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Objective: Elemene emulsion injection (EEI) has been approved for

interventional and intracavitary chemotherapy in treating malignant ascites in

China, but few studies have focused on the e�ects of EEI on gut microbiota

and metabolites. In this study, we investigated the e�ects of EEI on the fecal

microbiota and metabolites in healthy Sprague-Dawley (SD) rats.

Methods: We randomly assigned 18 male SD rats to three groups (n =

6 in each group): the sham group (group S), the low-concentration EEI

group (L-EEI), and the high-concentration EEI group (H-EEI). The L-EEI and

H-EEI rats were administered 14 days of consecutive EEI, 20 mg/kg, and

40 mg/kg intraperitoneally (IP). Group S rats were administered the same

volume of normal saline. On day 14, each animal’s feces were collected for

metagenomic sequencing andmetabolomic analysis, and the colonic contents

were collected for 16S rRNA sequencing.

Results: EEI could alter the β-diversity but not the α-diversity of the fecal

microbiota and induce structural changes in the fecal microbiota. Di�erent

concentrations of EEI a�ect the fecal microbiota di�erently. The e�ects

of di�erent EEI concentrations on the top 20 bacteria with significant

di�erences at the species level among the three groups were roughly

divided into three categories: (1) A positive or negative correlation with

the di�erent EEI concentrations. The abundance of Ileibacterium Valens

increased as the EEI concentration increased, while the abundance of

Firmicutes bacteria andClostridium sp. CAC: 273 decreased. (2) Themicrobiota

showed a tendency to increase first, then decrease or decrease first, and

then increase as EEI concentration increased—the abundance of Prevotella

sp. PCHR, Escherichia coli, and Candidatus Amulumruptor caecigallinarius

tended to decrease with L-EEI but significantly increased with H-EEI. In
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contrast, L-EEI significantly increased Ruminococcus bromii and Dorea sp.

5–2 abundance, and Oscillibacter sp. 1–3 abundance tended to increase,

while H-EEI significantly decreased them. (3) L-EEI and H-EEI decreased the

abundance of bacteria (Ruminococcaceae bacterium, Romboutsia ilealis, and

Staphylococcus xylosus). Fecal metabolites, like microbiota, were sensitive

to di�erent EEI concentrations and correlated with fecal microbiota and

potential biomarkers.

Conclusion: This study shows that intraperitoneal EEI modulates the

composition of rat fecal microbiota and metabolites, particularly the gut

microbiota’s sensitivity to di�erent concentrations of EEI. The impact of

changes in the microbiota on human health remains unknown, particularly

EEI’s e�cacy in treating tumors.

KEYWORDS

elemene emulsion injection, fecal microbiota, metabolomics, 16S rRNA,metagenome

Introduction

Elemenes are sesquiterpene compounds derived from the

traditional Chinese medicinal plant, Curcuma wenyujin.

Elemene emulsion injection (EEI) contains the active

ingredients β-, γ-, and δ-elemene and excipients such as

soybean lecithin, cholesterol, ethanol, disodium hydrogen

phosphate, and sodium dihydrogen phosphate. The National

Medical Products Administration of China has approved it

for interventional and intracavitary chemotherapy and for

treating cancerous pleural ascites. Furthermore, combining

EEI with conventional radiotherapy or chemotherapy could

improve their therapeutic effects (Jiang et al., 2017; Tong et al.,

2020) against lung cancer (Chen et al., 2020), nasopharyngeal

cancer, brain tumors (Liu S. et al., 2020), bone metastases,

and others (Cai et al., 2021) while decreasing their adverse

effects (Chen et al., 2020; Liu S. et al., 2020; Hashem et al.,

2021).

Elemene-containing hyperthermic intraperitoneal

chemotherapy has been used to treat peritoneal metastatic

advanced gastric cancer with minimal myelosuppression

(Zheng et al., 2014). Recent studies have shown that gut

microbiota is critical to human health (Markowiak and

Slizewska, 2017; Singh et al., 2017; Sommer et al., 2017;

Gentile and Weir, 2018). Natural selection and adaptation

maintain the microbiota-host-environment system in dynamic

equilibrium, creating mutual constraints (Smits et al., 2013).

