Estevez-Canales et al., 2015), were

directly used for the reduction of the water-soluble metal salts.
Preparation of G. sulfurreducens solutions in growth medium B:
5 ml of a standard G. sulfurreducens solution, which was prepared
in growth medium A, and contained 10 µM Fe2+, was added to
50 ml of growth medium B lacking FeSO4 (Estevez-Canales et al.,
2015; Supplementary Figure 1). After 5 days, these solutions
in growth medium B, which contained G. sulfurreducens in the
resting state and acetate as a carbon source (Estevez-Canales
et al., 2015), were directly used for the reduction of the water
soluble metal salts. The decrease of c-cytochrome amounts in
G. sulfurreducens by growth in medium B compared to medium
A was determined by mass spectrometric proteome analysis:
disruption of cells and protein extraction were done in a sample
homogenizer after adding a lysis buffer (8 M urea, 50 mM Tris-Cl,
pH 8) and glass beads (0.18 mm). The same protein amount for
each sample was further processed as described in Stekovic et al.
(2020). MS raw files were analyzed using the Spectronaut software
version 15.7 (Bruderer et al., 2015) with standard settings
(without data imputation) in direct DIA mode using reference
proteome of G. sulfurreducens (UniProt, UP000000577) and
common contaminants. Further data processing and statistical
analysis used the Perseus software version 1.6. The results are
shown in Supplementary Figure 2 and Table 1. The mutant
lacking OmcBEST of G. sulfurreducens (PCA) was provided
by Derek R. Lovley (University of Massachusetts, Amherst,
United States). One ml was cultured in 10 ml of NBAF medium
under anaerobic conditions as described in Coppi et al. (2001).
After 5 days of growing, when G. sulfurreducens was again in
the lag phase, 5 ml were solved in 50 ml of growth medium A,
and reacted for 5 days until G. sulfurreducens was again in the
lag phase. This growing procedure was repeated 4 times, and
the solutions were used directly for the kinetic experiments with
water-soluble metal salts.

Analysis of Oxidizing Metal Salts
Na[Fe(edta)], K3[Fe(CN)6], K2CrO4, and KMnO4 were
purchased from Sigma-Aldrich. Na3[VO2(edta)] was synthesized
according to Komarova et al. (1991). [Co(bpy)2CO3]Cl was
generated from [Co(bpy)3]Cl3, which was solved in growth
medium A without fumarate and acetate. O2 was exchanged by
N2/CO2 (80/20) and the solution was heated to 125◦C for 20 min
at 1.25 bar. The structure of [Co(bpy)2CO3]Cl was confirmed
by single crystal X-ray diffraction (SC-XRD) and electrospray
ionization mass spectrometry (ESI-MS). Concentration decrease
of the Fe3+, Co3+, V5+, Cr6+, and Mn7+ salts, which were
reduced by G. sulfurreducens to Fe2+, Co2+, V4+, Cr3+, and
Mn4+ salts, respectively, was analyzed by UV/Vis spectroscopy at
wavelengths shown in Figure 2A and Supplementary Figure 3.
In order to determine the location of the oxidizing metal
salts after G. sulfurreducens respiration, solutions of 4.65 mM
Na[Fe(edta)], K3[Fe(CN)6], [Co(bpy)2CO3]Cl, Na3[VO2(edta)],
as well as 1.55 mM K2CrO4 and KMnO4, respectively, were
treated for 20 min with N2/CO2 (80/20) at ambient temperature.
Then, 0.2 ml of them were added to 6 ml of a standard
G. sulfurreducens solution. After 1 h reaction time (30◦C) 0.35 ml
of a 37% HCl solution were added, mixed with a vortex for
about 1 min, and centrifuged at 10,000 rpm at 20◦C for 10 min.
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FIGURE 1 | Synthesis of Ag nanoparticles (AgNPs) during respiration of G. sulfurreducens with water soluble Ag+ ions. The c-type cytochromes at the inner cell
membrane (Imc), in the periplasm (Ppc), and at the outer cell membrane (Omc) transport electrons from intracellular electron donors like NADH to Ag+/Omc
complexes, which leads to AgNPs, attached to the outer cell membrane (Chabert et al., 2020). In recent cell growth experiments with CrO4

2− (Gong et al., 2018),
Cr3+ reduction products could be detected within the cells, if the bacteria reacted for several hours with the chromium salts. Therefore, our reduction experiments of
CrO4

2− might also occur partly inside of the cells, although the reaction conditions are different.

