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Cross feeding between microbes is ubiquitous, but its impact on the diversity 

and productivity of microbial communities is incompletely understood. A 

reductionist approach using simple microbial communities has the potential 

to detect cross feeding interactions and their impact on ecosystem properties. 

However, quantifying abundance of more than two microbes in a community 

in a high throughput fashion requires rapid, inexpensive assays. Here, 

we show that multicolor flow cytometry combined with a machine learning-

based classifier can rapidly quantify species abundances in simple, synthetic 

microbial communities. Our approach measures community structure over 

time and detects the exchange of metabolites in a four-member community 

of fluorescent Bacteroides species. Notably, we quantified species abundances 

in co-cultures and detected evidence of cooperation in polysaccharide 

processing and competition for monosaccharide utilization. We also observed 

that co-culturing on simple sugars, but not complex sugars, reduced microbial 

productivity, although less productive communities maintained higher 

community diversity. In summary, our multicolor flow cytometric approach 

presents an economical, tractable model system for microbial ecology using 

well-studied human bacteria. It can be extended to include additional species, 

evaluate more complex environments, and assay response of communities to 

a variety of disturbances.
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Introduction

Microbes inhabit diverse habitats and play a critical role in biogeochemical cycles, 
industrial biotechnology, and the health of humans, animals, and plants. Deeper insight 
into the ecological rules governing microbial growth, assembly into communities, and 
response to environmental changes will facilitate the design and control of microbial 
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communities that are productive, resilient, and beneficial to their 
habitats. Toward this end, bottom-up, reductionist approaches 
that examine the growth of individual or pairs of microbial 
species have been successfully pursued to elucidate some of those 
ecological rules (Coyte and Rakoff-Nahoum, 2019). In particular, 
pairwise interactions between microbial species have been 
comprehensively investigated and shown to predict higher-order 
microbial structure and dynamics (Friedman et  al., 2017; 
Venturelli et al., 2018). Such interactions can involve resource 
competition, cross feeding, antibacterial defenses, interspecies 
signaling, and alterations of the local abiotic environment (Pierce 
and Dutton, 2022). Still, pairwise interactions are often context-
dependent and may materialize only in the presence or absence 
of additional members in a community (Kelsic et  al., 2015; 
Momeni et al., 2017; Sundarraman et al., 2020). It is therefore 
likely that higher-order (e.g., three- and four-way) interactions 
must be measured to predict or recapitulate overall community 
dynamics with fidelity. Indeed, it has been shown that pairwise 
interactions only predicted the composition of seven-member 
communities with an accuracy of 62.5% while incorporating 
observations of three-species outcomes improved composition 
prediction accuracy to 86% (Friedman et al., 2017). Similarly, 
modeling emergent functions of microbial communities such as 
colonization resistance of pathogens often requires a small 
consortium of three or more microbes (He et al., 2014; Wei et al., 
2015; Hromada et al., 2021). Therefore, reductionist approaches 
that model the growth of multiple species in a community, and 
not simply pairs of microbes, are needed to better understand 
how microbes assemble, interact, and provide ecosystem services.

Several techniques can count multiple unique microbes in a 
defined community, but these methods are often limited by the 
tradeoffs between the size of microbial communities (number of 
unique microbes included), throughput (number of unique 
conditions assayed), taxonomic resolution, and cost. Standard 
microbiological approaches (counting colony-forming units; 
Friedman et al., 2017), fluorescent probe-based imaging (Mark 
Welch et al., 2016), and marker-specific quantitative polymerase 
chain reactions (qPCRs; Mee et al., 2014) remain viable approaches 
for studying microbial ecology but are challenging to scale. For 
example, assessment of several bacteria in a community with 
qPCR requires engineering primers with comparable amplification 
efficiency (Brankatschk et al., 2012). The number of qPCR assays 
also increases linearly with community size unless multiple 
primer-probe pairs are precisely designed for use in multiplex 
qPCR assays (Smith and Osborn, 2009). Further, amplicon 
sequencing such as 16S rRNA gene sequencing can characterize 
diverse microbial communities in a high-throughput fashion but 
lacks taxonomic resolution at the species or strain level (Johnson 
et al., 2019). Metagenomic sequencing that can distinguish species 
or strains can be costly which curtails its use in high-throughput 
screens of microbial interactions. Thus, novel approaches are 
needed to rapidly and economically quantify the absolute 
abundance of at least three unique species in a defined 
microbial community.

Flow cytometry has the potential to address the challenges of 
scaling bottom-up ecological modeling. In flow cytometry, cells 
flow through laser beams one at a time and respond by scattering 
light or emitting light at specific wavelengths based on their 
optical and fluorescence properties (Davey and Kell, 1996; Adan 
et  al., 2017). Using appropriate chemical staining dyes, 
microbiologists have demonstrated that flow cytometry can detect 
many cellular phenotypes including cell viability, Gram status, or 
metabolic activity (Anvarian et al., 2016; Buysschaert et al., 2016; 
Duquenoy et al., 2020). Flow cytometry also can quantify the 
absolute abundance of a specific microbe in a community (Polak 
et al., 2019) or the absolute abundance of all microbes in aquatic, 
soil, or fecal samples (Props et al., 2017; Vandeputte et al., 2017; 
Khalili et al., 2019). By clustering cells based on their optical and 
fluorescence properties, cytometric fingerprinting can also 
quantify the absolute abundance of many different groups of 
microbes in a complex sample (Koch et al., 2013; Koch and Müller, 
2018). Fingerprinting can also broadly trace the ecological 
structure, stability, and function of microbial communities over 
time (Liu et al., 2018). However, in this approach, the identity of 
each group remains unknown without a priori knowledge of the 
cytometric fingerprint of each group based on intrinsic 
autofluorescence properties or downstream sorting of cell clusters 
followed by standard molecular techniques (Jehmlich et al., 2010; 
Zimmermann et al., 2016). Thus, the lack of taxonomic resolution 
by multicolor flow cytometry has limited its adoption in 
microbial ecology.

Multicolor flow cytometry is, however, suitable for bottom-up 
ecological modeling that relies on a synthetic community of 
known, tractable microbes. Natural strain-level heterogeneity in 
morphology is sufficient to distinguish tens of closely related 
species (Buysschaert et  al., 2018) and can be  improved by 
incorporating supervised machine learning that maps cytometric 
fingerprints to defined species (Pereira and Ebecken, 2011; 
Rubbens et al., 2017; Ludwig et al., 2019; Özel Duygan et al., 2020). 
Strain-level heterogeneity can also be artificially introduced by 
engineering microbes with strain-specific fluorescent reporters 
(Tracy et al., 2010). By using multiple fluorescence reporters with 
minimal spectral overlap, multiple unique microbes can 
be  tracked in a complex sample. For example, the absolute 
abundances of three yeast species, encoded with either a red, 
green, or blue fluorescence protein, can be  quantified 
simultaneously using multicolor flow cytometry (Conacher et al., 
2020). To date, however, multicolor flow cytometry has not been 
used in any published studies to track multiple species for the 
purpose of bottom-up ecological modeling.

