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Type 2 diabetes (T2D) is a serious public health issue and may also contribute to

modification in the structure of the intestinal microbiota, implying a link between T2D and

microbial inhabitants in the digestive tract. This work aimed to develop efficient models for

identifying essential physiological markers for improved T2D classification using machine

learning algorithms. Using amplicon metagenomic approaches, an effort has also been

made to understand the alterations in core gut microbial members in Indian T2D patients

with respect to their control normal glucose tolerance (NGT). Our data indicate the level

of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) were the most useful

physiological indicators while random forest and support vector machine with RBF Kernel

were effective predictions models for identifications of T2D. The dominating gut microbial

members Allopreotella, Rikenellaceae RC9 gut group, Haemophilus, Ruminococcus

torques group, etc. in Indian T2D patients showed a strong association with both FBG

and HbA1c. These members have been reported to have a crucial role in gut barrier

breakdown, blood glucose, and lipopolysaccharide level escalation, or as biomarkers.

While the dominant NGT microbiota (Akkermansia, Ligilactobacillus, Enterobacter, etc.)

in the colon has been shown to influence inflammatory immune responses by acting

as an anti-inflammatory agent and maintaining the gut barrier. The topology study of

co-occurrence network analysis indicates that changes in network complexity in T2D

lead to variations in the different gut microbial members compared to NGT. These studies

provide a better understanding of the gut microbial diversity in Indian T2D patients and

show the way for the development of valuable diagnostics strategies to improve the

prediction and modulation of the T2D along with already established methods.
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INTRODUCTION

Type 2 diabetes (T2D) is a metabolic disorder that affects
people all over the world and is caused by both inherited and
environmental factors, such as physical inactivity, sedentary
lifestyles, cigarette smoking, and excessive alcohol use because
these factors create stress on a pancreatic β-cells resulting
in decreased insulin sensitivity and production. Due to
the β-cell dysfunction, both normal blood glucose level
and insulin sensitivity are gradually hampered, resulting in
pathophysiological changes and the development of several
complications in patients (McIntyre et al., 2019). According
to International Diabetes Federation (IDF) report, a total of
415 million people have diabetes globally (as of 2015) and this
may increase to 642 million by 2040 because of T2D (Zhang
et al., 2013, 2021a; Cho et al., 2018). Several mathematical and
statistical models were established using human physiological
parameters to predict the disease and/or risk of the disease,
machine learning (ML) is one of them. Machine learning is
a useful statistical method to analyze high-dimensional and
multimodal biomedical data and disease diagnostics (Yu et al.,
2020). Several studies endorsed the discrimination between
T2D and normal person normal glucose tolerance (NGT) using
different ML models based on patients’ physiological conditions
(Zhang et al., 2021b). However, most of those studied models
made their observations based on the limited number of samples
from a single geographical location. Additionally, none of them
attempted to identify important physiological parameters out
of their prediction model that significantly differentiates T2D
disease from NGT. While best prediction model with high
accuracy essentially needed a large sample size with variant
coverage (Wei et al., 2013; Arbabshirani et al., 2017).

The recent developments have indicated that along with the
host’s genetics, gut microbiota plays a very important role in the
establishment of obesity and T2D (Karlsson et al., 2013; Bhute
et al., 2017; Sroka-Oleksiak et al., 2020). Over the past decade
around the world, significant efforts have been given by various
groups to define the structural and functional attributes of gut
microbiota in T2D subjects to NGT to understand the disease
progression (Bhute et al., 2017; Gaike et al., 2020). Most of these
studies attempted to evaluate the differences in gut microbial
members either between T2D and pre-T2DwithNGT or between
gut microbiome after the treatment of the disease. However,
the deep study on predicting the most important influencing
physiological factors and their association with gut microbes in
disease states is incompletely explained while none from India
have been reported. Nevertheless, this investigation attempted to
make the following contributions:

1) Introduce the most effective machine learning (ML) methods
for better T2D and NGT predictions, as well as the most
critical physiological parameters for detecting the disease
regardless of its geographical location.

2) Analyze the variations in core gut microbial members
between Indian T2D and NGT, and discover the differentially
abundant core gut microbial genera, as well as their
relationship to key physiological parameters.

3) Identify the specific microbial genera for each group (T2D
and NGT) as crucial indicators for disease prediction and
diagnosis using established physiological measures.

MATERIALS AND METHODS

Feature Selection Approached Based on
Machine Learning Techniques (MLT) and
Evaluates the Prediction Model
Data Collection
For this study, the relevant physiological records of a total of
441 patient samples (T2D: 224 and NGT: 217) were considered.
Among them, 345 data were obtained from Chinese cohorts
(Qin et al., 2012) and 96 data from European cohorts (Karlsson
et al., 2013). The physiological parameters included in our
study were age, gender, body mass index (BMI), fasting blood
glucose (FBG), fasting insulin (FI), hemoglobin A1c (HbA1c),
cholesterol (CHL), high-density lipoproteins (HDL), low-density
lipoproteins (LDL), triglycerides (TG), and C-peptide (CP).

Preparation of Training, Testing, and

Blind/Identification Dataset
From 441 patients’ physiological parameters data, we randomly
generated a training dataset (with 150 samples) to train a
prediction model and a testing dataset (with 150 samples) to
assess the performance and ability to discriminate between two
different classes (T2D and NGT) (Barman et al., 2014). A known
blind/identification dataset was produced from the remaining
141 samples, but they were treated as an unknown dataset to
evaluate the effectiveness of our predictive model. Finally, we
applied this forecasting model to data obtained in Kolkata, West
Bengal, and the surrounding areas (see sample collection section)
to evaluate its performance on real-world unknown datasets.