TABLE 1 | Functions and remaining percentages of c-cytochromes that were downregulated by at least 50% during fumarate-respiring growth of G. sulfurreducens in
medium B compared to growth in medium A (100%).

c-cytochrome Medium B, % EET Predicted cellular location

PpcE (GSU1760) 50 Only found in cultures with Fe3+ citrate vs. Fe3+ oxides (Ding
et al., 2008)

Periplasm

PpcF (GSU2201) 47 Upregulated in cells grown on Fe3+ and Mn4+ oxide compared
to Fe3+ citrate (Aklujkar et al., 2013)

Periplasm

GSU3332 47 Gene knockout deficient in the reduction of U6+ and Fe3+

hydroxide (Shelobolina et al., 2007)
IM (Predicted by Loctree)

CccA (GSU2811) 43 Upregulated by growth on Fe3+ and Mn4+ oxide compared to
Fe3+ citrate (Aklujkar et al., 2013)

Periplasm

CoxB (GSU0222) 43 Upregulated by growth on Mn4+ oxide compared to Fe3+

citrate (Aklujkar et al., 2013)
Periplasm

GSU1740 43 Upregulated by growth on Fe3+ and Mn4+ oxide compared to
Fe3+ citrate (Aklujkar et al., 2013)

Periplasm

GSU2210 42

CcpA (GSU2813) 42

OmcI (GSU1228) 42 Deletion mutant affected growth in Fe3+ citrate and on Fe
oxides (Aklujkar et al., 2013)

Periplasm,
OM-bounded (Predicted by

Loctree)

OmcX (GSU0670) 42 Required for Fe3+ reduction (Butler et al., 2010).
Downregulated in Fe oxides (Kato et al., 2013)

OmcA (GSU2884) 40 Upregulated by growth on Fe3+ oxides (Aklujkar et al., 2013)

GSU2743 38 Not involved in EET (Embree et al., 2014) Periplasm

ppcA (GSU0612) 38 Upregulated by growth on Mn4+ oxide (Aklujkar et al., 2013) Periplasm

ExtG (GSU2724) 33 ExtEFG deletion mutant presented lower levels of Fe3+ citrate
reduction (Otero et al., 2018)

OM complex ExtEFG

MacA (GSU0466) 29 Upregulated on Mn oxides. Knockout mutant: slow growth on
Fe citrate or oxide (Aklujkar et al., 2013)

IM/Periplasm

OmaC (GSU2732) 28 Essential for iron reduction together with OmabcB (Otero et al.,
2018)

OM complex OmabcC

PpcD (GSU1024) 25 Upregulated by growth on Fe3+ oxide compared to Fe3+

citrate (Ding et al., 2008)
Periplasm

PccJ (GSU2494) 23 Upregulated by growth on Fe3+ oxides. Mutant had phenotype
as wild type (Aklujkar et al., 2013)

Periplasm

The annotation number for each c-cytochrome encoding gene is given in parenthesis. IM is the abbreviation for inner membrane, and OM for outer membrane.

Inductively coupled plasma optical emission spectroscopy
(ICP-OES) demonstrated that about 90% of the metal salts

were observed outside of the cells, and analysis of the Cr3+

distribution (Gong et al., 2018) showed that up to 93% of the
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FIGURE 2 | Analytical tools for the analysis of extracellular metal ion, Fe2+/heme, and cell concentrations. (A) Reduction of oxidizing metals salts by
G. sulfurreducens by time dependent UV/Vis spectroscopy at wavelengths where product absorptions are negligible. CrO4

2− respiration is shown as an example.
(B) ICP analysis of Cr3+ ions outside of the cell (blue) and at the cell membrane (orange) after reduction of CrO4

2−. Percentage data for reduced metal salts in the
supernatant are given. (C) Changes of Fe2+/heme concentration during respiration using the areas of Q-bands. (D) Increase of UV/Vis absorptions during bacteria
growth with fumarate as intracellular oxidant. The insert shows scattering increases at 600 nm (OD600) during 2 days of cell growth. (E) UV/Vis absorptions during
cell growth using low chromate concentrations for G. sulfurreducens respiration, starting from the resting state.

chromium ions were found in the supernatant, about 6% at
the cell membrane, and less than 1% was detected inside of the
cells (Figure 2B).