We therefore aimed to develop an application of multicolor 
flow cytometry capable of distinguishing multiple, closely 
related gut microbes in high-throughput fashion to allow more 
robust, bottom-up ecological modeling. To test the utility of our 
approach in the study of microbial ecology, we focused on cross 
feeding as a case study. Cross feeding is a common ecological 
phenomenon in which microbes consume nutrients that are 
secreted or degraded by other members of the community (Kehe 

https://doi.org/10.3389/fmicb.2022.910390
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Midani and David 10.3389/fmicb.2022.910390

Frontiers in Microbiology 03 frontiersin.org

et al., 2021). As a model microbial community, we chose the 
Bacteroides genus, known in the human gut for its broad ability 
to degrade dietary fiber, facilitating a variety of cross feeding 
interactions (Wexler and Goodman, 2017; Goyal et al., 2018). 
Different Bacteroides species can share nutrients in a nonspecific 
or cooperative manner in which one species digests 
polysaccharides into smaller components that can be  shared 
with other species even at a cost to itself (Rakoff-Nahoum et al., 
2014, 2016; Huus et al., 2021; Murakami et al., 2021). Hence, 
we applied multicolor flow cytometry and machine learning to 
rapidly detect cross feeding interactions between four 
fluorescent Bacteroides species using monocultures and 
co-cultures on individual carbon substrates. We  also tested 
whether resource competition or substrate complexity impacts 
the productivity and diversity of Bacteroides communities. 
Broadly, our approach provides a simple model system for 
microbial ecology using well-studied human microbes that can 
be  expanded to include additional species, evaluate more 
complex environments, and assay response of communities to a 
variety of disturbances.

Results

Multicolor flow cytometry quantitatively 
distinguishes Bacteroides species

Our initial model system comprised six Bacteroides species 
with chromosomally integrated fluorescence reporters. These 
species expressed either one of three levels of green fluorescent 
protein (GFP) expression plus one of two levels of mCherry 
expression (Whitaker et al., 2017); see Supplementary Table 1 for 
description of strains. Confocal microscopy distinguished these 
species at the single cell level with high accuracy (Whitaker 
et al., 2017).

Because each species has a unique fluorescence profile, 
we determined whether flow cytometry could distinguish them 
and accurately quantify their absolute abundances in co-culture 
using four channels or parameters: forward scatter, side scatter, 
green fluorescence, and red fluorescence. Using these parameters, 
multicolor flow cytometry was able to distinguish four of the six 
Bacteroides species (Figure 1). We grew anaerobic monocultures 
of each Bacteroides species for 24 h in rich media and processed 
samples with flow cytometry as described in section Materials and 
methods. We  randomly selected 25,000 events from each 
monoculture and combined them post-processing into a single 
data set. In a bivariate plot of red and green fluorescence, each 
Bacteroides species was characterized by a unique cluster of events 
(or cells) that can be  distinguished from other species 
(Supplementary Figure  1A). However, the green fluorescence 
signals of B. ovatus and B. uniformis significantly overlapped with 
signals of B. eggerthii and B. fragilis, respectively. Discrimination 
of six species in a co-culture therefore required further 
optimization of sample processing and flow cytometry parameters.

To improve mapping of flow cytometry events to individual 
species, we tested additional sample processing steps and focused 
our experiments on species that were most divergent in 
fluorescence. First, because both GFP and mCherry proteins need 
oxygen to fold (Tsien, 1998), we provided longer maturation times 
in atmospheric air to increase the intensity of fluorescence signals 
and separate flow cytometry clusters. Although human gut 
Bacteroides are aerotolerant (Tally et al., 1975), we also processed 
samples at 4°C to diminish any potential physiological responses 
to oxygen. In a four-species community, clusters of B. theta and 
B. vulgatus cells indeed exhibited higher GFP signal intensities 
with overnight maturation (Figure  1) than with 4–6 h of 
maturation (Supplementary Figure 1A). Second, to distinguish 
cells from debris in suspensions, we stained all cultures with cell-
permeant SYTO 40 blue fluorescent nucleic acid stain (Thermo 
Fisher Scientific). After sample acquisition, data are filtered by a 
pre-determined threshold in the blue channel that separates 
stained events from non-stained events. Our final gating strategy 
and instrument configuration are described in Materials and 
methods in the “Flow cytometry of bacterial culture” section. 
Finally, we narrowed our model system by excluding species with 
intermediate expression of GFP because their fluorescence 
overlapped with the fluorescence of species that both did not 
express GFP or highly expressed GFP. Our final model community 
therefore comprised four Bacteroides species: B. vulgatus expressed 
both GFP and mCherry proteins; B. thetaiotaomicron expressed a 
GFP protein; B. fragilis expressed an mCherry protein; and a 
wildtype B. ovatus that did not express either fluorescence protein, 
but instead auto-fluoresced in both channels.

Machine learning accurately predicts 
species identity

In addition to our experimental optimization, we  further 
enhanced the accuracy of our model system using machine 
learning. Manual gating is often the primary strategy for 
quantifying sub-populations of events in a flow cytometry sample, 
but this approach is laborious, prone to human biases, difficult to 
reproduce, and often imprecise (Aghaeepour et  al., 2013). 
We  observed in monocultures that the intensity of GFP and 
mCherry signals changed significantly under different 
experimental conditions (Supplementary Figures 1B,C), including 
the type of the carbon source in the culture media. Such variation 
also made gating at pre-determined thresholds unreliable. To 
overcome the challenges inherent to manual gating, a variety of 
methods have been developed for automating analysis of flow 
cytometry samples using reputed statistical and machine learning 
approaches (Rubbens and Props, 2021). For example, the 
multivariate clustering approach of Gaussian Mixture Models has 
been used for cell population identification and cytometric 
fingerprinting (Ludwig et  al., 2019; Rubbens et  al., 2021). In 
addition, machine learning classifiers such as Random Forests 
have been used to identify known taxonomic identity at the cell 
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level (Rajwa et al., 2008; Rubbens et al., 2017; Özel Duygan et al., 
2020). We therefore developed an ad hoc tool in which Gaussian 
Mixture Models identify and quantify overlapping clusters of cells 
in a sample while Random Forest classifiers determine the 
taxonomic identity of each cluster based on a priori knowledge.

Our approach relied on a three-stage algorithm (see Figure 2 
and Materials and methods for details). In the first stage, we grew 
each Bacteroides species as a monoculture in a variety of different 
culture conditions for a total of 1,056 unique samples. Then, 
we  analyzed these known monocultures with multicolor flow 
cytometry which described each event with five cytometric 
features: forward scatter, side scatter, red fluorescence, green 
fluorescence, and blue fluorescence. Each cytometric sample was 
then analyzed with a multivariate Gaussian mixture model which 
inferred clusters of events in each sample (see Materials and 
methods for inference of the number of clusters) and described 
these clusters by their mean values in each of the five cytometric 

features. In the second stage, these clusters (whose taxonomic 
identity is known) were then fed to a machine learning classifier 
using Random Forests that learns to associate each Bacteroides 
species with the observed distribution of its clusters as described 
by the five cytometric features. In the third stage, we similarly 
identified clusters in co-culture samples (of two or more 
Bacteroides species) with Gaussian Mixture Models and then 
predicted the species identity of these clusters with the Random 
Forest classifier that had been trained in the second stage. Model 
predictions were then used to compute the absolute abundance of 
each of the four Bacteroides species in all co-cultures.