Studies have linked gut microbiota to gastric and breast cancers

(Chen et al., 2019). In addition, long-term antibiotic use

can change gut microbes, increasing the risk of colorectal

and prostate cancers (Boursi et al., 2015a,b; Dik et al., 2016;

Ianiro et al., 2016; Chen et al., 2019). Elemene is an anticancer

drug with unknown effects on the gut microbiota. The only

study showing that β-elemene improves brain metabolites

in obese C57BL/6 male mice fed a high-fat diet (HFD) and

reversed HFD-induced changes in gut bacterial composition

and content in mice (Zhou et al., 2021). Based on the above

evidence, it is not yet possible to link the neuroprotective

effect of EEI to the intestinal microbiota, nor can it be proved

that there is a causal relationship between gut microbiota and

EEI on neuroprotective effects. Likewise, it is not yet known

whether the regulation of the gut microbiota would affect

the therapeutic effect of EEI on tumors and the protective

effect on nerves. Therefore, this study used meta-genomic

sequencing and untargeted metabolomics techniques to explore

the effects of different EEI concentrations on the rat fecal

microbiota and metabolites and provide evidence that EEI

administration could regulate the microbiota and metabolites

in the rat.

Materials and methods

Animals

Eighteen male Sprague-Dawley (SD) rats (weighing 220–

250 g, aged 9–11 weeks) were acquired from the Air Force

Medical University under certificate number SCXK (Shaan)

2019-001. The rats were kept in separate cages, each with

three rats. A 12-h light/dark cycle was implemented in the

rearing environment, with a temperature of 20–25 ◦C and

a relative humidity of 50–65%. The Animal Welfare and

Ethics Committee, Laboratory Animal Center, and Air Force

Military Medical University (IACUC-20220522) approved this

study. All animal procedures were performed following the

US National Institutes of Health’s (NIH) Guide for the Care

and Use of Laboratory Animals (NIH publication no. 85–

23, revised).
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Materials

EEI was bought from Huali Jingang Pharmaceutical Co.,

Ltd. (Liaoning, China). According to literature reports, the

detection data of 24 batches of samples showed that the

content of β-syringene was 6.0 to 8.4%, with an average

value of 7.2%, the content of β-elemene chiral isomer

(RRT about 0.96) was 3.2–4.6%, with an average value of

3.9%, and the total of the two was 9.2–12.7%, with an

average of 11.1% (Zhihua, 2018). The NEXTFLEX Rapid

DNA-Seq Kit (Bioo Scientific, USA) and NovaSeq Reagent

Kits/HiSeq X Reagent Kits (Illumina, America) were used

as the primary kits for metagenomic sequencing. The main

reagents and instruments for liquid chromatography-mass

spectrometry (LC-MS) untargeted metabolomics include an

ultra-high pressure liquid chromatography (UHPLC) liquid

chromatography system (Vanquish Horizon system, Thermo),

a mass spectrometer (Q-Exactive, Thermo), methanol and

acetonitrile (Fisher Chemical), 2-propanol (Merck), and 2-

Chloro-L-Phenylalanine (Adamas-beta).

Grouping and administration

Eighteen male SD rats were randomly divided into three

groups of six rats each: the sham group (group S), the low-

concentration EEI group (L-EEI), and the high-concentration

EEI group (H-EEI). Before the experiment started, rats were fed

adaptively for 1 week and had free access to water and food.

Different EEI concentrations were selected based on previously

published studies (Ma et al., 2021; Sun et al., 2022; Wu et al.,

2022). For 14 days, L-EEI rats received elemene emulsion [20

mg/(kg·d)] intraperitoneally (IP), H-EEI rats received elemene

emulsion [40 mg/(kg·d)] IP, and group S rats received the same

volume of normal saline IP as H-EEI. To equalize volume, L-EEI

rats were supplemented with normal saline to equal the volume

in H-EEI before injection.

Amplification of the 16S rRNA gene and
sequencing of colon contents

Fresh colon contents samples from 3 groups (n = 18) were

collected in cryogenic vials and stored immediately in liquid

nitrogen. Amplification and sequencing of 16S rRNA genes

of colon contents were performed on the Illumina platform

(Illumina, San Diego, USA) according to the standard protocols

of Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

The V3–V4 region of the bacterial 16S rRNA gene was amplified

with primer pairs 338F (5’-ACTCCTACGGGAGGCAGCAG-3’)