Analysis of Fe2+/Hemes
Concentrations of Fe2+/hemes were analyzed by their Q-band
areas between 540 and 570 nm (Figure 2C), and in some
cases also by their Soret band at 420 nm (Figure 2A).
Ultrasound treatment, which destroyed the cell membranes of
G. sulfurreducens, did not increase the total UV/Vis absorption
of iron-hemes. This demonstrates that G. sulfurreducens cells
are transparent enough to detect all iron-hemes of the bacteria.
Filtration of G. sulfurreducens solutions gave a tiny peak (≤5%) of
iron hemes in the supernatant (Supplementary Figure 4). With
about 107 iron hemes per cell (Esteve-Núñez et al., 2008) and
10−12 M cell concentrations of our experiments, these 5% lead
to less than 1 µM Fe2+/heme solutions outside of the cell, which
could at best reduce less than 1% of 0.1 mM extracellular metal
ion salt solutions.

Analysis of Cell Growth
Cell growth was analyzed by spectroscopy at 600 nm
(Muhamadali et al., 2015). G. sulfurreducens cells are about
1–2 µm large, thus a concentration increase raised the light
scattering effect on the UV/Vis spectra (Figure 2D). Test
experiments with 40 mM fumarate as an internal oxidant
for the cell growth proved that OD600 data followed the

same exponential increase as experiments, where cell growth
in solution was determined by increase of the cell weight
(Engel et al., 2020). Dilution of clear cell solutions changed
the OD600 values in a linear way, and an OD600 value of
0.54 corresponds to 0.7 pM G. sulfurreducens (Vasylevskyi
et al., 2017). The change of OD600 values during respiration
was detected with high accuracy, so that it could also be
used to follow cell growth in experiments with low oxidant
concentrations (Figure 2E). Rates of metal salt induced cell
growth were measured at 30◦C under anaerobic conditions:
0.1 ml of a K3[Fe(CN)6] solution was added to 3 ml of a standard
G. sulfurreducens solution. The initial concentration of the
oxidant in the reaction mixture was 0.15 mM, and the cell
growth was analyzed at OD600. Analogous experiments with
K2CrO4 were carried out with reaction mixture concentrations
of 0.03 and 0.05 mM.

Kinetic Experiments of Metal Salt
Reduction by Geobacter sulfurreducens
Starting From the Resting (Lag) Phase
Kinetic measurements were carried out in standard
G. sulfurreducens solutions in the lag phase (see above)
with 0.15 mM Na[Fe(edta)], K3[Fe(CN)6], Co[(bpy)2CO3]Cl,
Na3[VO2(edta)], and 0.05 mM K2CrO4 and KMnO4 solutions,
respectively. Under these conditions, the oxidizing metal
salts did not kill the bacterial cells, and the reaction mixtures
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FIGURE 3 | Kinetic experiments of G. sulfurreducens with extracellular metal salts. (A) Reduction of 6 different oxidizing metal salt solutions (blue, 0.05–0.15 mM)
with G. sulfurreducens solutions in the resting state (8.9 ± 0.3 pM). Their linear time dependences of the metal salt concentrations demonstrate zero kinetic order of
the reduction process. At the start of the experiments, all iron ions of the bacterial multiheme cytochromes were in the Fe2+ state (red). They were rapidly oxidized
upon addition of extracellular metal salts, their levels remained low during reduction of the metal salts, and increased again after major consumption of the oxidants.
(B) Experiments could be repeated several times. Shown are Fe2+/heme levels upon three consecutive additions of CrO4

2−. (C) A closer look at the Fe2+/heme
(red) and CrO4

2− (blue) concentrations. The Fe2+ /heme levels increased after major part of CrO4
2− was reduced, which obviously stabilized EET rates at low

concentrations of the extracellular metal salts. (D) Zero order reduction rates per cell for the 6 different metal salts at 30◦C and pH = 7.4.