Because we measured the growth of species on each substrate 
with two experimental replicates, we were able to train our model 
on one of those replicates and test the model’s performance on the 
other. We estimated from these tests that our approach had a small 
error rate of 5.9% indicating very high model performance (see 
Materials and methods for details). The most important features 

FIGURE 1

Flow cytometry distinguishes four fluorescent Bacteroides species. Flow cytometry analysis of cellular events (total of 25,000 events per species) 
from four species pooled together post-processing. Species were grown overnight in rich media then washed and incubated in cold aerobic 
conditions for approximately 12 h prior to analysis with flow cytometry. Cellular events were characterized by height of their signals in either green 
(GFP-H) or red (mCherry-H) fluorescence channels. The two-dimensional panel shows contour lines corresponding to boundaries where there is 
a 95%, 90%, 80%, 50%, 20%, 10%, and 5% probability (from outermost to innermost line) for the position of cells in each cluster based on gaussian 
kernel density estimation. Side panels show histograms for the actual count of events either in the red (top) or green (side) fluorescence channel.
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for the model were the intensities of red and green fluorescence 
for each cluster (Supplementary Figure  2A). Prediction error 
ranged between 6.2% and 6.9% for B. ovatus, B. theta, and 
B. vulgatus, but was only 3.4% for B. fragilis 
(Supplementary Figure  2B). Clusters that were incorrectly 
predicted had lower cell counts, lower cluster weights, and lower 
prediction probability than correctly predicted clusters 
(Supplementary Figures  2C–E). We  confirmed that model 
performance increased when data were filtered to remove samples 
with low cell counts (due to poor or no growth), or clusters with 
low weights (due to debris or alternative physiological states; 
Supplementary Figures 2F,G). These patterns suggested that errors 
were biased toward clusters that occur at low abundances in low 
biomass samples. Nonetheless, the final machine learning model 
was trained on all clusters regardless of their cell counts or weights.

In summary, we  developed a multicolor flow cytometric 
approach with a machine learning classifier that can accurately 
track species abundances in a small, synthetic community. By 
using a flow cytometer with an automated plate handler, we can 
rapidly screen our synthetic community for interactions between 
different species under a vast number of conditions.

Growth on limited nutrients to detect 
cross feeding interactions

Having constructed an experimental and computational 
platform for quantifying abundances in a synthetic community of 
Bacteroides species, we next profiled how our community grew in 
a nutrient-limited environment. When a microbial community 
encounters a single carbon substrate, its members may either 
compete for that substrate, which we  refer to as resource 

competition (Ghoul and Mitri, 2016), or share the substrate, 
which we refer to as cross feeding (Smith et al., 2019). We thus 
screened for competition and cross feeding between Bacteroides 
by growing each species individually in monocultures and all 
species collectively in co-cultures in media supplemented with 
only one of 31 carbon substrates for a total of 1,320 samples 
(Figure 2; Supplementary Table 2). We also tested growth of all 
monocultures and co-cultures on rich media as a positive control 
and minimal media as a negative control. At 48 h, cultures were 
serially passaged in fresh media and monitored for an additional 
48 h. All experimental conditions were sampled daily for flow 
cytometry analysis. For each substrate, we defined the “maximum 
monoculture productivity” as the highest concentration (cells per 
ml) reached by any species in monoculture at any of the sampled 
time points and defined the “maximum co-culture productivity” 
as the highest concentration (cells per ml) reached collectively by 
all species in co-cultures at any of the sampled time points. By 
tracking microbial growth on diverse substrates, including 
monosaccharides, disaccharides, and polysaccharides, we could 
further test whether cross feeding behavior was affected by the 
identity and complexity of the carbon source.

Competition for substrates limits 
community productivity but increases 
diversity

To evaluate the impact of substrate complexity on microbial 
productivity, we  broadly compared the productivity of 
monocultures and co-cultures on all 31 substrates. First, 
we  assessed if substrate complexity influenced monoculture 
productivity. Maximum monoculture productivity was 

FIGURE 2

Schematic for experimental, flow cytometric, and machine learning workflows. Study design included monocultures and co-cultures of four 
Bacteroides species on minimal media supplemented with one of 31 carbon substates. At different time points, cultures were sampled, washed, 
stained, then analyzed with flow cytometry. Flow events were filtered based on pre-determined criteria then analyzed with a three-stage machine 
learning algorithm that maps flow cytometry clusters in co-cultures to individual Bacteroides species.
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significantly higher on simple sugars than complex sugars 
(Figure  3A, Bonferroni-corrected Mann–Whitney U-test, 
p < 0.01). To test whether this was a common phenotype among a 
broader set of Bacteroides species, we  reanalyzed a publicly 
available dataset that reported the growth of 354 Bacteroidetes 
isolates, including 328 Bacteroides isolates, from the human and 
animal guts on 45 carbon substrates using spectrophotometry 
(Pudlo et al., 2022). Again, we found that most isolates reached a 
higher average growth yield on simple sugars than on complex 
sugars (Supplementary Figures  3A,B). The higher growth on 
simple sugars suggested that Bacteroides species convert simple 
sugars to biomass more efficiently than complex sugars in short 
batch culture growth. In contrast, we did not observe a significant 
difference in maximum productivity between co-cultures grown 
on simple sugars vs. those grown on complex sugars (Figure 3B). 
In fact, the maximum co-culture productivity on simple sugars 
was lower than the maximum monoculture productivity achieved 
on simple sugars (Figures  3A,B, Bonferroni-corrected Mann–
Whitney U-test, p < 0.01). The lower productivity for co-cultures 
on simple sugars suggested that species may compete for simple 
sugars in a manner that harmed their overall productivity.

Next, we  wanted to classify the co-cultures of all four 
Bacteroides species on each substrate based on whether growth on 
a substrate promoted competition or cross feeding that 
significantly altered productivity. For each substrate, we expected 
that competition could result in co-cultures that yield lower 
abundances than what can be achieved individually by any of the 
members of the community on their own. In contrast, we expected 
that cross feeding could result in co-cultures that yield higher 
abundances than what can be achieved by any of the members of 
the community on their own. In our co-cultures, productivity 
significantly decreased by at least 20 percent when compared to 
monocultures grown on most simple sugars (82% of simple 
sugars) and did not increase for any of the simple sugars 
(Figure  3C). However, co-cultures grown on complex sugars 
displayed fewer decreases in productivity (32% of complex sugars) 
when compared to monocultures and an increase in productivity 
on only one of the complex sugars (Figure 3D). Hence, our data 
suggested that co-culturing on simple sugars showed stronger 
signs of competition than co-culturing on complex sugars.

Because co-cultures grown on complex sugars displayed fewer 
signs of resource competition than co-cultures on simple sugars, 
we  hypothesized that substrate complexity may accordingly 
promote microbial diversity in our model system. Using our flow 
cytometric approach with a machine learning classifier (see 
Materials and methods), we first inferred the absolute abundance 
of each species in co-cultures then estimated community diversity 
using Simpson’s Evenness index. However, our analysis did not 
reveal an association between microbial diversity and substrate 
complexity as we  expected. Instead, we  found that microbial 
diversity was negatively associated with community productivity 
(Logistic Regression, p < 0.001), suggesting that less productive 
communities were more diverse (Figure 3E). In summary, our 
analysis suggested a working model (Figure 3F) in which simpler 

substrates promote a more competitive environment during 
co-culturing which consequently yields less productive 
communities but allows for higher microbial diversity whereas 
complex substrates curtail competition and therefore indirectly 
promote productivity.