and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) (Liu et al.,

2016). Raw FASTQ files were de-multiplexed using an in-

house Perl script, then quality-filtered by Fast version 0.19.6

(Chen et al., 2018) and merged by FLASH version 1.2.7

(https://ccb.jhu.edu/software/FLASH/index.shtml) (Mago and

Salzberg, 2011) with the following criteria: (1) The 300 bp

reads were truncated at any site receiving an average quality

score of <20 over a 50 bp sliding window, and the truncated

reads shorter than 50 bp were discarded; reads containing

ambiguous characters were also discarded. (2) Only overlapping

sequences longer than 10 bp were assembled according to

their overlapped sequence. The maximum mismatch ratio

of the overlap region is 0.2. Readings that could not be

assembled were discarded. After that, operational taxonomic

units (OTUs) clustering analysis and taxonomic analysis

were performed (UPARSE, version 7.0.1090, http://drive5.com/

uparse/) (Edgar, 2013). OTU clustering was performed on

non-repetitive sequences (excluding single sequences) according

to 97% similarity, and the chimeras were removed in the

clustering process to obtain the representative sequences of

OTUs. The sequences with more than 97% similarity to the

representative sequences were selected, and the OTU table was

generated. To obtain the corresponding species classification

information of each OTU, compare the following databases:

the bacterial and archaeal 16S rRNA databases [Silva (Release

138 http://www.arb-silva.de) and Greengene (Release 13.5

http://greengenes.secondgenome.com/)]. First, the α-diversity

analysis (http://www.mothur.org/wiki/Calculators) of colonic

contents was assessed by community richness (ACE, Sobs,

and Chao), community diversity (Shannon and Simpson),

and community coverage (coverage) (Mothur, version 1.30.2,

https://mothur.org/wiki/calculators/). Based on the results of

OTU clustering analysis, a Venn diagram was used to

display the common and unique microbiota among the three

groups (R, version 3.3.1) at the genus level. Second, the

composition and relative abundance were analyzed at the genus

level in each group (R, version 3.3.1). Partial least squares

discriminant analysis (PLS-DA) (Gromski et al., 2015) was used

to analyze the similarity among the three groups at the genus

level (http://fiehnlab.ucdavis.edu/staff/kind/Statistics/Concepts/

OPLS-PLSDA, R, version 3.3.1). Permutational multivariate

analysis of variance (PERMANOVA) (Kelly et al., 2015) was used

to analyze the degree of explanation of different grouping factors

on differences between samples (Bray-Curtis). Third, the non-

metric multidimensional scaling (NMDS) was used to evaluate

the β-diversity of colon contents among three groups at the

genus level.

Metagenomic sequencing and assembly

Total genome DNA was extracted from 200–300mg

of stool samples. Before analyzing the raw data generated

using the Illumina sequencing platform (Illumina, San Diego,

USA), the software Fast (https://github.com/OpenGene/

fastp) was used to perform statistical and quality control
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on the raw data to ensure subsequent analysis accuracy.

About 300 bp of fragments were sequenced in metagenomics.

Supplementary Table 1 lists the original sequence and clean

data statistics. Then, the software BWA v0.7.17 was used to

decontaminate the sample’s host genome. The host name was

Vertebrates: rattus_norvegicus. Supplementary Table 1 lists the

data after removing the host genome. Sequences of different

sequencing depths were assembled using tEGAHIT v1.1.2

(https://github.com/voutcn/megahit) (Li et al., 2015). After

splicing and assembly, the shortest contig length retained was

300 bp. Supplementary Table 2 lists the data after assembly.

Afterward, an open reading frame (ORF) prediction was

performed on the contigs in the splicing results using Prodigal

(https://github.com/hyattpd/Prodigal). Genes with a nucleic

acid length ≧ of 100 bp were selected and translated to

amino acid sequences to generate a statistical table of gene

prediction results for each sample (Supplementary Table 3).

CD-HIT software (http://www.bioinformatics.org/cd-hit/)

(Fu et al., 2012) was used to cluster the predicted gene

sequences of all samples (the default parameters are 90%

identity and 90% coverage). The representative sequence for

constructing a gene set with no duplicate genes was the longest

gene in each class. The SOAPaligner software (http://soap.

genomics.org.cn/) (Li et al., 2009) was used to align each

sample’s high-quality reads with the non-redundant gene

set (default parameter: 95% identity) and count the genes

in the corresponding sample’s abundance information. Gene

abundance was calculated using reads per kilobase million

(Lawson et al., 2017). The linear discriminant analysis effect size

(LEfSe) differential discriminant analysis (http://huttenhower.

sph.harvard.edu/galaxy/root?tool_id=lefse_upload) (Segata

et al., 2011; Zhang et al., 2013) was used to identify the

species that best explains the differences between groups in

multiple samples.