remained homogeneous. All experiments were repeated 3 times
at 30◦C under N2/CO2 (80/20). Addition of 0.05 or 0.1 ml
metal salt solutions to 3 ml standard G. sulfurreducens in the
lag phase occurred by injection through a sealing plug with
needles that had been sterilized with a Bunsen burner. Oxidants
were used in such amounts that their initial concentrations
in the reaction mixtures were 0.05 mM for Cr6+ or Mn7+,
and 0.15 mM for Fe3+, Co3+, and V5+, respectively. The
concentrations of G. sulfurreducens were calculated from
the OD600 data. UV/Vis spectra were recorded between 610
and 320 nm. Each run took 25.3 s. Concentration changes
of metal salts were analyzed at wavelengths that are listed

in Figure 2A and Supplementary Figure 3. Concentration
changes of Fe2+/hemes were determined by the areas of the
Q-bands (540, 570 nm) if Na[Fe(edta)], K3[Fe(CN)6], KMnO4,
and K2CrO4 were used as oxidants (Figure 2C). Because
Co2+ and V4+ salts absorb at the Q-bands wavelengths, the
differences of Soret bands at 420 nm (Fe2+/heme) and 410 nm
(Fe3+/heme) were used. The determined concentrations of
oxidizing metal salts and Fe2+/hemes were plotted against
reaction times. The linear time dependences of the metal salt
concentrations (Figure 3A) are the electron flux rates, and
division by G. sulfurreducens concentrations led to the electron
flux rate per cell (Figure 3D).
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FIGURE 4 | CrO4
2− induce respiration of G. sulfurreducens, starting from the log phase. (A) Fumarate- respiring growth of G. sulfurreducens. Bacteria after 30 and

36 h growth, respectively, were used for metal induced respiration of G. sulfurreducens in the log phase. (B) Fe2+/heme levels during CrO4
2− induced respiration of

bacteria starting from log phases 1 and 2, as well as the resting (lag) phase. (C) Reduction of CrO4
2− (0.05 mM) by bacteria (0.63 ± 0.2 pM) in the log phase 1 and

the lag phase. (D) Reduction of CrO4
2− (0.1 mM) by bacteria (0.83 ± 0.2 pM) in the log phase 2 and the lag phase.

FIGURE 5 | Changes of Fe2+/heme levels during metal induced respiration of G. sulfurreducens. (A) Linear correlation (red line) between Fe2+/heme concentrations
(Q-bands) and G. sulfurreducens concentrations (OD600 data). The data (red points) were gained by dilution and different cell growth experiments in medium A.
Measurement (magenta point) with G. sulfurreducens, grown in medium B, where c-cytochromes are downregulated. (B) Fe2+/heme levels during CrO4

2− induced
respiration (0.05 mM) of cells grown in media A (0.63 pM) and B (0.73 pM). (C) Fe2+/heme levels (red) and CrO4

2− concentrations (blue) during CrO4
2− induced

respiration (0.05 mM) of mutants lacking OmcBEST (0.76 pM) grown in medium A. (D) Fe2+/heme levels of experiments with G. sulfurreducens (0.74 pM), grown in
medium B, with [Fe(edta)] − (0.15 mM) and CrO4

2− (0.05 mM), respectively.

Kinetic Experiments of Metal Salt
Reduction by Geobacter sulfurreducens
Starting From the Growth (Log) Phase
All experiments were carried out under strictly anaerobic
conditions at 30◦C. To start the growth process with fumarate as
an oxidant, 5 ml of the standard G. sulfurreducens solution were
added to 50 ml of growth medium A. The growing process was
analyzed by taking probes every 3 h and measuring the OD600
values (Figure 4A). After about 30 h, 3 ml of a G. sulfurreducens
solution, which was then in the exponential growth (log) phase,
was injected with a sterilized needle through a sealing plug into
an UV cuvette. The OD600 values of G. sulfurreducens were
about 0.50. To this G. sulfurreducens solution, which contained
all iron-hemes in the Fe2+ oxidation state, 0.05 ml of a K2CrO4
solution was added, so that the initial concentration of CrO4

2−

was 0.05 mM (experiment 1, Figures 4B,C). Another experiment
with G. sulfurreducens (OD600 = 0.65), which had continued its
growth with fumarate as oxidant, was carried out about 6 h later:
3 ml of G. sulfurreducens in the exponential growth (log) phase

were injected into an UV cuvette, and 0.1 ml of a CrO4
2− solution

was added, so that the reaction mixture was at the start 0.1 mM in
CrO4

2− (experiment 2, Figures 4B,D). Concentration changes of
CrO4

2− and Fe2+/hemes were analyzed from the UV/Vis spectra
at 345 nm and the Q-band, respectively.