Bacteroides species show broad 
consumption of carbon substrates and 
co-cultures were dominated by 
Bacteroides vulgatus

To better understand how co-culturing various Bacteroides 
species affects productivity and microbial diversity, we  next 
analyzed the growth of individual Bacteroides species on the 
variety of carbon sources in our assay. Our analysis thus far 
suggested that different Bacteroides species are more likely to 
compete with one other when co-cultured on simple sugars than 
on complex sugars. These results led us to hypothesize that 
whereas each simple sugar can be  consumed by multiple 
Bacteroides species, complex sugars may only be consumed by 
only one or two species. We therefore analyzed our flow cytometric 
data to quantify the growth of each Bacteroides species on each 
substrate. We classified growth on a carbon source as positive if 
the maximum concentration of a species grown on a particular 
substrate was at least twice as high as its maximum concentration 
in the negative control (minimal media supplemented only with 
water). By this measure, all of the Bacteroides species were able to 
utilize a broad array of simple sugars: 7 substrates (64% of simple 
sugars) were consumed by all four species and the remaining 3 
substrates (36% of simple sugars) were consumed by three species 
each. Similarly, Bacteroides were able to utilize most 
polysaccharides: 13 substrates (65% of complex sugars) were 
consumed by all four species, and 3 substrates (15% of complex 
sugars) were consumed by three species each (Figure  4; 
Supplementary Figure  4). To verify these growth profiles, 
we compared our monocultures to carbon substrate utilization of 
Bacteroides species using publicly-available data from plate reader 
assays (Pudlo et  al., 2022). Our results generally agreed with 
optical density-based assays by Pudlo et  al., but our flow 
cytometry-based data also detected unexpected growth of certain 
species on several polysaccharides including arabinogalactan, 
galactomannan, glucomannan, laminarin, pectin, and xylan 
(Supplementary Figures 3C,D). Because Bacteroides species were 
able to broadly consume both simple and complex sugars, the 
reduced productivity of co-cultures on simple substrates cannot 
be explained by the number of species that could utilize each sugar.

Though Bacteroides were able to broadly grow on both simple 
and complex sugars, we next hypothesized that Bacteroides were 
more competitive on simple sugars than on complex substrates. 
Bacteroides vulgatus had significantly higher growth on the 
simple sugars than the other three species 
(Supplementary Figures  5A,B, Bonferroni-corrected Mann–
Whitney U-test, p < 0.05) but we found no significant differences 
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A B

C D
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FIGURE 3

Competition for substrates lowers community productivity but increases diversity. (A,B) Plots display the “maximum monoculture productivity” and 
“maximum co-culture productivity” on each of the tested simple and complex substrates. Boxplots show the range between the first and third 
quartiles and blue lines indicate medians. Each data point is an average of two experimental replicates. Asterisks indicate an adjusted p-value < 
0.05 for Bonferroni-corrected nonparametric Mann–Whitney U-tests. (C,D) Maximum productivity of monocultures and co-cultures separated by 
simple and complex sugars, respectively. Absolute abundances (cells per ml) in co-cultures that are at least 20% higher or lower than their 
corresponding abundances in monocultures are highlighted with thicker lines and colored either blue or red, respectively. Substrate annotations 
are ordered by abundance values in co-cultures. (E) Scatter plot of community evenness against absolute abundance for all co-culture samples in 
this study. (F) Schematic for a working model of the impact of substrate complexity on microbial interactions, productivity, and diversity. In all 
plots, “M” indicates values in the millions.
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in productivity of the four species when comparing growth only 
on complex sugars. Further, B. theta and B. vulgatus showed 
higher average growth on simple sugars than on complex sugars 
(Bonferroni-corrected Mann–Whitney U-test, p < 0.05). 
Therefore, our results suggested that individual Bacteroides 
species are more competitive on simple sugars than complex 
substrates and that B. vulgatus is significantly more competitive 
on simple sugars relative to other species.

Because the growth yields of Bacteroides species varied on the 
same sugars, we also asked if the community productivity in 
co-cultures could be predicted by the productivity of individual 
species. We  therefore tested for correlations between the 
maximum abundances of each species in co-cultures with the 
maximum total abundances of co-cultures and found that 
B. vulgatus abundance is strongly correlated with the total 
abundances in co-cultures (Bonferroni-corrected spearman’s 
ρ = 0.92, p < 0.001; Supplementary Figure 5C). Indeed, B. vulgatus 
dominated most co-cultures (Figure  5). Because B. vulgatus 
dominated many cultures regardless of substrate complexity, 
we  hypothesized that B. vulgatus may be  the main driver of 
resource competition. We therefore tested for correlation between 
the maximum productivity of B. vulgatus in monocultures against 
the relative change in productivity, defined as ratio of maximum 
co-culture productivity to maximum monoculture productivity, 
and found that B. vulgatus negatively correlated with relative 
change in productivity (Bonferroni-corrected Spearman’s ρ = 0.55, 
p < 0.01; Supplementary Figure 5D) such that co-cultures reached 
lower growth yields on substrates that B. vulgatus consumes well 
and reached higher growth yields on substrates that B. vulgatus 
consumes poorly. Thus, resource competition in our model system 
for simple sugars may have been most strongly influenced by the 
fitness of B. vulgatus.

While B. vulgatus often dominated co-cultures and was the 
primary contributor to maximum community productivity, 
we wondered whether other species could coexist with B. vulgatus 
at time points before, during, or after B. vulgatus dominance. 
We observed that communities growing on simple sugars such as 
cellobiose, fructose, galactose, glucose, and mannose showed 
initial dominance of B. vulgatus followed by coexistence of various 
species (Figure 5). In addition, B. vulgatus initially dominated 
communities growing on glucomannan and inulin, procured from 
Sigma, but these cultures were later dominated by B. theta and 
B. fragilis, respectively, at later time points (Figure  5; 
Supplementary Figure 6). The growth of B. vulgatus on inulin and 
cellobiose was striking because B. vulgatus was unable to grow as 
a monoculture on either of those substrates, which indicated 
potential cross feeding that benefited B. vulgatus in co-cultures. In 
summary, co-cultures were sometimes dynamic such that species 
composition varied over time, but their productivities were mostly 
influenced by B. vulgatus.

Bacteroides vulgatus solely benefits from 
cross feeding on complex sugars

Due to signs of cross feeding by B. vulgatus in our co-cultures, 
we  tested for additional conditions under which any species 
reached a higher biomass in co-cultures than in monocultures, 
even if the overall productivity of co-cultures was not higher than 
productivity of monocultures. We found that B. vulgatus grew to 
higher biomass in co-cultures on eight substrates; B. theta reached 
slightly higher biomass on galactomannan and xylan; and neither  

FIGURE 4

Maximum species concentrations on each tested substrate. For 
each species, heatmaps display the highest abundances (cells per 
ml) observed at any of the sampled timepoints either in 
monocultures or co-cultures. “M” indicates values in the millions.
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B. ovatus nor B. fragilis benefited from co-culturing (Figure 6A; 
Supplementary Figure 5E). Most of the substrates that promoted 
higher growth of B. vulgatus or B. theta are polysaccharides that 
are typically digested by extracellular enzymes released by other 
species in the community (Figure 6A). For example, B. ovatus 
secretes extracellular enzymes known to break down inulin which 

then allows other species, including B. vulgatus, to grow on the 
inulin breakdown byproducts even though B. vulgatus lack the 
requisite digestive machinery themselves (Rakoff-Nahoum et al., 
2016). Indeed, in our assays, B. vulgatus was unable to grow on 
inulin procured from Sigma-Aldrich in monocultures but grew 
substantially in co-cultures particularly at earlier time points 

FIGURE 5

Absolute abundances of Bacteroides species in co-cultures on minimal media supplemented with single carbon substrates. Growth curves display 
absolute abundance of each species at each time point in 34 tested media. Plots include co-cultures on minimal media without a carbon source 
(Water) as a negative control and co-cultures on rich media (mGAM) as a positive control. “M” indicates values in the millions. Parentheses in titles 
indicate either the vendor source (e.g., Sigma or Alfa Aesar), organic source (e.g., starch from rice), or proprietary name (e.g., fructooligo 
saccharides L90). “Total” corresponds to the cumulative concentration (cells per ml) of all species in each sample. Square markers indicate actual 
measurements which are connected by lines and each line corresponds to a unique experimental replicate. Bo, Bacteroides ovatus; Bf, 
Bacteroides fragilis; Bt, Bacteroides theta; Bv, Bacteroides vulgatus.
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(Figures 6B,C). We then verified that B. vulgatus is able to grow on 
the degraded inulin found in the filter-sterilized supernatant of a 
B. ovatus monoculture grown on inulin (Figures 6D,E). Notably, 
we did not see a similar pattern with a different formulation of 
inulin procured from Alfa Aesar. Bacteroides vulgatus was able to 
grow on this formulation of inulin in both monocultures and 
co-cultures (Figure 4). Our results indicate that B. vulgatus is the 
primary species that benefits from co-culturing likely due to 
substrate cross feeding where one species breaks down a complex 
sugar but shares the byproducts with neighboring species.