Taxonomic annotation and di�erence
analysis

The non-redundant gene set was aligned with the non-

redundant protein sequence database (NR database) using

DIAMOND (Buchfink et al., 2015, 2021) (https://github.com/

bbuchfink/diamond) (parameters: BLASTP; E-value ≤ 1 ×

10−5). The taxonomic information database correlating to the

NR database was used to get species annotation results. The

species abundance was calculated by adding up the abundance

of its genes. Venn plots were used to count shared and

unique species across multiple groups, and community column

charts were used to visually study the dominant species in

a community.

Fecal metabolomics

Different groups of fecal metabolites were detected using

LC-MS, and metabolites with differential expressions were

found. First, a 50 mg sample was weighed accurately, and

then 400 µL of extraction solution [methanol: water = 4:1

(v: v)] containing 0.02 mg/mL of the internal standard (L-

2-chlorophenyl alanine) was added. Second, the sample was

ground with a frozen tissue grinder for 6min (−10◦C, 50Hz),

and ultrasonic extraction was used for 30min (5◦C, 40 kHz)

at low temperature. Third, let the sample stand at −20◦C for

30min, centrifuge for 15min (13,000 g, 4◦C), and then transfer

the supernatant to the inlet with an inner cannula. In addition,

20 µL of supernatant was pipetted from each sample and mixed

as a quality control sample (Zheng et al., 2021; Zhu et al., 2022).

The raw data were imported into the metabolomics

processing software ProgenesisQI (Waters Corporation,

Milford, USA) for baseline filtering, peak identification,

integration, retention time correction, peak alignment, and

other tasks before a data matrix containing retention time, mass-

to-charge ratio, and peak intensity was obtained. The software

was then used to perform a library search of characteristic

peaks, matching the MS and MS/MS mass spectral information

to the metabolic database. The software was then used to

search for characteristic peaks in a library by matching the

information from the MS and MS/MS mass spectra to the

metabolic database. The MS mass error was set to less than 10

ppm, and metabolites were identified based on secondary mass

spectrometry matching scores. The main databases are http://

www.hmdb.ca/ and https://metlin.scripps.edu/. The total ion

chromatograms of the quality control samples in positive and

negative ion modes show that the peak shape is acceptable,

and the distribution is relatively uniform under this detection

condition (Supplementary Figure 3). The PLS-DA model

quality parameters and the corresponding permutation test

(R2 intercept, 0.8907; Q2 intercept, −0.7653) demonstrate the

statistical validity of the analysis and indicate distinct metabolic

profiles among the three groups (Supplementary Figure 2).

Principal component analysis (Worley and Powers, 2013)

was used to identify the “main” elements and structures in

the data to reduce the dimensionality of the high-dimensional

data space while minimizing the loss of data information. We

also used the PLS-DA (Gromski et al., 2015) method to reduce

the dimensionality of the data to better obtain the different

information between groups. To prevent overfitting in the PLS-

DA, we used the permutation test to determine whether the

PLS-DA model is overfitting. The Kruskal-Wallis (H) test was

used to compare differential metabolites amongmultiple groups.

The metabolites that were common or unique among the

differential metabolites between the two groups were displayed

using Venn diagrams.
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Association of fecal di�erential
metabolites with fecal microbiota

The Pearson correlation analysis found correlation

coefficients between fecal microbiota and metabolites. The

correlation between significantly differential fecal microbiota

within the genus (P < 0.01) and differential metabolites (P

< 0.01) is shown in Figure 6. The clustering algorithm was

hierarchical clustering, the distance algorithm was Euclidean,

and the hierarchical clustering method was complete (took the

distance between the two data points that were the farthest from

the two combined data points as the distance between the two

combined data points).

Association of fecal di�erential
metabolites and metabolic pathways

Using Pearson correlation analysis, we perform a metabolic

pathway study of our metagenomic data and link it to the

chemicals identified in the stool samples. The correlation

between significantly differential metabolites (P < 0.01) and

significantly differential metabolic pathways (P < 0.01) in level

3 of the Kyoto Encyclopedia of Genes and Genomes (KEGG,

https://www.kegg.jp/) (Figure 7).

Statistical analysis

Sequencing was performed on the rats’ feces (n = 18). The

Wilcoxon rank-sum test was used to calculate α-diversity among

three groups, and the results were expressed as mean± standard

deviation. P < 0.05 was deemed significant. The Kruskal-Wallis

test (H test) was used to compare the differential microbiota

among multiple groups, and the Tukey-Kramer procedure was

used for post-hoc testing. P < 0.05 was deemed significant. The

Kruskal-Wallis test and Scheffe’s post-hoc test were also used to

find differences in metabolites between more than two groups. P

< 0.05 was considered significant (Edwards and Berry, 1987; Lee

and Lee, 2018).