Feature Selection and MLT
Feature selection improves the discrimination ability of the
prediction model to relieve the over-fitting problem and help to
better understand the data by examining the importance of the
features (Saeys et al., 2007). Here, we used the recursive feature
elimination (RFE) algorithm (Chen and Jeong, 2007) as a feature
selection method to find out what was the best physiological
parameters that showed higher discrimination ability between
two classes using the “caret” R package (Kuhn, 2008). Random
forest (RF) (Svetnik et al., 2003) and support vector machine
(SVM) (Statnikov et al., 2013) were used for the prediction of
T2D and NGT based on the physiological data. The prediction
models were built up using 10-fold cross-validation methods.

Performance Checking of the Prediction Model
The performance of the predictionmodel was evaluated using the
testing and blind datasets. To evaluate the performance of the
prediction, they were assessed via sensitivity (SEN), specificity
(SPF), accuracy (ACC), precision (PRC), and F1-score values. All
these statistical analyses were performed in R (R, version 3.6.3)
with the packages “randomForest” (Liaw and Wiener, 2002),
“rfUtilities” (Evans and Murphy, 2019), “caret” (Kuhn, 2008),
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“caTools” (Tuszynski and Tuszynski, 2007), “e1071” (Meyer
et al., 2012), “verification” (Gilleland, 2015) and “pROC” (Robin
et al., 2011).

Amplicon-Based Metagenomic Analysis of
T2D and NGT Samples From West Bengal
Sample Selection and Collection
The samples were selected as per suggestion from the doctors
of the endocrine department of IPGMER and SSKM Hospital,
Kolkata, India based on World Health Organization (WHO)
criteria, and anthropometric measurements were done from 34
samples (17 NGT and 17 T2D) from West Bengal at IPGMER
and SSKM Hospital. Only newly diagnosed cases of T2D in
males of age group above 25 years and up to 55 years, willing
to take participation, were included in our study. The patients,
in the age group below 25 years and above 55 years, already
diagnosed or treated with insulin, were excluded from this study.
The physiological parameters of all these samples were measured
in the Endocrinology Lab of IPGMER and SSKM Hospital.
The FI and CP were measured using Siemens Immulite Insulin
and C-Peptide Kit and other remaining physiological data such
as BMI, FBG, CHL, HDL, LDL, and TGL were measured by
normal testing procedure (Zhang et al., 2013). The protocol
and the project were approved by the ethics committee at
SSKM Hospital.

The DNA Extraction and Amplicon Metagenomic

Sequencing
The metagenomic DNA was extracted from the patients’ fecal
samples by using PowerFecal DNA Isolation Kit (Mo Bio, Catalog
No. 12830-50) following the manufacturer’s instructions. The
extracted metagenomic DNA was pooled for the amplification
of hypervariable V3–V4 regions of the bacterial 16S rRNA gene
and sequenced them using the Illumina MiSeq platform (2× 300
bp paired-end). The raw paired-end primer trimmed sequences
were provided by Eurofins, India. All raw metagenomic DNA
sequences were submitted to SRA–NCBI database (Accession
No. PRJNA486712).

Sequence Processing and Taxonomy Classification
All the raw fastq datasets were processed by the following
sequence processing protocol (Dhal et al., 2020; Nayak et al.,
2021). For all 16S rRNA amplicon gene sequences from each
sample, the quality screening was done by using Trimmomatic,
version 0.33 (parameters: SLIDINGWINDOW: 4:15) (Bolger
et al., 2014). High-quality sequence reads were then merged
with PEAR, version 0.9.5 (Zhang et al., 2014), using default
parameters. For operational taxonomy unit (OTU) clustering,
SWARM, version 2.0, was used with default parameters (Mahé
et al., 2014). Moreover, SINA tool was used for alignment
and taxonomic classification using the SILVA ribosomal RNA
gene database, version 138, as a reference sequence using the
representative sequence per OTU (Pruesse et al., 2012). Absolute
singletons OTUs, as well as unclassified sequences on phylum
level, were removed from our dataset using our standardized
R script.

Statistical Analysis
Principal component analysis (PCA) was done to understand
the pattern among the two groups (T2D and NGT) of samples
by utilizing their respective physiological data. To compare the
physiological data of T2D andNGT groups, we used the Kruskal–
Wallis rank–sum test.

Alpha (α) diversity analysis was done based on the rarefied
data (minimum number of sequences among the samples) by
sub-sampling the dataset. To assess the microbial communities’
richness and evenness, OTU number (nOTU), inverse Simpson
(invS), and Shannon diversity (shannon) were measured. The
differences in α diversity between T2D andNGTwere assessed by
Wilcoxon rank–sum test. The unique and core bacterial members
among the two groups (T2D and NGT) were identified by using
Venny, version 2.1 (Oliveros, 2007), with genera that had >0.5%
abundance. Spearman rank correlation was calculated to assess
if there were any relationship between alpha-diversity and the
physiological parameters and to identify the association between
the physiological parameters and microbial genera.