RESULTS

Influence of Extracellular Metal Salts on
Reduction Rates
Reactions of 0.15 mM Na[Fe(edta)], K3[Fe(CN)6],
Co[(bpy)2CO3]Cl, Na3[VO2(edta)], and 0.05 mM K2CrO4
as well as KMnO4 solutions with 0.89 pM G. sulfurreducens in
the resting phase, solved in media as described above, oxidized
the Fe2+/hemes of cytochromes to Fe3+/hemes within a few
seconds, and a steady metal salt reduction occurred over 10 min
(Figure 3A). The concentration of the electron transporting
Fe2+/hemes remained nearly constant at a low level until up to

Frontiers in Microbiology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 909109

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-909109 June 17, 2022 Time: 10:27 # 7

Karamash et al. Fe2+/Hemes Regulate Geobacter Respiration

80% of the metal salt reductions were completed (Figures 3A,C).
After about 7–9 min, when most of metal salts had been
reduced, Fe2+/hemes were regenerated by cellular processes,
and the bacteria are ready for a second round of the metal ion
reduction process (Figure 3B). The electron flux did not change
although concentrations of metal salts decreased. Their linear
time dependences are the overall reduction rates, and division
by G. sulfurreducens concentrations yielded electron flux rates
per single cell. Data for CrO4

2− and MnO4
− were furthermore

multiplied by the stoichiometric factor of 3, considering a three
electron transfer. All six metal salts led to the fast electron
flux rate of 3.7·105 e−·s−1 per cell with a reproducibility
of ± 1.2·105 e−·s−1 (Figure 3D). Thus, reduction rates were
not only independent of metal salt concentrations, but also of
the metal salt types. The variation of bacteria or initial metal
salt concentrations by a factor of 2 did not change reduction
rates per cell (Supplementary Figure 5). A fivefold increase of
extracellular metal salts started to deactivate cells, which led to a
slowdown of the reduction, indicated by a curvature of the time
dependent metal salt reduction, and a lower regeneration of the
Fe2+/hemes. Additional experiments showed that reduction of
metal salts could neither be detected with dead G. sulfurreducens
cells nor with the supernatant of living cells, and Cr2(SO4)3 or
K3[Co(CN)6], which cannot oxidize Fe2+/hemes of cytochromes,
did not drive the respiration.

Influence of Fe2+/Hemes on Reduction
Rates
Experiments were carried out with bacteria, which contained
either lower c-cytochrome concentrations, or reacted faster
with the metal salts. A downregulation of c-cytochromes
was carried out by preparation of G. sulfurreducens cells
in a growth medium of low Fe2+ concentration (medium
B). Mass spectrometric proteome analysis detected 2,579
proteins after growth in medium A as well as in medium
B, from which 64 are c-cytochromes (Supplementary
Figure 2). Two thirds of them were downregulated by cell
growth in medium B, 18 by more than 50% (Table 1).
Comparison with literature data demonstrated that 17 of
these 18 cytochromes are involved in the EET process. Most
of them are located in the periplasm, from which three are
predicted to be bound to the outer membrane, two to the
inner membrane, and two cytochromes are outer membrane
complexes. As a consequence, the total iron heme concentrations
decreased by 50% in the downregulated cells (Figure 5A).
Reduction experiments of these bacteria with metal salts
showed that electron flux rates remained constant, whereas
the Fe2+/heme levels increased considerably (Figure 5B).
Obviously, constant rates could be maintained in cells of lower
c-cytochrome concentrations by rising the Fe2+/heme levels.
A similar effect was observed with a mutant, where outer
membrane cytochromes OmcB, OmcE, OmcS, and OmcT were
deleted (Figure 5C).