Discussion

Here, we developed a multicolor flow cytometric approach for 
tracking the abundance of multiple Bacteroides species in a high 
throughput fashion capable of testing a variety of experimental 
conditions. We detected competitive and cross feeding interactions 
between these species and observed the impact of resource 
competition and substrate complexity on the productivity and 
diversity of their communities. Using a model system of four 
Bacteroides species with fluorescent reporters, we  rapidly 
quantified the abundance of each species in co-cultures using 
multicolor flow cytometry with a machine learning classifier. 
Results from monocultures indicated that Bacteroides species were 
individually more productive on simple sugars than complex 
polysaccharides. Yet, productivity of Bacteroides co-cultures on 
simple sugars was significantly curtailed, possibly due to 
heightened competitive abilities of the individual species on 
simple sugars. In contrast, co-culturing on complex sugars showed 
signs of both competitive and cross feeding interactions and 
community productivity was only impacted for select complex 
substrates. Further, B. vulgatus fitness was associated with 
heightened competition such that communities were less 
productive on substrates that B. vulgatus consumed robustly. 
However, lower community productivity in these instances was 
associated with coexistence of multiple Bacteroides species and, 
therefore, higher community diversity. Coexistence was also 
promoted by cross feeding interactions that primarily benefited 
B. vulgatus, which passively consumed nutrients shared by other 
species that actively digested complex polysaccharides.

Although resource competition is ubiquitous, natural 
microbial communities show incredible diversity in nutrient-
limited conditions. A single monosaccharide can support 
microbiotas that are highly diverse and taxonomically rich (Flynn 
et al., 2017; Goldford et al., 2018; Dal Bello et al., 2021). Positive 
interactions between these microbes are typically mediated 
through the sharing or exchange of nutrients (Coyte and Rakoff-
Nahoum, 2019; Smith et al., 2019). Microbes including Bacteroides 
can thus coexist on limited nutrients through cross feeding, 
syntrophy, and cooperation (Rakoff-Nahoum et al., 2014, 2016; 
Ruaud et al., 2020; Pacheco et al., 2021). Substrate complexity can 
further promote coexistence through niche partitioning by 
allowing multiple species to actively consume the same 

polysaccharide (Enke et al., 2019; Brochet et al., 2021). Our results 
in a small, synthetic community confirmed that a rich cross 
feeding network exists between Bacteroides on single carbon 
sources. Furthermore, tradeoffs may be embedded within this 
network. While coexistence on simple sugars is possible, our data 
suggest overall community productivity can be  limited by 
competition. By contrast, cross feeding on complex sugars allows 
for coexistence without negatively impacting 
community productivity.

In our Bacteroides model system, the single species B. vulgatus 
was a common driver of both resource competition and cross 
feeding. By contrast, previous metabolic profiling suggested that 
B. ovatus tends to be a versatile polysaccharide degrader while 
other Bacteroides species such as B. fragilis, B. thetaiotaomicron, 
and B. vulgatus each degrade a more limited set of polysaccharides 
(Pudlo et al., 2022). Still, our findings are consistent with reports 
that multiple Bacteroides species, including B. vulgatus, can 
facilitate as well as benefit from cross feeding (Rakoff-Nahoum 
et al., 2014). Our tests suggested that, when cultured with other 
Bacteroides species, B. vulgatus was able to grow on substrates 
including fructooligosaccharides, galactomannan, inulin, and 
starch, although it poorly grew on those substrates in 
monocultures. We  confirmed that B. vulgatus grew on inulin 
because other species released extracellular enzymes that degrade 
inulin into components that B. vulgatus then consumed. In several 
instances, B. vulgatus dominated co-cultures on substrates that it 
cannot individually consume even when other species were 
limited to low absolute abundances. Although these other species 
were low in abundance, it is possible that they released functional 
enzymes that supported B. vulgatus growth. Bacteroides previously 
demonstrated an inverse relationship between growth rate and 
enzyme activity such that rates of polysaccharide degradation 
were higher at slower growth (Macfarlane et al., 1990). Still, our 
results indicate that the ecological patterns observed in short 
batch cultures present a snapshot of a dynamic interplay between 
species when grown in community. For example, we  saw that 
B. vulgatus initially dominated co-cultures on inulin but B. fragilis, 
which can directly consume inulin, bloomed over time, and 
eventually dominated the co-culture. While nutrient sharing by a 
species may initially constitute a fitness cost, the public goods 
producer, such as B. fragilis, may have the competitive advantage 
in the long term over cheaters or cross-feeders. Our multicolor 
flow cytometry approach can be applied to future experiments to 
explore why, and over what time-scales, B. vulgatus promotes 
resource competition and dominates mixed 
Bacteroides communities.

Our data indicate that flow cytometry-based growth assays for 
measuring bacterial abundance can complement traditional 
methods for measuring microbial growth. Our results broadly 
agree with published reports of Bacteroides substrate utilization 
(Desai et al., 2016; Pudlo et al., 2022) but also suggest that that the 
ability of Bacteroides to grow on certain polysaccharides may still 
be underestimated in the field. Differences in substrate chemistry, 
bacterial growth protocol, and detection method may explain why 
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our data slightly deviate from previously published findings. For 
example, resource utilization by Bacteroides has often been tested 
by cells harvested in stationary phase, diluted, pre-cultured on 
minimal media supplemented with glucose, and then inoculated 
into minimal media with test substrates (Desai et al., 2016; Pudlo 
et  al., 2022). By contrast, cross feeding by Bacteroides was 
heightened by cells harvested during their exponential growth 
(Rakoff-Nahoum et al., 2014), and, in our preliminary studies, all 
four species in our model showed more rapid, robust, and similar 
growth yield on sucrose in contrast to simple sugars such as 
fructose and glucose. Therefore, we  tested resource utilization 
with cells harvested in mid-logarithmic phase that had been 
pre-cultured on minimal media supplemented with sucrose. The 
choice of carbon source in the pre-culture may be  significant 
because Bacteroides respond to simple sugars such as glucose by 
silencing a regulator involved in polysaccharide utilization and 
colonization (Rakoff-Nahoum et al., 2014). However, the most 
significant difference between our study and previous reports of 
Bacteroides growth may be  due to strengths of our detection 
method. Flow cytometry may be  a more sensitive method of 
quantifying growth because it measures growth at the level of 
individual cells whereas spectrophotometric methods only 
estimate bulk growth based on optical density (Adan et al., 2017). 
Further, flow cytometry can easily distinguish between live and 
dead cells if samples are stained with a live/dead stain at the time 
of collection (Buysschaert et al., 2016; Duquenoy et al., 2020). The 
accuracy of spectrophotometry is also sometimes limited to a high 

detection limit and a small optical range which is further 
constrained by the background turbidity of the media (McGoverin 
et al., 2021). Fibers with low solubility such as laminarin and xylan 
(Guo et  al., 2017) can alter the opacity of media and thus 
complicate the accurate detection of microbial growth (Wang 
et  al., 2010). Indeed, the limitations of spectrophotometry for 
detecting growth on diverse substrates motivated our flow 
cytometric approach for quantifying Bacteroides growth.