For beta (β) diversity, OTUs data were pruned to exclude the
rare biosphere by retaining OTUs that were present in one or
more than one sequence in three or more than three samples.
This reduction of the datasets did not change β diversity patterns
(Mantel test; r > 0.9, p = 0.001). To test the differences in
community-level (β diversity) among T2D and NGT groups
permutational multivariate analysis of variance (PERMANOVA)
was calculated. The contribution of physiological parameters for
explaining the variation in community structure redundancy
analysis (RDA) was calculated based on their centered log-
transformed of pruned data using aldex.clr function with a
median of 128 Monte Carlo Dirichlet of ALDEx2 R package.
Forward model selection was carried out to assess which are
the best physiological parameters to explain this variation in
the community based on maximum adjusted R2 and minimum
Akaike Information Criterion (AIC). The differentially abundant
OTUs among the T2D and NGT groups were identified by using
Dotplot. All statistical analyses, as well as figure visualizations,
were performed in R, version 3.6.3, with the packages “vegan”
(Oksanen et al., 2013) and “ALDEx2” (Fernandes et al., 2014),
and the PCA plot was made using OriginPro 2021 software,
version 9.8.0.200.

Co-Occurrence Network Analysis
The co-occurrence network analysis was performed to assess the
complexity of the microbiome and identify potential keystone
taxa for each group. The co-occurrence network was constructed
with the OTUs that were present in 10% of samples and had
more than 10 sequences for each group. We used Spearman’s
rank correlation to assess the association among microbial OTUs
from each group. Moreover, p = ≤0.05 and a Spearman’s
rank correlation coefficient, ρ = ≥0.6 were selected as the
thresholds between two OTUs (Jiao et al., 2016; Li et al.,
2021). Two co-occurrence networks were built, the T2D co-
occurrence network (TCN), and NGT co-occurrence network
(NCN). The network’s topology was measured by calculating the
nodes, edges, average weighted degree, network diameter, graph
density, modularity, average clustering coefficient, and average
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TABLE 1 | Differences in physiological parameters between diabetes subjects and

controls assess by Kruskal–Wallis rank–sum test.

Parameters χ
2 DF p

Body Mass Index (BMI) 0.001 1 0.9725

Fasting Blood Glucose (FBG) 11.640 1 0.0006*

Fasting Insulin (FI) 0.050 1 0.8228

Glycated hemoglobin (HbA1c) 13.233 1 0.0003*

C – Peptide (CP) 0.015 1 0.9040

Cholesterol (CHL) 0.323 1 0.5698

High Density Lipoprotein (HDL) 1.909 1 0.1671

Low Density Lipoprotein (LDL) 0.001 1 0.9725

Triglycerides (TGL) 0.058 1 0.8094

*Indicates highly significant.

path length for each network. The network visualization and
topology analysis were performed in the Gephi 0.9.2 (https://
gephi.org/) visualization tool (Bastian et al., 2009). The role
of nodes in individual co-occurrence network topology was
determined by evaluating the within-module connectivity (Zi)
and among-module connectivity (Pi) using a web-based tool,
molecular ecological network analysis pipeline (MENAP) (http://
ieg4.rccc.ou.edu/mena) (Deng et al., 2012; Qiu et al., 2022). Based
on this analysis, the nodes are classified into the following four
groups: (a) Peripheral nodes (Zi < 2.5, Pi < 0.62), (b) connectors
(Zi < 2.5, Pi > 0.62), (c) module hubs (Zi > 2.5, Pi < 0.62), and
(d) network hubs (Zi > 2.5, Pi > 0.62) (Qiu et al., 2022). The
module hubs are densely connected to many nodes within r own
modules, whereas the network hubs serve as both connectors
and module hubs. Together with network hubs, module hubs,
and connectors were termed an keystone nodes/taxa (Olesen
et al., 2007; Zhou et al., 2010; Deng et al., 2012; Qiu et al.,
2022).

RESULTS

Physiological Parameters of Indian T2D
and NGT Samples
The pathophysiological conditions of diabetes patients were
assessed via nine different parameters (BMI, FBG, FI, HbA1c,
CP, CHL, HDL, LDL, and TGL) of T2D with respect to
NGT (Supplementary Table S1). Among them, the average
level of FBG and HbA1c in the T2D group (168 mg/dl
and 8.1% respectively) were found significantly higher (p ≤

0.05) than NGT (Table 1). The PCA analysis indicates first
three principal components accounted for 72.8% variation
among the two groups of samples based on their measured
physiological parameters (Figure 1). The PC1 alone explained
33.1% variation, majorly contributed by BMI, CP, CHL, and
LDL; PC2 explained 23.7% of the total variation that was mainly
driven by FBG, HbA1c, and TGL; and PC3 was responsible
for the remaining 16% variation explained by FI and HDL.
It was also evident that the T2D group was separated as
a single cluster from the NGT group along the FBG and
HbA1c parameters.

Selection of Optimal Features,
Construction, and Performance Evaluation
of MLT Models to Classify Between T2D
and NGT
Feature selection (FS) is a pattern recognition application to
remove the irrelevant or noise from the original features data.
The RFE FS is a multivariate approach that incorporates all
variables in the algorithm and gradually excludes those variables
which are not able to discriminate between the different classes.
In this study, nine physiological parameters (BMI, FBG, HbA1c,
FI, CP, CHL, HDL, LDL, and TGL) of a total of 441 samples
were considered to identify the best physiological parameters
having the discriminatory ability between T2D and NGT and we
have found five best physiological parameters (through RFE FS)
that includes FBG, HbA1c, CP, FI, and CHL with high accuracy
(ACC= 95%).