Results

H-EEI altered the β-diversity of fecal
microbiota

Different concentrations of elemene did not

significantly affect the α-diversity of fecal microbiota

(Supplementary Table 4). The Venn diagrams showed bacteria

that are unique and shared among different groups at the

genus level (Figure 1A). There were 45 and 32 genera specific

to groups S and L-EEI, respectively, and 60 genera specific to

H-EEI. Deeper taxonomic levels, including species, genera,

and families, were investigated to learn more about the fecal

microbiota of different groups. The relative abundance of the

genus level in each group is shown in Figure 1B. The relative

abundance of the species and families in each group is shown

in Supplementary Figure 1. The NMDS analysis of different

groups showed a distinct formation of clusters at the genus

level (Figure 1C) and species level (Figure 1D). The differences

between L-EEI and group S were less evident than those between

H-EEI and group S, which formed quite different clusters. There

is a clear visual distinction between group S and the H-EEI

(stress= 0.150 for genera and stress= 0.193 for species).

Distinctive sensitivity of fecal microbiota
to di�erent concentrations of EEI

We further compared the differences among the three

groups to determine the effect of different concentrations of

EEI on rat fecal microbiota. Figure 2A shows the abundance of

the top 20 bacteria with significant differences at the species

level among the three groups (Kruskal–Wallis test; P < 0.05

was considered significant). Following the multiple-group test,

we compared the groups using pairwise comparisons (Tukey-

Kramer, P < 0.05 was considered significant, Figure 2B). The

effects of different EEI concentrations on the top 20 bacteria

with significant differences at the species level among the

three groups could be roughly divided into three categories:

(1) A positive or negative correlation with the concentration

of the EEI. The abundance of Ileibacterium Valens increased

as the EEI concentration increased, while the abundance of

Firmicutes bacterium and Clostridium sp. CAC: 273 decreased.

(2) The microbiota showed a tendency to increase first, then

decrease or decrease first, and then increase as EEI concentration

increased. Compared to group S, the abundance of Prevotella

sp. PCHR, Escherichia coli, and Candidatus Amulumruptor

caecigallinarius tended to decrease by L-EEI but significantly

increased by H-EEI (P < 0.05). Inversely, L-EEI significantly

increased the abundance of Ruminococcus bromii (P < 0.01)

and Dorea sp. 5–2 (P < 0.05), and then, Oscillibacter sp.

1–3 tended to increase, but H-EEI significantly decreased

the abundance of these three microorganisms. (3) Both L-

EEI and H-EEI tend to decrease the abundance of the

bacteria (Ruminococcaceae bacterium, Romboutsia ilealis, and

Staphylococcus xylosus).

First, the abundance of Firmicutes bacterium and

Clostridium sp. CAC: 273 decreased gradually as EEI

concentration increased, and the H-EEI was significantly

lower than group S (P < 0.05). Ileibacterium Valens abundance

increased gradually with the increasing EEI concentration,

and the H-EEI was significantly higher than group S (P <

0.05). Second, for Prevotella sp. PCHR, Escherichia coli, and
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FIGURE 1

H-EEI altered the β-diversity of fecal microbiota. (A) The Venn diagrams show that bacteria that are unique and shared by di�erent groups at the

genus level. The overlapping part represents the bacteria shared by di�erent sample groups, the non-overlapping part represents the bacteria

unique to the sample group, and the number represents the corresponding species. There were 45 and 32 genera specific to groups S and L-EEI,

respectively, and 60 genera specific to H-EEI. (B) The relative abundance of the genus level in each group is shown. The horizontal axis

represents the sample name, and the vertical axis represents the proportion of microbiota in the sample. Colored columns represent di�erent

microbiota, and column length represents a proportion of the microbiota. (C,D) The NMDS analysis of di�erent groups shows a distinct

formation of clusters at the genus level (C), and according to species level (D), Bray–Curtis. NMDS is a data analysis method that simplifies

research objects in multidimensional space into low-dimensional space for positioning, analysis, and classification while retaining the original

relationship between objects. The pros and cons of NMDS analysis results are measured by stress. It is generally believed that when stress <0.2,

it can be represented by a two-dimensional point graph of NMDS, and this graph has a certain explanatory significance. The distance between

the points indicates the degree of di�erence, and the horizontal and vertical coordinates indicate the relative distance, which has no practical

significance. The data used in the analysis were derived from metagenomics sequencing data of fecal mirobiota (n = 6 in each group).