An increase of electron flux rates was achieved by experiments
starting with G. sulfurreducens in the exponential growth phase
(log phase). In order to carry out these measurements, cells

were prepared under fumarate-respiring conditions (Butler et al.,
2006). The log phase started after several hours, reached a rate
maximum at about 30 h, then slowed down, and stopped during
the third day (Figure 4A). In the first hours of this growth
process, Fe2+/hemes were partly oxidized but became reduced
again during the log phase (Supplementary Figure 6). Once
all iron hemes of G. sulfurreducens were in the Fe2+ state,
K2CrO4 was added to the growing G. sulfurreducens solution,
and the CrO4

2− reduction rate was measured (Figures 4C,D).
Experiments at different growth times showed that electron flux
was 4–6 times faster in the log phase than with cells starting from
the lag phase. Cells in the exponential growth demands faster ATP
production, which can be achieved by an increase of the electron
flux rate. This was made possible by an increase of the Fe2+/heme
levels in the c-cytochromes from 5% (lag phase) to up to 75% (log
phase) during the metal salt reduction (Figure 4B).

Influence of Extracellular Metal Salts on
Cell Growth Rates
Respiration induces the formation of ATP, which leads to
bacterial growth in ATP dependent processes (Brown, 1992;
Velten et al., 2007; Bochdansky et al., 2021). To elucidate whether
ATP formation and ATP consumption occur with the same rates,
the decrease of the metal salts, and the increase of cell growth
were measured. Reactions started with G. sulfurreducens in the
resting state and medium A as solvent, which lacks fumarate as
oxidant. Respiration was induced by addition of 0.03–0.05 mM
CrO4

2− or 0.15 mM [Fe(CN)6]3− solutions. Figures 6A–C
demonstrate that cell growth increased linearly, and required
the same reaction times as the respiration process. The OD600
increase during respiration revealed that a 0.15 mM electron flux
generated 4.5± 0.5% cell increase from 0.81 pMG. sulfurreducens
solutions. Hence, a flow of 0.15 mM electrons produced 0.036
pM cell growth, so that 4·109 electrons were needed to synthesize
enough ATP for one cell division, which agrees with the analysis
of electrochemical experiments (Levar et al., 2013).

DISCUSSION

Respiration of lag phase G. sulfurreducens cells in a growth
medium, which lacks the oxidant fumarate, reduced Fe3+, Co3+,
V5+, Cr6+, and Mn7+ ions of the 6 different metal salts
with electron flux rates of 3.7·105 e−·s−1 per cell at 30◦C, a
pH of 7.4 and a reproducibility of ± 30% (Figures 3A,D).
The nearly constant Fe2+/heme levels demonstrated that the
oxidation of Fe2+/hemes by the metal salts, and the reduction
of Fe3+/hemes by the menaquinole pool occurred with the
same rates, leading to a constant electron flux. Rates and
kinetic orders agree well with our earlier reduction experiments
of Ag+ ions by G. sulfurreducens (Chabert et al., 2020),
which led to Ag nanoparticles (AgNPs), as reaction products
(Figure 1). We had measured high binding constants of
Ag+ ions to Met and His of outer membrane cytochromes,
and observed the formation of AgNPs at the outer cell
membrane. In recent cell growth experiments with CrO4

2−

(Gong et al., 2018), Cr3+ reduction products could also be
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FIGURE 6 | Increase of cell concentration and decrease of oxidants [Fe(CN)6]3− and CrO4
2− during G. sulfurreducens respiration in grow medium A, lacking

fumarate, and stating from the lag phase. (A) Linear increase of the bacterial growth with 0.15 mM [Fe(CN)6]3−, R2 = 0.98. (B) Linear increase of the bacterial
growth with 0.05 and 0.03 mM CrO4

2− (insert), R2 = 0.98. (C) Linear CrO4
2− decrease (blue, R2 = 0.99), and linear bacterial growth (brown, R2 = 0.98) of the same

respiration experiment.

detected within the cells, if the bacteria were treated for
several hours with metal salts. Our experiments were finished
within 10–20 min, and we never observed Cr3+ within
the cells (Figure 2B), but to avoid overinterpretation, we
don’t exclude the possibility that some of the CrO4

2− was
reduced inside of the cells even under our different reaction
conditions. This obviously did not change the electron flux rate
(Figure 3A), which is driven by the need for a constant ATP
production (Velten et al., 2007; Bochdansky et al., 2021; Wilson
and Matschinsky, 2021) during G. sulfurreducens respiration
(Figures 6A–C). Interestingly, the same electron flux rates were
also measured in electrochemical experiments on single cells
of G. sulfurreducens (Jiang et al., 2013) as well as Shewanella
oneidensis (Gross and El-Naggar, 2015).