For this investigation, those five important physiological
parameters were further used to build as well as to evaluate the
performance of the prediction models using three different MLT
methods, i.e., RF, SVM–L, and SVM–R. The prediction models
were built with 150 training datasets (75 T2D and 75 NGT) and
performance of these prediction models were tested using the
same number of the testing datasets (75 T2D and 75 NGT) by
measuring their SEN, SPF, ACC, and PRC with 10-fold cross-
validation. However, the best prediction models were measured
by their performance checking of precision (PRC) and recall (also
known as SEN) since they were directly proportional to the true
positive (Barman et al., 2014). All the prediction models worked
very well and the values of SEN, SPF, and ACC of the three
prediction models were nearly the same. However, the PRC score
in SVM–L (100%) was higher than RF (94%) and SVM–R (94%),
while the recall score of RF (100%) was higher than the SVM–
L and SVM–R (Table 2). However, they were further evaluated
to confirm their discriminatory abilities between T2D and NGT
using a blind dataset.

Evaluation of Prediction Methods With
Blind Dataset and Classification of
Unknown Samples
We used the same approach to avoid any bias in the performance
of our proposed models and observed how well they could
distinguish between the two classes. Our analysis reported that all
three prediction models worked very well to classify the T2D and
NGT blind. Both RF and SVM–R models were able to identify
the total 74 T2D samples correctly, (100% SEN values) while
SVM–L showed the best prediction efficiency (97% SPF value)
compared to the other two (Table 2). Overall, this investigation
reported that the best two effective predictionmodels are random
forest (RF) and SVM–R (SVM with RBF Kernel) as indicated on
precision (PRC) and recall (SEN) values.

The collected physiological parameters of 34 samples (17
T2D and 17 NGT), as unknown datasets, were used to further
evaluate the efficiency of RF and SVM–R prediction models
using the top-five physiological data that were identified in
RFE–FS. Both prediction models were successful in classifying
all T2D samples as a true positive with 100% SEN or
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FIGURE 1 | Principal Component Analysis (PCA) based on physiological parameters of the Indian diabetes subjects and controls. The samples were divided into two

groups along with three principal components (PCs). PC1, PC2, and PC3 explained 33.1, 23.7, and 16 percent of the total variation respectively. Here BMI, Body

Mass Index; FBG, Fasting Blood Glucose; FI, Fasting Insulin; HbA1c, Glycated Hemoglobin; CP, C – Peptide; CHL, Cholesterol; HDL, High-Density Lipoprotein; LDL,

Low-Density Lipoprotein; TGL, Triglyceride.

TABLE 2 | Comparative performance measurement among three different MLT methods using three different datasets with 10-fold cross-validation.

Datasets MLT Sensitivity Specificity Accuracy Precision

Test dataset RF 1.00 0.98 0.97 0.94

SVM–L 0.97 1.00 0.98 1.00

SVM–R 0.98 0.94 0.96 0.94

Blind dataset RF 1.00 0.88 0.94 0.90

SVM–L 0.81 0.97 0.88 0.96

SVM–R 1.00 0.88 0.94 0.90

Unknown dataset RF 1.00 0.52 0.76 0.68

SVM–R 1.00 0.35 0.67 0.60

RF, Random forest; SVM–L, Support vector machine with linear Kernel; SVM–R, Support vector machine with RBF Kernel.
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FIGURE 2 | Alpha diversity Indices. The alpha diversity of the studied groups was measured based on their richness [nOTU and inverse Simpson index (invS)] and

evenness [Shannon Index (shannon)]. Here horizontal lines in the plot represent their respective mean value.

recall (Table 2). Interestingly, from the above study, it is
observed that FBG and HbA1c were demonstrated as the most
important discriminative parameters with the highest mean
decrease scores (95.2 and 75.2%, respectively) among the two
study groups.

Diversity Analysis and Taxonomy
Composition of the Indian T2D and NGT
By removing primer sequences of microbial hypervariable V3–
V4 region of 16S rRNA gene amplicon sequences, a total of
71,30,226 clipped pair-end reads were generated. After trimming
and merging the paired-end reads, a total of 44,00,731 merged
sequences were obtained (Supplementary Table S2). The high-
quality reads were then clustered using > 97% sequence identity
which generated 7,71,043 OTUs. A total of 43,467 swarm
OTUs was obtained by removing the absolute singletons and
unclassified sequence at the phylum level to avoid the rare
biosphere, potential chimera effects, and PCR artifact (Dhal et al.,
2020; Nayak et al., 2021).

α diversity i.e., diversity within the sample, was measured
through nOTUs, Shannon diversity index as well as inverse
Simpson index. It was observed that the average nOTU was
higher in the T2D group (1960) than in the NGT (1565). Similar
results were observed for Species richness and evenness in T2D
and NGT groups as indicated by the Shannon diversity and
inverse Simpson index (Figure 2). Spearman rank correlations
test indicated a strong association of FBG with alpha diversity of
the T2D group (ρ = 0.54, p-value ≤ 0.05) but none in NGT.