Candidatus Amulumruptor caecigallinarius, the L-EEI tended

to decrease the abundance compared to group S, whereas

the H-EEI significantly increased the abundance compared

to the L-EEI (P < 0.05). Third, for Ruminococcus bromii,

Oscillibacter sp. 1–3, andDorea sp. 5–2, L-EEI tended to increase

the abundance compared to group S. In contrast, H-EEI

significantly decreased the abundance compared to L-EEI (P <

0.05). Finally, both L-EEI and H-EEI decreased the abundance

of the Ruminococcaceae bacterium, Romboutsia ilealis, and

Staphylococcus xylosus.

LEfSe analysis was applied to investigate the biomarkers

among the three groups. We found 17 differentially abundant

taxa among the three groups, all with an LDA score > 3.0

and P < 0.05 (Figures 3A,B). LEfSe analysis identified ten

genera with increased abundance in Group S, one genus with

increased abundance in the L-EEI, and six genera with increased

abundance in the H-EEI.

L-EEI and H-EEI-induced di�erential fecal
metabolites

We used LC-MS to directly test fecal metabolites to find out

how different concentrations of EEI affected the metabolites of
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FIGURE 2

Distinctive sensitivity of fecal microbiota to di�erent concentrations of EEI. (A) The abundance of the top 20 fecal bacteria with significant

di�erences at the species level was determined using fecal metagenomics data (Kruskal–Wallis test, P < 0.05 was considered significant). The

vertical axis represents the species names, the horizontal axis represents the percentage value of a species’ abundance in the sample, and

di�erent colors represent di�erent groups (green to group S, red to L-EEI, and blue to H-EEI). (B) Post-hoc analysis of the top 20 fecal bacteria

with significant di�erences in (A) (Tukey–Kramer, P < 0.05 was considered significant). n = 6 in each group, *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 3

Biomarkers of L-EEI and H-EEI: g_Dorea and g_Candidatus Amulumruptor. (A) The hierarchy of linear discriminant analysis e�ect size (LEfSe)

was based on fecal metagenomics data. Nodes in the figure with di�erent colors represent microbial groups that are significantly enriched in the

corresponding group and have a significant e�ect on the di�erences among the three groups; light yellow nodes represent microbial groups

with no significant di�erence between groups or have no significant e�ect on the di�erences among the three groups. (B) The linear

discriminant analysis (LDA) discriminant histogram. The higher the LDA score, the greater the influence of microbiota abundance on the

di�erential e�ect. P < 0.05, LDA > 3.0.

the fecal microbiota. Fecal metabolomics is the consequence of

both host and microbiota interaction. The chemical signatures

were identified based on internal standards (Majorbio Bio-

Pharm Technology Co. Ltd.), the Kyoto Encyclopedia of

Genes and Genomes (KEGG, http://www.genome.jp/kegg/), the

Human Metabolome Database (HMDB 5.0, www.hmdb.ca)

and METLIN 2019 (http://metlin.scripps.edu). The analysis

of fecal metabolites revealed variations in different EEI
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concentrations. A total of 1,091 metabolites were identified,

including vitamins and cofactors, peptides, nucleic acids,

hormones and neurotransmitters, steroids, organic acids, lipids,

and carbohydrates. A Venn diagram shows the common or

unique metabolites found following a pairwise comparison of

the three groups (Figure 4A). Figure 4B shows the findings

of the PLS-DA model obtained from multivariate statistical

comparisons of groups S, L-EEI, and H-EEI.

Similar to the fecal microbiota, fecal metabolites differ in

their sensitivity to different EEI concentrations. Figure 5 shows

the effect of different EEI concentrations on fecal metabolites. A

total of 73 metabolites (Supplementary Table 5) showed highly

significant (P < 0.01, Kruskal–Wallis test) differences among

the three groups. Among the top 20 metabolites in the relative

abundance of identified metabolites, two metabolites [Cis-9,

10-epoxystearic acid (HMDB0247617) and (+/–)-enterolactone

(HMDB0006101)] show significant differences among the three

groups (P < 0.05). To be specific, compared with Group S, L-

EEI has no significant effect on the relative abundance of Cis-

9, 10-epoxystearic acid, while H-EEI could induce a significant

increase compared with L-EEI (P< 0.01); compared with Group

S, both L-EEI and H-EEI could decrease the relative abundance

of (+/–)-enterolactone significantly (P < 0.05), while there was

no significant difference between L-EEI and H-EEI.