Our technique should be particularly useful in bottom-up 
ecological modeling with aero-tolerant bacterial species in 
synthetic communities. Aerotolerant species are ideal for these 
experiments because exposure to atmospheric levels of oxygen is 
not toxic, and incubation for several hours at atmospheric air is 
sufficient to allow fluorophore folding anoxically. Also, as an 
added advantage, our approach requires minimal sample 
processing prior to flow cytometry. Unlike molecular or 
sequencing methods, this method does not require extracting, 
amplifying, and purifying DNA, which allowed us to rapidly 
analyze a total of 1,620 samples within 24 h of the completion of 
our growth assays While an experiment of this scale could have 
been analyzed with sequencing, our flow cytometric approach is 
significantly more efficient (all samples were processed with 24 h 
of collection) and less expensive (costs are estimated at $3.30 per 
sample if using a university flow cytometry facility) utilizing fewer 
reagents and less human labor. Further, our technique inherently 
estimated the absolute abundance of species without any 
additional processing such as DNA spike-ins (Stämmler et al., 

A B C
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FIGURE 6

Bacteroides vulgatus is the primary beneficiary of cross feeding on complex sugars. (A) Lines plot the differences in the maximum abundances 
(cells per ml) of each of the Bacteroides species on each substrate in monocultures vs. co-cultures. Species abundances in co-cultures that are at 
least 20% higher than their corresponding abundances in monocultures are highlighted with thicker lines and annotated on the right side of the 
plot. Substrate annotations are ordered by abundance values in co-cultures. (B,D) Abundances in monocultures and co-cultures on minimal 
media supplemented with inulin. (C,E) Abundances in monocultures and co-cultures on minimal media supplemented with conditioned media 
(CM) from the growth of Bacteroides ovatus on inulin. In all plots, “M” indicates values in the millions.
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2016) or qPCR analysis. In future experiments, we plan to further 
evaluate and improve the accuracy of our approach using mock 
community experiments, benchmarking against alternative robust 
species counting approaches (e.g., fluorescence imaging). Our 
flow cytometry approach can also be expanded to track more than 
four species. Recent dramatic increases in the number of 
fluorochromes, the number of fluorescence detectors, and 
embedded image-based analysis have facilitated flow cytometry 
experiments with dozens of parameters (McKinnon, 2018; Ugawa 
et  al., 2021; Schraivogel et  al., 2022). Our approach can thus 
be  easily scaled to include additional species, evaluate more 
complex environments, and assay response of communities to a 
variety of disturbances. Altogether, these advancements will 
facilitate bottom-up ecological modeling that can test important 
ecological principles of how microbial communities assemble and 
interact under a variety of conditions in an efficient, high-
throughput manner.

Materials and methods

Growth media

Bacteroides species were grown either on Blood Agar Plates 
(Hardy Diagnostics), a modified Gifu Anaerobic Medium 
(mGAM), or a defined minimal medium. mGAM is a Gifu 
Anaerobic Medium (HiMedia Laboratories) with 1% w/v hemin 
and 5% w/v menadione (Rettedal et al., 2014). These additional 
micronutrients of iron and vitamin K3 improve the cultivation of 
several Bacteroides species (Gibbons and Macdonald, 1960). The 
minimal medium was made as previously described (Villa et al., 
2020). One liter of minimal medium contained 100 mM KH2PO4 
(pH 7.2), 15 mM NaCl, 8.5 mM (NH4)2SO4, 4 μΜ L-cysteine, 1.9 
μΜ hematin, 200 μΜ MgCl2, 1.4 μΜ FeSO4•7H2O, 50 μΜ CaC2, 
1 μg mL−1 vitamin K3. Minimal medium solution was 
supplemented with 5% v/v of vitamins (ATCC MD-VS), 5% v/v 
Trace Minerals (ATCC MD-TMS), 50% v/v of 1:1 
Purines:Pyrimidines solutions (Sigma), and 100% of v/v MEM 
Amino Acids solutions without L-glutamine (Sigma AA-5550), 
brought to final pH of 7.2, filter sterilized (0.4 μm pore size), and 
stored in the dark at room temperature.

Bacterial strains and preparation

List of strains and expected fluorescence proteins are reported 
in Supplementary Table  1. We  acquired strains from the 
Sonnenburg lab (Stanford University), who engineered reference 
Bacteroides strains (ATCC) by inserting chromosomally integrated 
fluorescence reporters (Whitaker et al., 2017). Frozen glycerol 
stocks of Bacteroides were thawed for ~30–60 min, streaked on 
Blood Agar Plates, then grown overnight for ~48 h at 37°C 
anaerobically (85% N2, 10% CO2, 5% H2) in a vinyl anaerobic 
chamber (Coy Laboratory Products). Strains were subcultured 

and passaged twice on agar using the same conditions before any 
of the experiments included in this manuscript.

Bacterial growth for carbohydrate 
utilization assays

For bacterial growth, all consumables and reagents were 
pre-reduced in an anaerobic chamber before use for a minimum 
of 2 h. Solutions for each carbon substrate in Supplementary Table 1 
were prepared as 1% w/v stocks in purified water (Millipore  
Milli-Q). Deep  96-wells were arrayed with 300 μl of 1% w/v 
carbon substrate stocks, transferred to the anaerobic chamber, and 
allowed to equilibrate for at least 2 h. Bacterial cell suspensions 
were prepared by swabbing colonies from agar plates into 2 ml of 
liquid mGAM. Cultures were incubated for ~6–8 h at 37°C in 
14 ml round-bottom tubes inside an anaerobic chamber. Cultures 
were then washed once in minimal medium by centrifugation at 
12,000 ×g for 2 min (Eppendorf MiniSpin), resuspended in 2 ml 
minimal medium supplemented with 0.5% w/v sucrose, and 
anaerobically grown for 24 h at 37°C. Washing, including 
centrifugation, was performed inside the anaerobic chamber. To 
estimate bacterial growth, absorbance values for 200 μl samples 
were measured at 600 nm using a plate reader (CLARIOstar, BMG 
Lab Tech Inc.). Based on estimates of bacterial growth, bacterial 
cultures were washed twice in minimal medium and diluted to an 
optical density of approximately 0.1  in twice-concentrated 
minimal medium. For monocultures, these cell suspensions that 
were diluted to an optical density of 0.1 were used to inoculate 
corresponding wells in the 96-well plate. For co-cultures, a 14 ml 
of cell suspension was first prepared by mixing 3.5 ml from the cell 
suspensions of each of the species, resulting in an equal volume 
mixture of all four Bacteroides species, which was subsequently 
used to inoculate corresponding wells in the 96-well plate. Cell 
suspensions of 300 μl were then added to appropriate wells in the 
96-well plates bringing the final concentration of carbon substrates 
to 0.5% w/v and starting optical density of cells to 0.05. Volumes 
of 50 μl of mineral oil was added to each well to prevent 
evaporation of culture. Plates were incubated at 37°C for 48 h in 
the anaerobic chamber. Samples were collected at 24 and 48 h by 
mixing cultures with pipetting up-and-down prior to transferring 
200 μl from each well to another 96-well plate for downstream 
sample processing. At 48 h, cultures were then restarted by diluting 
cultures into sterile media. In particular, deep 96-well plates were 
pre-arrayed with 300 μl of twice-concentrated minimal medium 
mixed with 300 μl of 1% w/v carbon substrate solutions. Volumes 
of 30 μl of bacterial culture at 48 h were mixed by pipetting 
up-and-down into the new wells for a final seed ratio of 1:20 and 
carbon concentration of approximately 0.5% w/v. Samples were 
collected at 72 and 102 h by mixing cultures with pipetting 
up-and-down prior to transferring 200 μl from each well to 
another 96-well plate for downstream sample processing. Each 
growth condition, i.e., culture of a specific Bacteroides species or 
co-culture on a carbon substrate, was repeated in duplicates. As a 
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negative control, 300 μl of twice-concentrated minimal medium 
(no cells in suspension) was mixed with equal volume of twice-
concentrated 1% w/v carbon substrate solution.