The bacterial communities of gut microbiota were dominated
by the members of Bacteroidota, Firmicutes, Proteobacteria,
and Actinobacteria which represented almost 97% of sequences
(Figure 3A). In this study, we also observed 27 bacterial
genera representing the core gut microbiome in the studied

samples while each of 7 bacterial genera was found as
unique for the T2D and NGT microbiome (Figure 3B).
The core microbiome was mainly dominated by Prevotella_9,
Prevotella, Prevotellaceae Incertae Sedis, Bacteroides, and
Alloprevotella of Bacteroidia; Lachnospiraceae Incertae Sedis,
Roseburia, and Faecalibacterium of Clostridia; Megasphaera
of Negativicutes and Succinivibrio of Gammaproteobacteria
(Supplementary Figure S1, Supplementary Table S3). The
unique bacterial member for the T2Dmicrobiome was composed
of Eubacterium eligens group, Lachnoclostridium, Ruminococcus
torques group, and Clostridia vadinBB60 group Incertae Sedis,
and Lachnospira under the class Clostridia; Haemophilus
of Gammaproteobacteria and Catenibacterium of Bacilli
(Supplementary Table S5). While Alistipes and Muribaculaceae
Incertae Sedis under the class Bacteroidia; Ligilactobacillus and
Holdemanella of Bacilli; Enterobacter of Gammaproteobacteria;
Blautia and Coprococcus of Clostridia were observed only in the
NGT group (Supplementary Table S4).

Also, β diversity was a measure to determine the intra-
sample variation of the gut microbial community using the
pruned 6903 OTU datasets. The differential OTUs using the
ALDEx2 test reported a total of 61 OTUs representing 68.1%
of total communities for T2D and NGT gut microbiome
that include classes Bacteroidia (34 OTUs), Clostridia (13
OTUs),Gammaproteobacteria (5 OTUs),Negativicutes (4 OTUs),
Spirochaetia (2 OTUs), Bacilli (2 OTUs), and Verrucomicrobiae
(1 OTU), which were deferred as differential abundant between
T2D and NGT (Supplementary Figure S2).

Within Bacteroidia, OTU affiliated with genus Prevotella_9
(15 OTUs),Alloprevotella (otu18 and otu36), Bacteroides (otu28),
Prevotella Incertae Sedis (otu48), and Rikenellaceae RC-9 gut
group (otu82) significantly enriched in the T2D microbiome
whereas Prevotella (otu22, otu24, and otu116) significant
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FIGURE 3 | (A) Phylum level taxonomic composition. Relative sequence abundance of most (top 10 based) dominant gut microbes in phylum level of studied

samples. (B) Venn diagram for unique and common gut microbes. According to the Venn diagram, 27 gut microbes were common for both T2D and NGT groups,

and 7 and 7 gut microbes were unique for T2D and NGT groups respectively.

enriched in NGT microbiome. Within the Clostridia class,
Eubacterium (otu49 and otu59) and UCG-002 (otu46) genera
were found dominant in the T2Dmicrobiome, whereasRoseburia
(otu38 and otu51), Lachnospiraceae Incertae Sedis (otu43 and
otu112), Butyrivibrio (otu55), and Faecalibacterium (otu42)
genera were found significantly enriched in NGT microbiome.
Similarly, Gammaproteobacteria, Haemophilus (otu237) showed
dominance in the T2D microbiome whereas Klebsiella (otu83)
and Succinivibrio (otu17) genera were found highly enriched
in NGT. It was also observed that within Negativicutes genera,
Phascolarctobacterium (otu33) was significantly dominant in
the T2D microbiome, but in the same class, Megasphaera
(otu25) and Selenomonadaceae Incertae Sedis (otu150) genera
were significantly dominant in the NGT microbiome. Within
Bacilli, the genus Asteroleplasma (otu64) significantly enriched
in the T2D group whereas under the class Spirochaetia
and Verrucomicrobiae, Treponema (otu81 and otu104), and
Akkermansia (otu100) genera showed most dominance in the
NGT group, respectively.

Similarities or dissimilarities between two groups were
projected in an ordination space as well as their associated
physiological parameters on the NMDS plot (Figure 4).
Moreover, Envfit result showed that FBG (R2

= 0.2022, p =

0.025) and HbA1c (R2
= 0.1480, p = 0.086) coincided with

microbial community composition, but the association seems to
be weak. Redundancy analysis which was performed to assess the

significant contribution of the tested parameters in describing
the variation in microbial communities revealed that only
HbA1c had the explanatory power for bacterial communities of
T2D microbiota with 2.1% (Adj. R2

= 0.021, F = 1.34, AIC =

168.51, p = 0.05). Together NMDS and RDA supported each
other’s results and suggested that HbA1c, as well as FBG, were
the responsible variable among the parameters for variation in
the microbial composition in the T2D group.

The significant correlation between the significant
differentially abundant OTUs with the most important
physiological parameters (FBG and HbA1c, as they were found
as the most significant influence in our statistical analysis) was
measured by calculating the Spearman correlation coefficient
(SCC). As indicated in Figure 5, otu10, otu27, and otu231
represent Prevotella_9, otu28 represent the Bacteroidandes, otu48
represent the Prevotella Incertae Sedis showed a significantly
positive correlation with FBG (p ≤ 0.05) while out53, otu122,
and otu231 representing Prevotella_9, otu64 representing
Asteroleplasma and otu28 representing Bacteroides were highly
positively correlated with the HbA1c (p ≤ 0.05).