Many di�erentially expressed
microorganisms are negatively correlated
with metabolites

Fecal microbiota and fecal metabolite alterations are

significantly related to EEI concentration. At the genus level,

we linked microbiota to metabolites that were significantly

different between the three groups (Figure 6). For example,

g_Sediminibacillus had a highly significant positive correlation

with (3E, 5Z)-3,5-octadien-1-ol and a substantial negative

correlation with 3-3-nor-3-oxopanasinsan-6-ol. In general, most

bacteria are negatively correlated with metabolites.

Many di�erential metabolites are
negatively correlated with metabolic
pathways

To conductmore in-depth correlation studies, we performed

a metabolic pathway study on our metagenomic data and linked

it to the chemicals identified in the stool samples (Figure 7).

The results indicate that most differential metabolites (49/73)

are negatively related to the following eight signaling pathways

significantly: apoptosis (ko04214), carotenoid biosynthesis

(ko00906), furfural degradation (ko00365), steroid biosynthesis

(ko00100), phospholipase D signaling pathway (ko04072),

axon regeneration (ko04361), choline metabolism in cancer

(ko05231), and oxytocin signaling pathway (ko04921). Except

for the eight signaling pathways, there are another five signaling

pathways worth being concerned about: autophagy yeast,

flavone and flavonol biosynthesis, MAPK signaling pathways,

measles, and toxoplasmosis.

Discussion

EEI, a Chinese anti-tumor drug derived from the traditional

Chinese medicinal plant Curcuma wenyujin, is primarily

composed of β-elemene. The main component, β-elemene, has

been shown in isotope labeling studies to penetrate the blood–

brain barrier (Wu et al., 2009). Its content is comparable to

other tissues, with a low incidence of myelosuppression during

the medication process (Chen et al., 2022). EEI has been used

clinically to treat cancerous pleural effusion by pleural and

cancerous ascites by intraperitoneal perfusion (Luo et al., 2019;

Qureshi et al., 2019; Zhai et al., 2019), but few studies have

examined its impact on fecal microbiota.

EEI alters the fecal microbiota’s β-diversity but not the α-

diversity. This indicates that EEI could alter fecal microbiota

structure. Following EEI administration, some of the previously

dominant microbiota are no longer dominant, and new

dominant microbiota emerge. For example, the Candidatus

Amulumruptor of Muribaculaceae was the most prominent

bacterium in the H-EEI (LEfSe). The function of Candidatus

Amulumruptor has not yet been reported. Muribaculaceae

members use mucin monosaccharide (Pereira et al., 2020)

and are abundant in the mice that had been fed an HFD

(Liu et al., 2021).

Ruminococcus bromii and Dorea sp. 5-2 are particularly

interesting because L-EEI significantly increased their

abundance while H-EEI decreased it. In our previous study,

Ruminococcus was the dominant bacterium in the EEI group

using 16S rRNA technology (https://www.ncbi.nlm.nih.gov/

sra/PRJNA821627), but the impact of Ruminococcus on

human health is complex. Its benefits include the following:

Ruminococcus albus has an inverse relationship with ulcerative

colitis (Li et al., 2020) and protects infants from allergies

(Wang et al., 2021). The harmful aspects include the association

of Ruminococcus gnavus with Crohn’s disease, which has

been identified as causing Crohn’s symptoms (Henke et al.,

2019). In addition, Ruminococcus has been linked to irritable

bowel syndrome (Baumgartner et al., 2021). In this study,

we used metagenomic technology to confirm that L-EEI (20

mg/kg·d) increased the abundance of Ruminococcus bromii.

According to current research, Ruminococcus bromii is a

type of bacteria beneficial to humans; this bacterium can

produce short-chain fatty acids and thus alleviate type 2

diabetic symptoms (Lordan et al., 2020; Yao et al., 2020).

There are currently no reports on the function of Dorea
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FIGURE 4

L-EEI and H-EEI induced di�erential fecal metabolites. (A) The common or unique metabolites are found after a pairwise comparison of three

groups. In the figure, the overlapping part represents the number of metabolites shared by multiple metabolic sets, the non-overlapping part

represents the number of metabolites unique to the metabolic set, and the number represents the number of corresponding metabolites. (B)

PLS-DA score plot. The PLS-DA score map is used to visually represent the classification e�ect of the model. The greater the degree of

separation among the three groups of samples in the figure, the more significant the classification e�ect. Component 1 is the first principal

component explainability, and Component 2 is the second principal component explainability. The data used in the analysis were derived from

LC-MS data of feces (n = 6 in each group).