Flow cytometry of bacterial cultures

Samples of 200 μl from carbon substrate utilization assays 
were transferred into 1.5 ml microfuge tubes prefilled with 800 μl 
of phosphate buffer saline (PBS). Tubes were centrifuged at 
10,000 ×g for 4 min at 4°C. Supernatant was decanted without 
disturbing the pellet and discarded. Pellets were resuspended with 
1 ml of cold filter-sterilized PBS, vortexed for at least 5 s, and 
incubated overnight at 4°C, which allows sufficient time for 
oxygen-dependent folding of both GFP and mCherry proteins 
(Tsien, 1998). Tubes were then centrifuged at 10,000 ×g for 4 min 
at 4°C. Supernatant was decanted without disturbing the pellet 
and discarded. Pellets were resuspended with 1 ml of 200 μl cold 
filter-sterilized PBS mixed with 3 μM SYTO 40 blue fluorescent 
nucleic acid stain (Thermo Fisher Scientific), vortexed for at least 
5 s, and transferred to 96-well plates. Flow cytometry only 
recorded events in a 3 μl sample from each well in these plates.

Flow cytometry of bacterial suspensions was performed with a 
MACSQuant VYB (Militenyi Biotec) equipped with an automated 
multi-well plate handler. Fluorescence was excited at 488 nm and 
monitored using B1 (520/50) nm channel for GFP fluorescence, 
excited at 561 nm and monitored using Y2 (615/20 nm) channel for 
mCherry fluorescence, and excited at 405 nm and monitored using 
V1 (450/50 nm) channel for SYTO 40 fluorescence. Parameters of 
forward (561/10 nm) and side (561/10 nm) scatter were estimated 
by excitation at 561 nm. For data recording, we set area of the SSC 
signal as the primary trigger with a threshold of 1 arbitrary unit 
and area of the FSC signal as the secondary trigger at a threshold 
of 1 arbitrary unit. To filter out background events that can 
be attributed to instrumental noise, disintegrated cells, or media 
particulates, we only retained events with nonzero signals in all 
channels and a blue fluorescence signal in the V1 channel above a 
threshold of 450 arbitrary units which was optimized for our 
acquisition settings. The total count of events for each sample was 
the number of events that remained after applying these thresholds.

Inference of species relative abundances 
from flow cytometry data

Flow cytometry analysis of a bacterial monoculture typically 
results in a single cluster of events in the two-dimensional space 
of green and red fluorescence channels. The expected location 
of this cluster depends on whether the respective bacteria 
encode GFP or mCherry. While mCherry and GFP proteins are 
chromosomally integrated in certain bacteria, these proteins 
may not properly fold or fully mature, or may partially 
disintegrate at the time of measurement, due to either 

experimental or physiological conditions (e.g., cellular growth 
stage). Therefore, flow cytometry analysis may detect more than 
one cluster for each monoculture. For example, flow cytometry 
events of B. vulgatus, which encodes both GFP and mCherry 
proteins, can fall into one of four clusters depending on the 
fluorescence activity of each individual cell as follows: cells that 
are positive for GFP and mCherry; cells that are GFP positive; 
cells that are mCherry positive, and cells that are negative for 
both proteins. Accordingly, monocultures from distinct species 
can yield flow cytometry clusters that overlap in the 
two-dimensional space of green and red fluorescence. We could 
not distinguish such flow cytometry clusters from distinct 
species by linear gating. To address this, we  implemented a 
three-stage algorithm that (1) groups events into clusters using 
Gaussian Mixture Models, (2) learns the expected cluster 
locations for each species based on monocultures, and (3) maps 
each cluster in a co-culture to a species using the model trained 
on monocultures.

Stage 1: Within-sample clustering
For each experimental sample, we randomly selected 10,000 

events and split them into a training and testing set in an 80:20 ratio. 
We ran a Gaussian Mixture Model (GMM) on the five variables 
describing each flow cytometry event: side scatter (SSC-H), forward 
scatter (FSC-H), green fluorescence (GFP-H), red fluorescence 
(mCherry-H), and blue fluorescence (SYTO-H), where H indicates 
height of the corresponding signal. To identify the optimal number 
of clusters for each sample, we trained multiple GMM models on 
each training set using a different number of clusters for each 
model. For B. ovatus, B. fragilis, and B. theta, we expected either 1 
or 2 clusters; for B. vulgatus, we expected between 1 and 4 clusters; 
and for the four-species co-cultures, we set an upper limit of 10 
clusters accordingly. For sterile media controls with at least 100 
events, we  only expected one cluster. We  then evaluated these 
multiple models by predicting labels of samples in the testing set 
and computing the Bayesian Information Criterion (BIC) as a proxy 
for GMM model fit. The optimal number of clusters corresponded 
to the GMM model that maximized the BIC on the testing set. 
We then re-trained the GMM with the optimal number of clusters 
on all sampled events (training and testing sets combined). For each 
sample, the final output of this stage is a set of predicted clusters, 
each of which is described by the mean vector and covariance 
matrix for the five variables used in clustering. In addition, GMMs 
assigned weights to each cluster which corresponded to the relative 
contribution of each cluster to the total number of sampled events.

Stage 2: Model learning
In this stage, we trained a Random Forests (RF) model that 

learned the unique characteristics of the set of clusters belonging 
to each species. Because all experimental conditions were repeated 
in duplicate, we used one of those replicates for training the RF 
model and one for testing it. For the training set, each sample had 
already been mapped to the appropriate set of clusters using 
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GMMs and its label (species identity) was known because each 
culture was seeded with a single bacterial species. An RF classifier 
using 1,000 trees was thus trained and then tested on the 
second replicate.

Stage 3: Model prediction
We applied the trained RF classifier on the co-culture samples. 

In particular, the RF classifier predicted species identity for each 
cluster in a sample. After assigning all clusters in a co-culture to 
species, the sum of weights of clusters assigned to each species 
corresponded to its relative abundance in the co-culture.

Inference of species absolute 
abundances from flow cytometry data

Using volumetric cell counting, we injected a fixed volume 
of 3 ul from each sample into the flow cytometer and then 
applied our gating strategy to count cells in this fixed volume. 
Next, we normalized these cell counts by volume to estimate 
the absolute abundance expressed as cells per ml. We  also 
multiplied these estimated absolute abundances by a correction 
factor of five since all samples were diluted 5-fold prior to flow 
cytometry. We also applied this approach to duplicate sterile 
samples of each media to estimate background events that may 
be falsely labeled as cells. For monocultures, we corrected the 
absolute abundances of cells by simply subtracting the 
estimated absolute abundances of background events in sterile 
media. For co-cultures, however, background events bias 
absolute abundances in a species-specific manner because 
background events can display autofluorescence. Therefore, 
we first estimated the absolute abundances of species in each 
sterile media as described in the previous section, then 
subtracted the absolute abundances of species-specific 
background events from the absolute abundances of each 
species in co-cultures.

Statistical analysis

Univariate statistical tests with the Mann–Whitney U, and 
Spearman’s ρ were performed with “scipy.stats.mannwhitneyu” 
and “scipy.stats.spearmanr” functions, respectively. p-values 
were adjusted for multiple comparisons with the Bonferroni-
Hochberg procedure. For flow cytometry plots, Gaussian kernel 
density estimation was performed using scipy.stats.gaussian_
kde. We  performed linear mixed effects model analysis to 
determine the effect of different variables on community 
diversity using “R” version 4.0.2. p-values were obtained by 
likelihood ratio tests comparing the full model (Simpson’s 
Evenness ~ log10(Community Productivity) + Substrate 
Complexity +1|Timepoint) with reduced models and were 
performed with the “anova” function in the “lme4” package. 