Co-Occurrence Network Analysis and
Keystone Taxa of the Indian T2D and NGT
To understand the potential interactions among gut microbial
community members for each group, we constructed
co-occurrence networks based on OTU to OTU correlations.
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FIGURE 4 | Non-metric multidimensional scaling (NMDS) plot of the bacterial communities of each group. Arrows of the NMDS plot indicate envfit correlations of

bacterial community composition with physiological parameters.

The T2D co-occurrence network (TCN) consisted of 168
nodes and 213 edges, while the NGT co-occurrence network
(NCN) consisted of 217 nodes and 233 edges (Table 3). The
modularity of TCN is 0.93 decreased from NCN modularity
(0.96), accompanying the increase of average weighted degree in
TCN (1.268) compared to NCN (1.074). The nodes present in
both TCN and NCN networks were mostly dominated by phyla
Firmicutes, Bacteroidota, Proteobacteriota, Verrucomicrobiota,
Spirochaetota, Fusobacteriota, and Desulfobacterota (Figures 6,
7). However, their percentage in each network was different,
such as the Firmicutes present in TCN and NCN is 57.14 and
48.39%, respectively; the same trend was also observed in
Bacteroidota (TCN vs. NCN: 28.57 vs. 36.87%), Proteobacteria
(TCN vs. NCN: 8.33% vs. 7), Actinobacteria (TCN vs. NCN: 2.98
vs. 2.3%), Verrucomicrobiota (TCN vs. NCN: 1.19 vs. 0.46%),
Spirochaetota (TCN vs. NCN: 0.6 vs. 0.46%), Fusobacteriota
(TCN vs. NCN: 0.6 vs. 0.46%), and Desulfobacterota (TCN vs.
NCN: 0.6 vs. 0.92%). Cyanobacteria (0.92%), Campylobacterota
(0.46%), Patescibacteria (0.46%), and Elusimicrobiota (0.46%)
gut microbial phyla were found only in the NCN, while none
from TCN. We also identified 14 and 8 OTUs as keystone
nodes from TCN and NCN networks, respectively, based
on within-module connectivity (Zi) and among-module
connectivity (Pi) values. Among them, six OTUs as module
hubs and eight OTUs as connector nodes were identified

in the TCN network, whereas in the NCN network, seven
OTUs as module hubs and one OTU as connector node
were identified. The identified keystone taxa, five OTUs were
found under the phylum Firmicutes, four for Bacteroidota,
three for Proteobacteria, one for Actinobacteriota, and one
for Spirochaetota gut microbial phyla in TCN network.
In contrast, two OTUs were found under the phylum
Bacteroidota, three for Firmicutes, one for Proteobacteria,
one for Patescibacteria and one for Desulfobacterota as
keystone microbial phyla for NCN. Due to the decrease in
network topology and different gut microbial compositions,
the network stability also decreases in TCN compared
to NCN.

DISCUSSION

Many reports endorsed the usefulness of different machine
learning techniques to discriminate between T2D andNGT using
a patient’s physiological conditions, but none has attempted to
identify the important parameters that can alone predict and
diagnose the T2D (Choi et al., 2019; Tigga and Garg, 2020). In
this study, we are the first to attempt to develop an MLT-based
predictionmodel using the conventional classification algorithms
as well as identification of the most important physiological
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FIGURE 5 | Correlation Heatmap of physiological parameters with the significant differential abundant OTUs identified in DotPlot analysis. Spearman correlation

analysis based on differentially abundant significant OTUs and the measured physiological parameters. Spearman correlation values were shown in the vertical

heatmap panel to the right. P ≤ 0.05 were indicated by the “*” symbols.

parameters (using the feature selection method, RFE) to classify
diabetes status. Our predictionmodels are developed and verified
using two different regions of datasets (Chinese and European)
and applied these models to the studied Indian samples, to
avoid any geographic biases. Our proposed prediction models,

RF and SVM with RBF Kernel (SVM–R) have outperformed
other already established models with high accuracy (94%)
(Choi et al., 2019). Those models also identify the two most
important physiological parameters, FBG and HbA1c, which
have a greater role in the classification of T2D and diagnosis
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of the disease which is in line with the American Diabetes
Association (ADA) and the World Health Organization (WHO)
recommendations as well as previous investigations, stating that
both FBG and glycated hemoglobin (HbA1c) are critical to
classify the T2D patients (Chaudhury et al., 2017; Deberneh and
Kim, 2021).

Our statistical analysis also supports the result of
MLT analysis by showing significant differences among
FBG and HbA1c levels of the studied Indian T2D
when compared to NGT, which have also separately
ordinate from each other along with those parameters
in the PCA plot. So, the significant changes in the
level of both FBG and HbA1c can be used as critical
physiological measurements to identify the T2D patients
or risk of disease in impaired states of patients around
the world.

TABLE 3 | Characteristics information of two gut microbial co-occurrence

network; TCN–T2D co-occurrence network, NCN–NGT co-occurrence network.