FIGURE 5

Di�erential metabolites among the three groups based on LC-MS data of feces. Darker colors indicate lower metabolite abundance, while

lighter colors indicate higher metabolite abundance. The Kruskal–Wallis H test compares multiple groups, followed by the Sche�e post-hoc

tests for metabolites with P < 0.01. n = 6 in each group, *P < 0.05, **P < 0.01, ***P < 0.001, compared with group S; #P < 0.05, ##P < 0.01,
###P < 0.001, compared with the L-EEI.

sp. 5-2, and most studies focus on Dorea. The impact of

Dorea on human health is unclear, but studies have shown

that Dorea is more abundant in patients with Parkinson’s

(Petrov et al., 2017) and obesity (Jiao et al., 2018). It is

unknown why the abundance of Ruminococcus bromii and

Dorea sp. 5-2 significantly increased at L-EEI but decreased
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FIGURE 6

Many bacteria are negatively correlated with metabolites. The bacteria are selected using the Kruskal–Wallis test on a genus level from fecal

metagenomics data, and P < 0.01 of them are used. The metabolites are selected using the Kruskal–Wallis test from fecal LC-MS data, and P <

0.01 is used. The gradient colors represent the magnitude of the correlation coe�cient; red indicates a negative correlation, and a white

indicates positive correlation. *P < 0.05, **P < 0.01, ***P < 0.001.

at H-EEI. This is also one of the future topics we intend

to investigate.

Fecal metabolomics is the consequence of both host and

microbiota interaction. Figure 5 displays the effect of different

concentrations of EEI on metabolites. A total of 73 metabolites

had extremely significant statistical differences among the three

groups (P < 0.01). In the abundance of the top 20 differential

metabolites, two kinds of metabolites [Cis-9,10-Epoxystearic

acid and (+/–)-Enterolactone] displayed significant statistical

differences among the three groups (P < 0.05). Compared to L-

EEI, H-EEI had a higher Cis-9,10-epoxystearic acid content. The

effects of Cis-9,10-Epoxystearic acid on humans are unclear. Cis-

9,10-Epoxystearic acid dose- and time-dependently increased

the number and size of cellular lipid droplets in the human

hepatocarcinoma cell line HepG2, decreasing cell viability and

causing cell death (Liu et al., 2018; Liu Y. et al., 2020).

Compared to group S, both L-EEI and H-EEI could decrease

the abundance of (+/–)-enterolactone significantly (P < 0.05).

Enterolactone’s health implications are debated. Enterolactone,

a bioactive phenolic metabolite from dietary lignans, may

help protect against different stages of breast, prostate, colon,

gastric, and lung cancer (Mali et al., 2019; Senizza et al.,

2020). Unfortunately, a case-control study found no association

between serum EL levels and breast cancer risk (Kilkkinen

et al., 2004). A New York prospective study found comparable

outcomes (Zeleniuch-Jacquotte et al., 2004). β-elemene partially

corrected HFD-induced alterations in mouse gut bacteria

composition and metabolites (Zhou et al., 2021). Because EEI is

used clinically for intraperitoneal infusion therapy of cancerous

ascites, we examined its effects on rat fecal microbiota and

metabolites (Jiang et al., 2012; Zhu et al., 2019).

In addition to fecal microbiota, we used 16S rRNA

technology to investigate the effects of different EEI

concentrations on colon contents. EEI concentrations,

like fecal microbiota, did not affectα-diversity of colonic

microbiota (Supplementary Table 6). Genus-level community

composition is shown in Supplementary Figure 4B. The

NMDS analysis of different groups revealed distinct genus-

level clusters. Similar to fecal microbiota, L-EEI and group

S differed less than H-EEI, and group S. Group S and H-

EEI stood out visually (Supplementary Figure 4D). Unlike

the fecal microbiota, the most prominent biomarkers in

the colon contents of low and high elemene groups were

g_Marvinbryantia and g_norank_f_Erysipelotrichaceae,

respectively (Supplementary Figure 5, LEfSe).

IP injection of EEI alters the microbiota and metabolites

in rat feces. Since the gut microbiota is linked to several

cancers and EEI inhibits the growth of various cancers, we

hope to research the effect of EEI on the feces of patients

with cancer.
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FIGURE 7

Many di�erential metabolites are negatively correlated with metabolic pathways. The horizontal axis represents 73 di�erential metabolites

among three groups (P < 0.01) from fecal LC-MS data, and the vertical axis represents di�erential metabolic pathways (P < 0.01) among the

three groups from fecal metagenomics data. The darker the color of the block, the greater the negative correlation. *P < 0.05, **P < 0.01, ***P

< 0.001.
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