Comparison with reduced models determined that substrate 
complexity does not affect diversity. Correlation between 
community productivity and diversity were assessed with logistic 
regression using the “glm” function with a “gaussian” family and 
“logit” link.
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SUPPLEMENTARY TABLE 1

List of bacterial strains used in this study.

SUPPLEMENTARY TABLE 2

List of carbohydrates or supplements used in growth assays in this study. 
NA indicates “Not Applicable.”

SUPPLEMENTARY FIGURE 1

Flow cytometry distinguishes multiple fluorescent Bacteroides species. 
(A) Flow cytometry analysis of events (total of 25,000 events per species) 
from six species pooled together post-processing. Species were grown 
overnight in rich media then washed and incubated in aerobic conditions 
for 6 hours prior to analysis with flow cytometry. Cellular events were 
characterized by height of their signals either in green (GFP-H) or red 
(mCherry-H) fluorescence channels. The two-dimensional panel shows 
contour lines corresponding to boundaries where there is a 95%, 90%, 
80%, 50%, 20%, 10%, and 5% probability (from outermost to innermost line) 
for the position of cells in each cluster based on gaussian kernel density 
estimation. Side panels shows histograms for the actual count of events 
either in the red (top) or green (side) fluorescence channel. (B) Flow 
cytometry clusters in monoculture samples exhibited variation in their 
fluorescence intensities. Here, each data point is a cluster centroid which 
corresponds to the mean intensity of GFP and mCherry for all events in a 
cluster. Clusters correspond to monocultures sampled at four different 
time points (24, 48, 72, and 102 hours) and grown on 34 different media 
conditions used in this study. For each monoculture sample, we only show 
the primary cluster that corresponds to the cluster with the highest weight 
(as estimated by Gaussian Mixture Models). (C) Two-dimensional flow 
cytometry histograms for monoculture of B. vulgatus grown on minimal 
medium supplemented with fructose. Here, multiple clusters can 
correspond to cells from the same monoculture as seen for 24 hours and 
48 hours, and centroids of these clusters can shift over time.

SUPPLEMENTARY FIGURE 2

Random Forest model assigns species identity to flow cytometric clusters 
with high accuracy. (A) Mean and standard deviation for the importance 
of features used by the Random Forest classifier as estimated by a 
permutation test (“permutation_importance” function in the “inspection” 
module of “scikit-learn” version 0.24.0). (B) Plot shows counts and 
directions of prediction errors for each species. Arrows indicate direction 
of errors from the true species label to the incorrect species label. 
Thickness of each arrow is proportional to the count of corresponding 
errors which are also written adjacent to the arrows. Bacteroides fragilis 
had the lowest prediction error while B. vulgatus had the highest number 
of errors but it also had the highest number of clusters in the testing data 
set. Percentages in the titles indicate proportion of species-specific labels 
that were incorrectly labeled. (C-E) Violin plots describe differences 
between clusters that were correctly and incorrectly labeled in hold-out 
validation. Clusters that were correctly predicted (C) tended to belong to 
samples with lower concentrations (cells per ml), (D) had lower weights 
(which has a range of 0-1), and (E) had lower prediction probability. 
Differences in the distributions of each parameter were tested using the 
nonparametric Mann-Whitney U statistic. *** indicates that Bonferroni-
corrected P-values were less than 0.001. (F-G) For evaluating the 
performance of the Random Forest models, clusters were excluded from 
model testing and training based on either (F) their cluster weight or 
(G) the total concentration (cells per ml) of their parent sample. Learning 
curves show how the performance of a random forest classifier changes 
based on adjusting the thresholds for these two criteria. Right vertical 
axes of these plots indicate the impact of filtering clusters based on either 
criterion on the sample size (i.e., total number of clusters included in both 
testing and training data sets) which is plotted in red.

SUPPLEMENTARY FIGURE 3

Comparison of monoculture assays between flow cytometry-based 
measurements in this work and spectrophotometry-based measurements 
by Pudlo et al. (A) Scatter plot for the average species species productivity of 
Bacteroides isolates on 11 and 20 polysaccharides based on flow cytometric 
assay used in this study. Colors indicate species: B. ovatus (blue), B. fragilis 
(red), B. thetaiotaomicron (green), B. vulgatus (gold). (B) Scatter plot for the 
average species productivity of Bacteroides isolates on 15 monosaccharides 
and 30 polysaccharides based on spectrophotometric assays by Pudlo et al. 
Here, we color data points belonging to the parental type strains for the 
isolates used in this study. Circles that are above the dashed line correspond 
to isolates that had higher average growth on monosaccharides than on 
polysaccharides. Averages were computed only on substrates that 
supported the growth of each isolate. (C,D) Comparison of the results of the 
growth assays in this study and assays in Pudlo et al. (2022). Pudlo and 
colleagues displayed growth data in heatmaps after normalizing the optical 
density values for each species such that the growth on the substrate that 
provided maximum total growth for each strain was set to 1. To fairly 
compare growth data in our manuscript to the growth data in Pudlo et al. 
(2022), we applied a similar normalization scheme. Therefore, (C) displays 
maximum absolute abundances which were normalized for each species to 
a range of 0 to 1, and (D) displays optical density values which were 
normalized for each species to a range of 0 to 1. In all plots, “M” indicates 
values in the millions.

SUPPLEMENTARY FIGURE 4

Absolute abundances of Bacteroides monocultures on minimal media 
supplemented with single carbon substrates. Growth curves display the 
median absolute abundance of each species at each time point in 34 
tested media. Grid plot includes co-cultures on minimal media without a 
carbon source (Water) as a negative control and co-cultures in rich 
media (mGAM) as a positive control. “M” indicates values in the millions. 
Parentheses in the title indicate either the vendor source (e.g., Sigma or 
Alfa Aesar), organic source (e.g., starch from rice), or proprietary name 
(e.g., fructooligosaccharides L90).

SUPPLEMENTARY FIGURE 5

Bacteroides vulgatus dominates co-cultures, impacts community 
productivity, and benefits from cross feeding. (A,B) The maximum 
abundances for each species split by substrate complexity in 
monocultures and co-cultures respectively. (C) Plot shows the maximum 
abundance of B. vulgatus in co-cultures against the maximum total 
abundance of the four-member community in co-cultures. (D) Plot 
shows the maximum abundance (cells per ml) of B. vulgatus in 
monocultures against the relative change in productivity, defined as the 
ratio of “maximum co-culture productivity” to “maximum monoculture 
productivity,” for each substrate. (E). Plot shows the maximum 
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productivity (cells per ml) of each species in co-cultures vs. 
monocultures for all substrates. Shaded blue and red regions indicate 
growths in co-cultures that are at least 20% higher or lower than 
monocultures respectively. Colors indicate species: B. ovatus (blue),  
B. fragilis (red), B. thetaiotaomicron (green), and B. vulgatus (gold).

SUPPLEMENTARY FIGURE 6

Absolute abundances of Bacteroides species in co-cultures on 
minimal media supplemented with single carbon substrates. 

Heatmaps display the average abundance of each species in co-
cultures. For each substrate, the left heatmap displays the relative 
abundances of each species at each time point, and the right 
heatmap displays the absolute abundance of the whole community 
at each time point. Absolute abundances correspond to the total cell 
concentration (CC) in cells per ml and “M” indicates values in the 
millions. Heatmap cells highlighted with “X” correspond to 
missing samples.
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