Network Topology Parameters NCN TCN

Number of nodes 217 168

Number of edges 233 213

Average weighted degree 1.074 1.268

Network diameter 3 2

Graph density 0.005 0.008

Modularity 0.96 0.93

Average clustering co-efficient 0.226 0.208

Average path length 1.084 1.082

Alterations of gut microbiota and their association with
T2D are well-established around the world (Karlsson et al.,
2013; Bhute et al., 2017; Gaike et al., 2020; Sroka-Oleksiak
et al., 2020). However, the microbial dynamism of T2D patients
from normal as well as their correlation with the important
physiological parameters (FBG and HbA1c) is not reported,
which is another novelty of our investigation. In this study, we
were the first to provide the preliminary information on the
gut microbiome of T2D patients from the eastern region of the
Indian Subcontinent, especially in and around Kolkata, West
Bengal. The T2D patients from this region have unique dietary
status compared to other regions and this seems to restrict us
from collecting the samples from different regions which is also
reflected in our sample size. The microbial community of the
studied samples was dominated by the members of the bacterial
groups under phylum Bacteroidota, Firmicutes, Proteobacteria,
and Actinobacteria. Bacteroidota and Firmicutes are the well-
known dominant bacteria phylum found in obesity, diabetes, and
also in normal gut microbiome around the world (Gaike et al.,
2020; Sroka-Oleksiak et al., 2020). Although there are reports on
the differences in abundance among Bacteroidota and Firmicutes
in T2D patients to NGT (Zhang et al., 2013; Ahmad et al., 2019).
However, some other reports stated that such differences are not
significant in T2D from NGT, which is in line with our results,
as this investigation mostly focused on T2D irrespective of their
obesity status (Turnbaugh et al., 2006; Ley et al., 2008; Zhang
et al., 2013). The members of phyla Firmicutes play an important
key role in fat digestion and their higher abundance is directly
associated with obesity whereas Bacteroidota is associated with
the production of short-chain fatty acids (SCFAs) (Ahmad et al.,
2019).

FIGURE 6 | NGT co-occurrence network (NCN). From total OTU abundance data, we select the NGT specific OTUs using the specified criteria, and a co-occurrence

microbial network was constructed in Gephi.
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FIGURE 7 | T2D co-occurrence network (TCN). From total OTU abundance data, we select the T2D specific OTUs using the specified criteria, and a co-occurrence

microbial network was constructed in Gephi.

Among the 27 core bacterial genera, the taxonomy of
the associated genera with significantly dominated OTUs
in studied T2D samples is Prevotella_9, Alloprevotella,
Bacteroides, Prevotella Incertae Sedis, Rikenellaceae RC-9
gut group, Eubacterium, UCG-002, Phascolarctobacterium, and
Asteroleplasma. They are also reported to be well-associated with
T2D; for example, Allopreotella and Bacteroides are reported
as risk factors for diabetes as these are reported to increase the
level of lipopolysaccharides (LPS) and insulin resistance, which
are detrimental to human health (Cheng et al., 2017; Wang
et al., 2020). The Prevotella_9 is reported to be associated with
a plant-based low-fat diet and represents key bacterial members
during human gut microbiota maturation in infants to young
adults (Qian et al., 2018; Li et al., 2020b). However, the biological
significance in the human gut enterocyte of both Prevotella_9 and
Asteroleplasma has not been well elucidated. While Rikenellaceae
RC9 gut group bacterial genera showed an association with a
high-fat diet and play an important role in lipid metabolism
(Zhao et al., 2018). The genus Phascolarctobacterium is reported
as an enriched bacterial genus in the T2D mice model and
negatively correlated with fasting insulin (Naderpoor et al., 2019;
Song et al., 2020). We found OTUs representing Prevotella_9,
Bacteroides, Prevotella Incertae Sedis and Asteroleplasma
bacterial genera have a significantly positive correlation with
important established physiological parameters FBG and
HbA1c. Interestingly, this observation supported the correlation
analysis of alpha-diversity (richness and evenness) of the gut
microbial community of studied T2D patients with FBG.
Also, the results of NMDS envfit and RDA reflect that FBG
and HbA1c both coincided most strongly with the microbial
community composition of the T2D microbiome. On the

other hand, Prevotella, Roseburia, Lachnospiraceae Incertae
Sedis, Butyrivibrio, Faecalibacterium, Klebsiella, Succinivibrio,
Megasphaera, Selenomonadaceae Incertae Sedis, Treponema, and
Akkermansia genera are found as dominant bacterial genera
in the NGT microbiome. A similar result was observed in the
study by Almugadam et al. (2020) where they reported that
short-chain fatty acid (SCFA) and butyrate producers such
as Faecalibacterium, Roseburia, Selenomonadaceae Incertae
Sedis, Succinivibrio, and Megasphaera genera were abundant
in the healthy gut microbiome (Almugadam et al., 2020).
Prevotella, Succinivibrio, Treponema, and Lachnospiraceae
Incertae Sedis major contributes to inter-individual variation
in gut microflora and are associated with better digestion
of plant-derived complex carbohydrates and fibers diet for
glucose homeostasis along with the production of butyric
acid in the human colon for intestinal barrier protection
(Arumugam et al., 2011; Schnorr et al., 2014; De Filippo
et al., 2017; Zhao et al., 2020). Several investigators report
the enrichment of butyrate-producing bacterial genera such
as Roseburia, Butyrivibrio, Faecalibacterium, Lachnospiraceae
Incertae Sedis, andMegasphaera are responsible for the reduction
of inflammatory symptoms as well as insulin resistance. These
bacterial genera play an important key role in intestinal health
maintenance, immune defense, regulation of the dynamic
balance of T-cells, and promote Treg cell differentiation by
butyrate production (Canani et al., 2011; Karlsson et al., 2013).
Klebsiella bacteria are also found in the healthy human intestines
and are not reported to be pathogenic as long the person is
sick because of pneumonia, bloodstream infections, wound,
or surgical site infections, etc. (Canani et al., 2011). A high
abundance of mucin degrading Akkermansia bacterial genus in

Frontiers in Microbiology | www.frontiersin.org 11 July 2022 | Volume 13 | Article 914124

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


De et al. Microbial Community of Indian Type 2 Diabetic

healthy human guts is well documented as they play a vital role
in insulin resistance as well as intestinal barrier and LPS leakage
reduction (Tanca et al., 2017; Gurung et al., 2020). Although
some recent reports indicate that a decrease in this genus in
diabetes is associated with inflammation and metabolic disorders
in the mice model, it can be used as a biomarker for impaired
glucose tolerance (Sonnenburg and Bäckhed, 2016; Plovier et al.,
2017).