The influence of Fe2+/hemes on electron flux rates was
studied (a) with G. sulfurreducens cells of downregulated
c-cytochromes, (b) with cells in the exponential growth
phase, and (c) with G. sulfurreducens mutants. Decrease
of c-cytochrome concentrations (Figure 5A and Table 1)
was observed in microorganisms that were prepared under
fumarate-respiring conditions at very low FeSO4 concentrations
(medium B). Addition of CrO4

2− ions to these downregulated
cells induced nearly the same reaction rates as experiments
with G. sulfurreducens, grown in medium A (Figure 5B).
This was surprising, as c-cytochromes are the electron
transporting carriers and their decrease should slow down
the electron flux. Obviously, the observed rise of Fe2+/heme
levels from ≤ 5 to 30% compensated the downregulation
of c-cytochromes. Electron flux rates of metal salt induced
respiration, which used G. sulfurreducens cells in the
exponential growth phase, were 4–6 times faster compared
to experiments starting from G. sulfurreducens in the resting
phase (Figures 4C,D). Such an acceleration is reasonable
as the ATP demand increases in the exponential growth
phase, requiring at the same time a faster electron flux,
which was achieved by an increase of Fe2+:/heme levels
in the cytochromes from 5% via 40 to 75% (Figure 4B).
Such a rise of the Fe2+/heme level augments the reductive

power of multiheme cytochromes (Quian et al., 2011;
Liu and Bond, 2012; Santos et al., 2015), and increases
electron transfer rates by the Marcus theory (Marcus, 1993).
It demonstrates the importance of the electron storing
capacities of multiheme cytochromes (Esteve-Núñez et al.,
2008), which can regulate respiration by their redox states.
Our observations are again in accord with electrochemical
experiments, where the redox status of c-cytochromes in
G. sulfurreducens biofilms changed with the applied potential
(Liu et al., 2011). Thus, the Fe2+/heme level is an important
parameter for the optimization of G. sulfurreducens as an
electron-producing source.

The analogous effects of our metal salt induced electron
flux measurements with electrochemical current production of
biofilms at the anode inititated us to measure the reduction rate
of CrO4

2− by G. sulfurreducens mutants, in which OmcBEST was
deleted. Electrochemical measurements on biofilms had shown
(Nevin et al., 2009) that “deletion of OmcS, OmcB and OmcE
had nearly no impact on maximum current production.” This
is in strong contrast to Fe3+ oxide and Fe3+ citrate induced
cell growth experiments. G. sulfurreducens mutants, in which
OmcB, OmcE, or OmcS were mutated out (Leang et al., 2003;
Richter et al., 2011) reduced the cell growth rates dramatically.
Our rate measurements with water-soluble CrO4

2− ions are again
in accord with electrochemical results. Figure 5C demonstrates
that the mutant, in which OmcBEST was deleted, hardly changed
the CrO4

2− reduction time, but the missing outer membrane
cytochromes induced a drastic increase of the Fe2+/hemes level
during the metal salt reduction. It demonstrates that the effect
of decreasing outer membrane cytochromes on the respiration
rate was compensated by an increase of the Fe2+/heme level.
Thus, Fe2+/hemes play a central role in the regulation of electron
flux rates. These measurements stimulate studies to elucidate
the effects of G. sulfurreducens mutations on electron flux rates
in bioelectrochemical measurements compared to cell growth
experiments. An obvious difference between these two techniques
is that in cell growth experiments the cells are several hours in
contact to the oxidizing minerals and the reduced metal ions.
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In contrast, electrochemical experiments with G. sulfurreducens
biofilms on electrodes, as well as the metal salt induced electron
flux measurements, presented in this publication, take only some
minutes. We will check in future work, whether the sensitivity
of mutated cells against strong oxidants is one of the reasons
for the differences between long time cell growth and short time
bioelectrochemical experiments.
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