Several unique bacterial genera are identified in T2D
compared to the NGT microbiome and probably play some roles
in the structural and functional attributes of the gut microbes
in the human intestine for the development of disease. The
unique genera for the T2D microbiome are Catenibacterium,
Eubacterium eligens group, Lachnoclostridium, Ruminococcus
torques group, Clostridia vadinBB60 group Incertae Sedis,
Lachnospira, and Haemophilus. Several investigators reported
that a few of these bacterial genera such as Ruminococcus
torques group, Lachnospira, and Haemophilus act in mucus
degradation by decreasing the gut barrier integrity, and
they can be used as bacterial biomarkers to study their
involvement in the human gut or their uses as diagnostic
tools should be encouraged (Chen et al., 2020; Vacca et al.,
2020). Haemophilus bacterial genus reported highly abundant
in the Chinese T2D cohort is a particular biomarker for
them (Chen et al., 2020). While for NGT, the unique
bacterial genera are Enterobacter, Ligilactobacillus, Alistipes,
Muribaculaceae Incertae Sedis, Blautia, Holdemanella, and
Coprococcus identified in this investigation. Few of those genera
including, Alistipes, Blautia, and Holdemanella are observed
in the normal human gastrointestinal tract and they have
an important key role in protection from many diseases
such as liver and cardiovascular fibrotic disorders and also
from various pathogens (Arumugam et al., 2011; Parker
et al., 2020). Coprococcus, Muribaculaceae Incertae Sedis, and
Enterobacter bacterial genera are having the ability for metabolic
improvements and consorted with a higher quality of life
indicators supported by previous reports (Valles-Colomer et al.,
2019; Wang et al., 2020).

Our co-occurrence network analysis showed that in T2D
disease condition, significant changes in microbial network
topological properties leads to a decrease in network stability
and alteration in the microbial community in the human
gastrointestinal tract, which is also in line with previous studies
where they were reported, network complexity of the gut
microbial community association was decreased in T2D (Li
et al., 2020a). Interestingly co-occurrence network analysis
also revealed that there are significant differences present in
the proportion of taxonomic abundance of Firmicutes and
Bacteroidota phylum in T2D compared to the NGT group which
is also in line with the previously reported data (Turnbaugh
et al., 2006; Ley et al., 2008; Zhang et al., 2013; Ahmad et al.,
2019). The same trend was also observed in identified keystone
taxa from the two co-occurrence networks and they might play
an essential role in maintaining the microbial structure links,
information transmission, and ecological function of the entire
ecological communities in the gastrointestinal tract (Li et al.,
2020a,b, 2021).

This investigation gives a well-resolved picture of the bacterial
diversity and their correlation with important physiological
parameters that influence the decrease of SCFA and butyrate-
producing core bacteria which are beneficial for the human gut in
T2D patients, in West Bengal, India. Also, we suggest that along
with the well-established physiological parameters, the unique
gut microbes can be used as a key biomarker to improve the
disease diagnosis.

The Indian population size is large and has diverse dietary
compositions or food habits with large metabolic differences.
Recently, one report on the gut microbiota of T2D from the
western part of India (Maharashtra, especially, in and around
the city, Pune); however, none are from other regions/parts
of this country (Gaike et al., 2020). In this study, we were
the first to provide the preliminary information on the gut
microbiome of Indian T2D patients from the eastern region of
the Indian Subcontinent, especially, in and around the Kolkata,
West Bengal, with almost similar dietary status and this seems to
restrict us from increasing the sample size. This is a preliminary
dataset that will help us formulate strategies to collect more
samples from a diverse population for a deep understanding of
the gut microbiome in Indian T2D patients. With the increase
in the sample size, we will be able to perform more in-depth
microbial diversity analysis and learn more about what governs
the distribution of gutmicrobial taxa and how these distributions,
as well as their ecosystem contributions in Indian T2D patients,
will help to improve more accurate diagnosis of T2D disease in
the future.

CONCLUSION

From the investigation in this study, following conclusions can
be drawn:

1) Random forest (RF) and support vector machine with
RBF Kernel (SVM–R) are the best prediction models to
predict the T2D and normal state based on a patient’s
physiological condition.

2) Fasting blood glucose and HbA1c individually or together can
be used for the T2D diagnosis as well as defining the disease in
an impaired state. Also, both of these physiological parameters
coincided with the microbial community composition of
the T2D microbiome by decreasing the beneficiary core gut
microbial members.

3) Catenibacterium, Eubacterium eligens group,
Lachnoclostridium, Ruminococcus torques group, Clostridia
vadinBB60 group Incertae Sedis, Lachnospira, and
Haemophilus can be used as important biomarkers for
Indian T2D patients.
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